NATIVE Trichoderma STRAINS FOR THE CONTROL OF GREY MOULD (Botrytis cinerea Pers.) IN FRUITS AND FLOWERS OF BLUEBERRY (Vaccinium corymbosum L.)
Abstract
Keywords
Full Text:
PDFReferences
Agraria., 2022. Botrytis cinerea; la prevención es la clave del éxito. https://agraria.pe/noticias/botrytis-cinerea-la-prevencion-es-la-clave-del-exito-27734 (17 de diciembre 2023).
Asad, S.A., 2022. Mechanisms of action and biocontrol potential of Trichoderma against fungal plant diseases - A review. Ecological Complexity, 49, p.100978. https://doi.org/10.1016/J.ECOCOM.2021.100978
Bae, S.J., Mohanta, T.K., Chung, J.Y., Ryu, M., Park, G., Shim, S., Hong, S.B., Seo, H., Bae, D. W., Bae, I., Kim, J.J. and Bae, H., 2016. Trichoderma metabolites as biological control agents against Phytophthora pathogens. Biological Control, 92, pp. 128–138. https://doi.org/10.1016/j.biocontrol.2015.10.005
Bailey, B.A., Bae, H., Strem, M.D., Crozier, J., Thomas, S.E., Samuels, G.J., Vinyard, B.T. and Holmes, K.A., 2008. Antibiosis, mycoparasitism, and colonization success for endophytic Trichoderma isolates with biological control potential in Theobroma cacao. Biological Control, 46(1), pp. 24–35. https://doi.org/10.1016/j.biocontrol.2008.01.003
Baiyee, B., Pornsuriya, C., Ito, S. ichi and Sunpapao, A., 2019. Trichoderma spirale T76-1 displays biocontrol activity against leaf spot on lettuce (Lactuca sativa L.) caused by Corynespora cassiicola or Curvularia aeria. Biological Control, 129, pp. 195–200. https://doi.org/10.1016/j.biocontrol.2018.10.018
Barakat, R.M. and Al Masri, M.I., 2017. Effect of Trichoderma harzianum in combination with fungicides in controlling gray mould disease (Botrytis cinerea) of strawberry. American Journal of Plant Sciences, 8(4), pp. 651–665. https://doi.org/10.4236/ajps.2017.84045
Bello, F., Montironi, I.D., Medina, M.B., Munitz, M.S., Ferreira, F.V., Williman, C., Vázquez, D., Cariddi, L.N. and Musumeci, M.A., 2022. Mycofumigation of postharvest blueberries with volatile compounds from Trichoderma atroviride IC-11 is a promising tool to control rots caused by Botrytis cinerea. Food Microbiology, 106, pp. 1–14. https://doi.org/10.1016/j.fm.2022.104040
Contreras, H., Macías, L., Larsen, J. and Del Val, E., 2016. Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: interactions with plants. FEMS Microbiology Ecology, 92(4), pp. 1–17. https://doi.org/10.1093/femsec/fiw036
Contreras-Cornejo, H.A., Orozco-Granados, O., Ramírez-Ordorica, A., García-Juárez, P., López-Bucio, J. and Macías-Rodríguez, L., 2022. Light and mycelial injury influences the volatile and non-volatile metabolites and the biocontrol properties of Trichoderma atroviride. Rhizosphere, 22, p.100511. https://doi.org/10.1016/j.rhisph.2022.100511
Contreras-Cornejo, H. A., Schmoll, M., Esquivel-Ayala, B. A., González-Esquivel, C. E., Rocha-Ramírez, V. and Larsen, J., 2024. Mechanisms for plant growth promotion activated by Trichoderma in natural and managed terrestrial ecosystem. Microbiological Research, 281, p.127621. https://doi.org/10.1016/j.micres.2024.127621
Cubilla Ríos, A.A., Ruíz Díaz, D.D., Romero Rodríguez, M.C., Flores Giubi, M.E. and Barúa Chamorro, J.E., 2019. Antibiosis of proteins and metabolites of three species of Trichoderma against paraguayan isolates of Macrophomina phaseolina. Agronomy Mesoamerican, 30(1), pp. 63–77. https://doi.org/https://doi.org/10.15517 /am.v30i1.34423
Chen, J., Zi, J., Gang, X., Guo, A., Tou, S. and Zhong, J., 2021. Botrytis cinerea causing gray mold of Polygonatum sibiricum (Huang Jing) in China. Crop Protection, 140, p.105424. https://doi.org/10.1016/j.cropro.2020.105424
Díaz García, E., Valenzuela Quintana, A., Troncoso Rojas, R., Gonzalez Mendoza, D. and Tiznado Hernández, M. 2022. Metabolitos bioactivos de Trichoderma para el control de hongos postcosecha en frutas y hortalizas. In: L.C. Montoya Ballesteros, M.E. Tiznado Hernandez, T.J. Madera Santana, J.F. Ayala Zavala, G.A. González Aguilar, eds. Tecnología, Ingeniería y Biotecnología de Alimentos de Origen Vegetal: Aprovechamiento de sus Subproductos. CDMX:LIBERMEX-CIAD. Pp. 227–243.
Di Rienzo, J.A., Casanoves, F., Balzarini, M.G., Gonzalez, L., Tablada, M. and Robledo, C.W., 2008. InfoStat software estadistico, Manual del Usuario: Vol. Grupo Infostad (1.1). Universidad Nacional de Córdoba. https://www.infostat.com.ar/index.php?mod=page&id=34
Druzhinina, I.S., Seidl-Seiboth, V., Herrera-Estrella, A., Horwitz, B.A., Kenerley, C.M., Monte, E., Mukherjee, P.K., Zeilinger, S., Grigoriev, I.V. and Kubicek, C.P., 2011. Trichoderma: the genomics of opportunistic success. Nature Reviews Microbiology, 9, pp. 749-759.
Edgar, R.C., 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5), p.1792. https://doi.org/10.1093/NAR/GKH340
Edquen Q., M.N., 2019. Fungosis de Arándano (Vaccinium corymbosum L.) var. Biloxi en el Distrito de Jesús - Cajamarca. Tesis de Pregrado, Universidad Nacional de Cajamarca. http://hdl.handle.net/20.500.14074/3242
Geng, L., Fu, Y., Peng, X., Yang, Z., Zhang, M., Song, Z. and Ahammed, J., 2022. Biocontrol potential of Trichoderma harzianum against Botrytis cinerea in tomato plants. Biological Control, 174, pp. 1–12. https://doi.org/10.1016/j.biocontrol.2022.105019
Ferrada, E.E., Latorre, B.A., Zoffoli, J.P. and Castillo, A., 2016. Identification and characterization of botrytis blossom blight of Japanese plums caused by Botrytis cinerea and B. prunorum sp. nov. in Chile. Phytopathology, 106(2), 155–165. https://doi.org/10.1094/PHYTO-06-15-0143-R/ASSET/IMAGES/LARGE/PHYTO-06-15-0143-R_F6.JPEG
Gómez Ramírez, H., Soberanis Ramirez, W., Tenorio Cantoral, M. and Torres Del Aguila, E., 2013. Manual de producción y uso de hongos antagonistas. Ministerio de Agricultura, Servicio Nacional de Sanidad Agraria, Dirección de Sanidad Vegetal, Perú. https://www.senasa.gob.pe/senasa/wp-content/uploads/2017/09/Manual-de-Producci%C3%83%C2%B3n-y-Uso-de-Hongos-Antagonistas.pdf
Hammad, M., Guillemette, T., Alem, M., Bastide, F. and Louanchi, M. 2021. First report of three species of Trichoderma isolated from the rhizosphere in Algeria and the high antagonistic effect of Trichoderma brevicompactum to control grey mould disease of tomato. Biological Pest Control, 31(85), pp. 2–11. https://doi.org/https://doi.org/10.1186/s41938-021-00423-4
Harman, G.E., Howell, C.R., Viterbo, A. and Chet, I., 2004. Trichoderma spp.––opportunistic avirulent plant symbionts. Nature Reviews, 2, pp. 43–56. http://doi.org/10.1038/nrmicro797
Horst, L.E., Locke, J., Krause, C.R., McMahon, R.W., Madden, L.V. and Hoitink, H.A.J., 2005. Suppression of Botrytis blight of begonia by Trichoderma hamatum 382 in peat and compost-amended potting mixes. Plant Disease, 89, pp. 1195–1200. https://doi.org/10.1094/PD-89-1195
Huaman-Pilco, A.F., Torres-de la Cruz, M., Aime, M.C., Leiva-Espinoza, S.T., Oliva-Cruz, S.M. and Díaz-Valderrama, J.R., 2023. First report of thread blight caused by Marasmius tenuissimus on cacao (Theobroma cacao) in Peru. Plant Disease, 107(1), 219. https://doi.org/10.1094/PDIS-02-22-0420-PDN
Huang, L., Liu, M.D., Hu, Y.W., Chen, L.J., Deng, Y., Gu, Y.C., Bian, Q., Le Guo, D. and Wang, G.Z., 2024. Secondary metabolites isolated from Trichoderma hamatum b-3 and their fungicidal activity. Fitoterapia, 174, p.105880. https://doi.org/10.1016/j.fitote.2024.105880
INEI (Instituto Nacional de Estadística e Informática)., 2023. Producción de arándano alcanzó 42 mil 40 toneladas en noviembre del año 2022. Nota de prensa INEI, Perú. https://m.inei.gob.pe/prensa/noticias/produccion-de-arandano-alcanzo-42-mil-40-toneladas-en-noviembre-del-ano-2022-14170/#:~:text=Durante%20noviembre%20del%20a%C3%B1o%202022,conocer%20el%20Instituto%20Nacional%20de /
Jin, X., Guo, L., Jin, B., Zhu, S., Mei, X., Wu, J. and Liu, T., 2020. Inhibitory mechanism of 6-Pentyl-2H-pyran-2-one secreted by Trichoderma atroviride T2 against Cylindrocarpon destructans. Pesticide Biochemistry and Physiology, 170, p.104683. https://doi.org/10.1016/j.pestbp.2020.104683
Kaissoumi, H.E., Berbera, F., Mouden, N., Chahdi, A., Touhami, A.O., Selmaoui, K., Benkirane, R. and Douira, A., 2024. Tomato growth promotion by Trichoderma asperellum laboratory-made bioproduct. In: Sustainable and Green Technologies for Water and Environmental Management. Cham: Springer Nature Switzerland. pp.161-171.
Khan, R.A.A., Najeeb, S., Hussain, S., Xie, B. and Li, Y., 2020. Bioactive secondary metabolites from Trichoderma spp. against phytopathogenic fungi. Microorganisms, 8(6), pp.817. https://doi.org/10.3390/microorganisms8060817
Kottb, M., Gigolashvili, T., Großkinsky, D. K. and Piechulla, B., 2015. Trichoderma volatiles effecting arabidopsis : from inhibition to protection against pytopathogenic fungi. Frontiers in Microbiology, 6(995), pp.156172. https://doi.org/10.3389/fmicb.2015.00995
Kumar, S., Stecher, G., Li, M., Knyaz, C., and Tamura, K., 2018. MEGA X: Molecular Evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), pp.1547. https://doi.org/10.1093/MOLBEV/MSY096
Limdolthamand, S., Songkumarn, P., Suwannarat, S., Jantasorn, A. and Dethoup, T., 2023. Biocontrol efficacy of endophytic Trichoderma spp. in fresh and dry powder formulations in controlling northern corn leaf blight in sweet corn. Biological Control, 181, p.105217. https://doi.org/10.1016/J.biocontrol.2023.105217
Martínez, M. and Moreno, Z., 2008. Estandarización de una metodología para la evaluación de eficacia de productos para la protección de cultivo (PPC) preventivos para el control de Botrytis sp., en condiciones semicontroladas. Tesis de Postgrado, Pontificia Universidad Javanica. http://hdl.handle.net/10554/8532
Martínez Padrón, H.Y., Torres Castillo, J.A., Rodríguez Herrera, R., López Santillán, J.A., Estrada Drouaillet, B. and Osorio Hernández, E., 2018. Identification and evaluation of secondary metabolites by gas chromatography-mass spectrometry (GC-MS) in native strains of Trichoderma species. African Journal of Biotechnology, 17(37), pp. 1162–1171. https://doi.org/10.5897/ajb2018.16546
Mazzei, P., Vinale, F., Woo, S.L., Pascale, A., Lorito, M. and Piccolo, A., 2016. Metabolomics by H-HRMAS-NMR of tomato plants treated with two secondary metabolites isolated from Trichoderma. Journal Agricultural Food Chemistry, 64, pp.3538-3545. http://doi.org/10.1021/acs.jafc.6b00801
Mesa Vanegas, A.M., Calle Osorno, J. and Marín Pavas, D.A., 2020. Metabolitos secundarios en Trichoderma spp. y sus aplicaciones biotecnológicas agrícolas. Actualidades Biológicas, 41(111), pp. 32–44. https://doi.org/10.17533/udea.acbi.v41n111a02
Miller, M.A., Pfeiffer, W. and Schwartz, T., 2011. The CIPRES science gateway: A community resource for phylogenetic analyses. TG’11: Proceedings of the TeraGrid 2011 Conference: Extreme Digital Discovery, Article No. 41. https://doi.org/10.1145/2016741.2016785
MINCETUR (Ministerio de Comercio Exterior y Turismo)., 2022. El arándano se posiciona como el principal producto de agroexportación nacional en los últimos doce meses - Noticias - Ministerio de Comercio Exterior y Turismo - Plataforma del Estado Peruano. https://n9.cl/8jw6z
Naeimi, S. and Zaré, R. 2013. Evaluation of indigenous Trichoderma spp. isolates in biological control of Botrytis cinerea, the causal agent of strawberry gray mold disease. BioControl in Plant Protection, 1(2), pp. 55–74. https://doi.org/10.22092/BCPP.2013.100609
Olowe, O.M., Nicola, L., Asemoloye, M.D., Akanmu, A.O. and Babalola, O.O., 2022. Trichoderma: Potential bio-resource for the management of tomato root rot diseases in Africa. Microbiological Research, 257, p.126978. https://doi.org/10.1016/J.MICRES.2022.126978
Ortiz, M., 2019. Enfermedades y plagas ponen a prueba a los arandaneros. Redagrícola Perú. https://www.redagricola.com/pe/enfermedades-y-plagas-ponen-a-prueba-a-los-arandaneros/
Pascale, A., Vinale, F., Manganiello, G., Nigro, M., Lanzuise, S., Ruocco, M., Marra, R., Lombardi, N., Woo, S.L. and Lorito, M., 2017. Trichoderma and its secondary metabolites improve yield and quality of grapes. Crop Protection, 92, pp. 176–181. https://doi.org/10.1016/j.cropro.2016.11.010
Pereira, F.T., Oliveira, J.B. D., Muniz, P.H.P., Peixoto, G.H.S., Guimarães, R.R. and Carvalho, D.D.C., 2019. Growth promotion and productivity of lettuce using Trichoderma spp. commercial strains. Horticultura Brasileira, 37(1), pp. 69–74. https://doi.org/10.1590/S0102-053620190111
Pincay, A., Viera, W., León, A., Noboa, M., Herrera, K. and Jackson, T., 2020. Evaluación in vitro del potencial antagonista de Trichoderma sp . y hongos endófitos de mora (Rubus glaucus Benth ) para el control de Botrytis cinerea. Science and Research, 6(1), pp. 109–124. https://doi.org/https://doi.org/10.5281/zenodo.4917695
Polat, ?., Baysal, Ö., Mercati, F., Gümrükcü, E., Sülü, G., Kitapc, A., Araniti, F. and Carimi, F., 2018. Infection, genetics and evolution characterization of Botrytis cinerea isolates collected on pepper in Southern Turkey by using molecular markers, fungicide resistance genes and virulence assay. Infection, Genetics and Evolution, 60, pp. 151–159. https://doi.org/10.1016/j.meegid.2018.02.019
Quijada, A., Méndez-Cárdenas, G., Hernández-Baños, B. and Álvarez-Buylla, E., 1997. La región de los ITS del ADN ribosomal del núcleo (nrADN), fuente de caracteres moleculares en la sistemática de las gimnospermas. Botanical Sciences, 60, pp.159–168. https://doi.org/10.17129/BOTSCI.1527
Rambaut, A., 2006. FigTree. Institute of Evolutionary Biology, Univ. of Edinburgh. http://tree.bio.ed.ac.uk/software/figtree/
Ramos, S. and Guillermo, L., 2021. Main diseases in postharvest blueberries, conventional and eco-friendly control methods. A review. LWT Food Science and Technology, 149, pp. 7–12. https://doi.org/10.1016/j.lwt.2021.112046
Rajani, P., Rajasekaran, C., Vasanthakumari, M.M., Olsson, S.B., Ravikanth, G. and Shaanker, R.U., 2021. Inhibition of plant pathogenic fungi by endophytic Trichoderma spp . through mycoparasitism and volatile organic compounds. Microbiological Research, 242, pp. 1–12. https://doi.org/10.1016/j.micres.2020.126595
Saito, S., Michailides, T.J. and Xiao, C.L. 2014. First report of Botrytis pseudocinerea causing gray mold on blueberry in North America. Plant Disease, 98(12), p.1743. https://doi.org/10.1094/PDIS-06-14-0573-PDN
Sridharan, A.P., Thankappan, S., Karthikeyan, G. and Uthandi, S., 2020. Comprehensive profiling of the VOCs of Trichoderma longibrachiatum EF5 while interacting with Sclerotium rolfsii and Macrophomina phaseolina. Microbiological Research, 236, pp. 1–13. https://doi.org/10.1016/j.micres.2020.126436
Stamatakis, A., 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30(9), p.1312. https://doi.org/10.1093/BIOINFORMATICS/BTU033
Stoppacher, N., Kluger, B., Zeilinger, S., Krska, R. and Schuhmacher, R., 2010. Identification and profiling of volatile metabolites of the biocontrol fungus Trichoderma atroviride by HS-SPME-GCMS. Journal of Microbiological Methods, 81(2), pp. 187-193. https://doi.org/10.1016/j.mimet.2010.03.011
Toome, M., Aime, C.M. and Roberson, R.W., 2013. Meredithblackwellia eburnea gen. et sp. nov., Kriegeriaceae fam. nov. and Kriegeriales ord. nov.—toward resolving higher-level classification in Microbotryomycetes. Mycologia, 105(2), p. 486–495. https://doi.org/10.3852/12-251
Vargas, A., Mukherjee, P.K., Laughlin, D., Wiest, A., Moran-Diez, M.E. and Kenerley, C.M., 2014. Role of gliotoxin in the symbiotic and pathogenic interactions of Trichoderma virens. Microbiology, 160, pp. 2319-2330. https://doi.org/10.1099/mic.0.079210-0
Xiao-Yan, Qing-Tao, S., Shu-Tao, X., Xiu-Lan, C., Cai-Yun, S. and Yu-Zhong, Z., 2006. Broad-spectrum antimicrobial activity and high stability of Trichokonins from Trichoderma koningii SMF2 against plant pathogens. FEMS Microbiology Letters, 260, pp. 119-125. https://doi.org/10.1111/j.1574-6968.2006.00316.x
Yedidia, I., Shoresh, M., Kerem, Z., Benhamou, N., Kapulnik, Y. and Chet, I., 2003. Concomitant induction of systemic resistance to Pseudomonas syringae pv. Lachrymans in cucumber by Trichoderma asperellum (T-203) and accumulation of phytoalexins. Applied and Environmental Microbiology, 69, pp. 7342–7353. https://doi.org/10.1128/AEM.69.12.7343-7353.2003
Zeilinger, S., Gruber, S., Bansal, R. and Mukherjee, P.K., 2016. Secondary metabolism in Trichoderma e Chemistry meets genomics. Fungal Biology Reviews, 30(2), pp. 74–90. https://doi.org/10.1016/j.fbr.2016.05.001
Zhang, S., Xu, B., Zhang, J. and Gan, Y., 2018. Identification of the antifungal activity of Trichoderma longibrachiatum T6 and assessment of bioactive substances in controlling phytopathgens. Pesticide Biochemistry and Physiology, 147, pp. 59–66. https://doi.org/10.1016/j.pestbp.2018.02.006
Zhang, J., Yang, H., Yu, Q.Y., Wu, M.D., Yang, L., Zhuang, W.Y., Chen, W.D. and Li, G.Q., 2016. Botrytis pyriformis sp. nov., a novel and likely saprophytic species of Botrytis. Mycologia, 108(4), 682–696. https://doi.org/10.3852/15-340
URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v27i3.50724
DOI: http://dx.doi.org/10.56369/tsaes.5072
Copyright (c) 2024 Yasmin Carmen Arestegui Cantoral, BETSABE LEON TTACCA

This work is licensed under a Creative Commons Attribution 4.0 International License.