GROWTH PERFORMANCE, CARCASS TRAITS, MEAT QUALITY AND HISTOCHEMICAL CHARACTERISTICS OF MUSCLE FIBERS IN MEXICAN HAIRLESS FINISHING PIGS SUPPLEMENTED WITH ORGANIC COPPER

B.M. Colin-Alvarez, Ignacio Arturo Dominguez Dominguez-Vara, D. Trujillo-Gutierrez, J.L. Bojorquez-Gastelum, J.E. Sanchez-Torres, E. Morales-Almaraz, M.C. Olivan, G. Velazquez-Garduño, J.M. Pinos-Rodriguez, F. Grageola-Nuñez

Abstract


Background: Pork meat is related to cardiovascular diseases, due to its high content of saturated fatty acids and cholesterol. But it has been shown that dietary supplementation of pigs with organic minerals benefits growth qualities and improves carcass and meat quality characteristics. Objective: The objective was to evaluate the effect of Cu proteinate supplementation of finishing Mexican Hairless pigs (MHP) on growth, carcass characteristics, meat quality and muscle fiber composition. Methodology: Twenty-eight castrated male MHP (62±5.2 kg BW) were randomly assigned to four levels of Cu in the diet (0, 75, 150, and 225 mg kg-1 DM) for 46 d. The DMI, DWG, FC and FE were measured. At the end of fattening, the pigs were slaughtered and the characteristics of the carcass were evaluated. Tissue samples of Longissiumus thoracis (LT) were obtained and muscle fibers, pH, color, temperature and drip loss were evaluated. Results: The DMI was reduced linearly (P≤0.05) as Cu level supplementation increased in the diet. Growth performance was modified quadratically as Cu level supplementation was increased in the diet, as well as the highest DWG and the lowest FC values were found in barrows supplemented with 75 mg Cu kg-1 DM. Pigs supplemented with 75 and 150 mg Cu kg-1 DM had the highest (P≤0.05) CW and LEA compared with the other treatments. BFT and DL decreased linearly (P≤0.05) as Cu supplementation increased in the diet. The Cu supplementation affected (P≤0.05) the color index b and h after 48h. The Cu affected (P≤0.05) the number, composition and relative area of the type I, IIA and BII fibers of the LT. Implications: Organic Cu supplementation in the diet of Mexican Hairless pigs benefits growth efficiency, carcass yield and backfat reduction; however, its effect on content, FA profile, and oxidative stability of IF meat should be analyzed. Conclusions: It is concluded that Cu supplementation effected quadratically the values of Final BW, DWG, CW and LEA, and linearly Cu affected the values of DMI, FC, CCD, BFT, DL, pH, the color index b and h after 48h; treatments with Cu also influenced linearly or quadratically the number, composition and relative area of the type I, IIA and BII fibers of the LT post slaughter muscle metabolism and it may influence the parameters of quality of meat in finishing Mexican Hairless pigs. The production of MHP meat in an intensive fattening system is profitable and can be improved with the inclusion of Cu proteinate in the diet. 

Keywords


copper; Mexican Hairless pigs; performance; carcass; meat; muscle fibers; histochemistry.

Full Text:

PDF

References


Albertí, P., Ripoll, G., Albertí, C. and Panea, B., 2016. Clasificación objetiva del color de la carne de las denominaciones de venta de vacuno. Eurocarne, 244, pp. 131-142.

AOAC., 2007. Official Methods of Analysis (18th ed). Association of Official Analysis Chemists. Arlington, VA, USA, Vol. 1, 771p.

Apple, J.K., 2002. Nutritional effects on pork quality in swine production. National swine nutritional guide. Factsheet Pork Information Gateway, pp. 1-13.

Apple, J. K. and Jensey, J.W.S., 2013. Water-Holding capacity of meat. In: Kerth, C.R. (Ed.). The Science of Meat Quality. 1st. Edition. Wiley-Blackwell. Iowa, USA.

Becerril, M., Lemus, C., Herrera, J.G., Huerta, M., Alonso-Spilbury, M., Ramírez-Necoechea, R., Mota-Rojas, D. and Ly, J., 2009. Studies on growth of Pelón Mexicano pigs: Effect of rearing conditions on carcass traits and meat quality. Journal of Animal and Veterinary Advances, 8(2), pp. 202-207.

Bertonha, C.L., Zanetti, M.A., Ribeiro, C.G., Pires, M.M., Fernandes, R.A. and Saran, A., 2012. Effect of supplementation of two sources and two levels of copper on lipid metabolism in Nellore beef cattle. Meat Science, 91(4), pp. 466-471. https://doi.org/10.1016/j.meatsci.2012.02.033

Bowker, B.C., Botrel, C., Swartz, D.R., Grant, A.I, Gerrard, D.E., 2004. Influence of myosin heavy chain isoform expression and post mortem metabolism on the ATPase activity of muscle fibers. Meat Science, 68(4), pp. 587-594. https://doi.org/10.1016/j.meatsci.2004.05.010

Cameron, N.D., 1990. Genetic and Phenotypic parameters for carcass traits, meat and eating quality traits in pigs. Livestock Production Science, 26(2), pp. 119-135. https://doi.org/10.1016/0301-6226(90)90061-A

Cannon, J.E., Morgan, J.B., Heavner, J., McKeith, F.K., Smith, G.C. and Meeker, D.L., 1995. Pork quality audit: A review of the factors influencing pork quality. Journal Muscle Foods, 6(4), pp. 369-402. https://doi.org/10.1111/j.1745-4573.1995.tb00581.x

Canul, S.M., Sierra, V.A., Martínez, M.A., Ortiz, J.O., Delgado, J.V., Vega-Pla, J.L. and Pérez, G.F., 2005. Genetic characterization of the Mexican Hairless pig by means of molecular markers. Archivos de Zootecnia, 54, pp. 206-207.

Cardozo, A.F., and Rodríguez. L.E., 2010. Research potential and needs on Creole pigs of Colombia and Venezuela plains. Revista Computadorizada de Producción Porcina, 17 pp. 107-115.

Chang, K.C., Da Costa, N., Blackley, R., Southwood, O., Evans, G., Plastow, G., Wood, J.D. and Richardson, R.I., 2003. Relationships of myosin heavy chain fiber types to meat quality traits in traditional and modern pigs. Meat Science, 64(1), pp. 93-103. https://doi.org/10.1016/s0309-1740(02)00208-5

Cheng, J., Fanc, C., Zhanga, W., Yand, H., Wangb, L., Jia, Z. and Zhua, X., 2010. Effects of dietary copper source and level on metabolic hormones and lipogenic and lipolytic enzyme activities in lambs. Small Ruminant Research, 89(1), pp. 12-17. https://doi.org/10.1016/j.smallrumres.2009.11.012

Colín-Álvarez, M.B., Domínguez-Vara, I.A., Bórquez-Gastelum, J.L., Partida-De la Peña, J.A., Sánchez-Torres, J.E., Morales-Almaraz, E. and Trujillo-Gutiérrez, D., 2019. Effect of copper proteinate inclusion in food on growth performance, carcass traits and meat quality of finishing pigs. Tropical and Subtropical Agroecosystems, 22(1), pp. 153-161. http://doi.org/10.56369/tsaes.2582

Diwa, E.Ch., 2019. Copper from copper hydroxychloride in diets for growing pigs increases feed efficiency, improves energy utilization and changes intestinal microbial activity. Thesis Doctor of Philosophy in Animal Sciences. University of Illinois. Urbana-Champaign, Illinois. USA. 195 p.

Dzib-Cauich, D., Lemus-Flores, C., Bugarín-Prado, J.O., Ayala-Valdovinos, M.A. and Moo-Huchin, V.M., 2021. Fatty acid profile in Longissimus dorsi muscle and gene expression associated with lipid metabolism in Mexican Pelón pigs and Landrace-Yorkshire pigs. Livestock Research for Rural Development, 32(7), p. 115. http://www.lrrd.org/lrrd32/7/clemu32115.html

Engle, T.E. and Spears, J.W., 2000. Dietary copper effects on lipid metabolism, performance and ruminal fermentation in finishing steers. Journal of Animal Science. 78(9), pp. 2452-2458. https://doi.org/10.2527/2000.7892452x

Eskin, N.A.M., 2021. The Latest Research and Development of Minerals in Human Nutrition. 1st Edition. Academic Press. USA. 442p.

Essen-Gustavsson, B., Karlsson, A., Lundstrom, K. and Enfalt, A.C., 1994. Intramuscular fat and muscle fiber lipid contents in halo-thane-gene-free pigs fed high or low protein diets and its relation to meat quality. Meat Science, 38(2), pp. 269-277. https://doi.org/10.1016/0309-1740(94)90116-3

European Food Safety Authority (EFSA)., 2016. Revision of the currently authorised maximum copper content in complete feed. EFSA Panel on additives and products or substances used in animal feed (FEEDAP). European Food Safety Authority Journal, 14(8), pp. 1-100. https://doi.org/10.2903/j.efsa.2016.4563

Fiedler, I., Nürnberg, K., Hardge, T., Nürnber, G. and Ender, K., 2003. Phenotypic variations of muscle fiber and intramuscular fat traits in Longissimus muscle of F2 population DurocxBerlin miniature pig and relationships to meat quality. Meat Science, 63(1), pp. 131-139. https://doi.org/10.1016/s0309-1740(02)00075-x

Fick, K.R., McDowell, L.R., Wilkinson, N.S., Funk, D.J., Conrad, J.H. and Valdivia, R., 1979. Métodos de análisis de minerales para tejidos de plantas y animales. Florida, USA: Departamento de Ciencia Animal, Universidad de Florida, E.E. U.U.

FIRA (Fidecomisos instituidos en relación con la agricultura)., 2019. Panorama Agroalimentario. Carne de cerdo 2018. Dirección de investigación y evaluación económica y sectorial. México. https://www.fira.gob.mx/Nd/index.jsp#

Gil, F., López-Albors, O., Vazques, J.Ma., Latorre, R., Ramirez-Zarsosa, G. and Moreno, F., 2001. The histochemical profiles of the fibers types in porcine skeletal muscle. Histology and Histopathology, 16(2), pp. 439-442. https://doi.org/10.14670/hh-16.439

Handel, S.E. and Stickland, N.C., 1987. The growth and differentiation of porcine skeletal muscle fiber types and the influence of birthweight. Journal of Anatomy, 152, pp. 107-119.

Harper, J., Cornelisse, S., Kime, L., and Hyde, J., 2014. Presupuestos para tomar decisiones agrícolas. Cooperative Extension, College of Agricultural Sciences, Pennsylvania State University. USA.

Henckel, P., Oksbjerg, N., Erlandsen, E., Barton-Gade, P. and Bejerholm, C., 1997. Histo- and biochemical characteristics of the longissimus dorsi muscle in pigs and their relationships to performance and meat quality. Meat Science, 47(3-4), pp. 311-321. https://doi.org/10.1016/S0309-1740(97)00063-6

Henckel, P., Karlsson, A., Oksbjerg, N. and Petersen, J., 2000. Control of post mortem pH decrease in pigs muscles: Experimental design and testing of animal models. Meat Science, 55(1), pp. 131-138. https://doi.org/10.1016/S0309-1740(99)00135-7

Hernández, A., Pluske, J.R., D’Souza, D.N. and Mullan, B.P., 2008. Levels of copper and zinc in diets for growing and ?nishing pigs can be reduced without detrimental effects on production and mineral status. Animal, 2(12), pp. 1763-1771. https://doi.org/10.1017/s1751731108003182

Huaigang, Lei., 2019. Impact of Genetics on Meat Quality of Pigs and Beef Cattle. Thesis of Doctor of Philosophy in Animal Science. Department of Agricultural, Food and Nutritional Science. Canada: University of Alberta, pp. 260.

Hunt, M.C., Acton, J.C., Benedict, R.C., Calkins, C.R., Cornforth, D.P. and Jeremiah, L.E., 1991. AMSA guidelines for meat colour evaluation. In: Proceedings of the 44th annual reciprocal meat conference, 9-12 July.

Jensen, B.B., 2016. Extensive Literature Search on the “Effects of Copper intake levels in the gut microbiota profile of target animals, in particular piglets”. European Food Safety Authority, EFSA supporting publication EN-13(5), pp. 1024E. https://doi.org/10.2903/sp.efsa.2016.EN-1024

Kim, S., Chao, P.Y. and Allen, G.D., 1992. Inhibition of elevated hepatic glutathione abolishes copper deficiency cholesterolemia. The FASEB Journal, 6(7), pp. 2467-2471. https://doi.org/10.1096/fasebj.6.7.1563598

Kim, J.M., Lee, Y.J., Choi, Y.M., Kim, B.C., Yoo, B.H. and Hong, K.C., 2008. Possible muscle fiber characteristics in the selection for improvement in porcine lean meat production and quality. Asian Australasian Journal of Animal Science, 21(10), pp. 1529-1534.

King, D.A., Hunt, M.C., Barbut, S., Claus, J.R., Cornforth, D.P., Joseph, P., Kim, Y.H., Lindahl, G., Mancini, R.A., Nair, M.N., Merok, K.J., Milkowski, A., Mohan, A., Pohlman, F., Ramanathan, R., Raines, C.R., Seyfert, M., Sørheim, O., Suman, S.P. and Weber, M., 2023. “American Meat Science Association Guidelines for Meat Color Measurement”. Meat and Muscle Biology, 6(4), pp. 1-81. https://doi.org/10.22175/mmb.12473

Klont, R.E., Brocks, L. and Eikelenboom, G., 1998. Muscle fibre type and meat quality. Meat Science, 49(1), pp. S219-S229. https://doi.org/10.1016/S0309-1740(98)90050-X

Larzul, C., Lefaucheur, L., Ecolan, P., Gogue, J., Talmant, A., Sellier, P., LeRoy, P. and Monin, G., 1997. Phenotypic and genetic parameters for longissimus muscle fiber characteristics in relation to growth, carcass and meat quality traits in large white pigs. Journal of Animal Science, 75(12), pp. 3126-3137. https://doi.org/10.2527/1997.75123126x

Lauridsen, Ch., Nielsen, J., Henckel, P. and Sørensen, T., 1999. Antioxidative and oxidative status in muscles of pigs fed rapeseed oil, vitamin E, and copper. Journal of Animal Science, 77(1), pp. 105-115. https://doi.org/10.2527/1999.771105x

Lefaucheur, L., Dividich, Le., Mourot, J., Monin, G., Ecolan, P. and Krauss, D., 1991. Influence of environmental temperature on growth, muscle and adipose tissue metabolism, and meat quality in swine. Journal of Animal Science, 69(7), pp. 2844-2854. https://doi.org/10.2527/1991.6972844x

Lefaucheur, L., 2010. A second look into fibre typing-Relation to meat quality. Meat Science, 84(2), pp. 257-270. https://doi.org/10.1016/j.meatsci.2009.05.004

Linares, V., Linares, L., Mendoza, G., 2011. Ethnic-Zootechnic characterization and meat potential of Sus scrofa “creole Pig” in Latin America. Scientia Agropecuaria, 2, pp. 97-110.

Lind, A. and Kernell, D., 1991. Myofibrillar ATPase histochemistry of rat skeletal muscle: A “Two-dimensional” quantitative approach. Journal Histochemical and Cytochemical, 39(5), pp. 589-597. https://doi.org/10.1177/39.5.1826695

Littell, R.C., Milliken, G.A., Stroup, W.W., Wolfinger, R.D. and Schabenberger, O., 2006. SAS® for Mixed Models, Second Edition. USA: SAS Institute Inc. Cary, pp. 834.

Lim, K.S. and Paik, I.K., 2006. Effects of dietary supplementation of copper chelates in the form of methionine, chitosan and yeast in laying hens. Asian-Australasian Journal of Animal Science, 19(8), pp. 1174-1178. https://doi.org/10.5713/ajas.2006.1174

Montero, L.E.M., Martínez, G.R.G., Herradora, L.M.A., Ramirez, H.G., Espinosa, H.S., Sanchez, H.M. and Martinez, R.R., 2015. Alternativas para la producción porcina a pequeña escala. México D.F.:UNAM. http://www.fmvz.unam.mx/fmvz/publicaciones/archivos/Alternativas_Porcina.pdf

Myer, R.O., Lamkey, J.W., Walkers, W.R., Brendemuhl, J.H. and Combs, G.E., 1992. Performance and carcass characteristics of swine when fed diets containing canola oil and added copper to alter the unsaturated:saturated ratio of pork fat. Journal of Animal Science, 70(5), pp. 1417-1423. https://doi.org/10.2527/1992.7051417x

NRC., 2012. Nutrient Requirements of Swine: Eleven Revised Edition, Subcommittee on Swine Nutrition, Washington, D.C., USA: Committee on Animal Nutrition, National Research Council. National Academy Press, pp. 400. https://doi.org/10.17226/13298

Pacheco, T.I.A., 2019. Utilización de aceite vegetal mixto y harina de ojoche (Brosimum Alicastrum, SW): Innovación en el proceso productive de cerdo Pelón Mexicano en traspatio. Tesis de Maestría. Centro de Investigaciones Tropicales. Universidad Veracruzana, pp. 83.

Pozo-Leyva, D., López-González, F., Chay-Canul, A., and Pérez-Álvarez, Y., 2022. Limitations for the production of creole pork in the cooperative sector of eastern Cuba. Agro Productividad, 15, p. 29. https://doi.org/10.32854/agrop.v14i6.2206

Ramos-Canché, M.E., Magaña-Magaña, M.A., Aguilar-Urquizo, E., Pech-Zapata, A., Piñeiro-Vázquez, A.T., Toledo-López, V.M., Sanginés-García, J.R., 2020. Óptimos económicos en la cría del cerdo pelón mexicano: propuesta de integración para cadena productiva. Ecosistemas y Recursos Agropecuarios, 7(1), p. e2302. http://doi.org/10.19136/era.a7n1.2302

Rehfeldt, C., Stickland, N., Fiedler, I. and Wegner, J., 1999. Environmental and genetic factors as sources of variation in skeletal muscle fiber number. Basic Applied Myology, 9, pp. 235-253.

Rehfeldt, C., Fiedler, I., Dietl, G. and Ender, K., 2000. Myogenesis and postnatal skeletal muscle cell growth as influenced by selection. Livestock Production Science, 66(2), pp. 177-188. https://doi.org/10.1016/S0301-6226(00)00225-6

Ripoll, G., Panea, B. and Alberti, P., 2012. Apreciación visual de la carne bovina y su relación con el espacio de color CIELab. ITEA Información Técnica Económica Agraria, 2, pp. 222-232.

Royo-Bordonada, M., Lobos, J., Brotons, C., Villar, F., de Pablo, C., Armario, P., 2017. El estado de la prevención cardiovascular en España. Medicina Clínica, 142(1), pp. 7-14. https://dialnet.unirioja.es/servlet/articulo?codigo=4533331

Rubio, L.M., 2013. Calidad de carne porcina, vínculo con bienestar animal. Memorias Simposio Bayer: Bioseguridad y bienestar animal. Congreso Nacional AMVEC. México, pp. 9.

Ryu, Y. and Kim, B., 2006. Comparison of histochemical characteristics in various pork groups categorized by postmortem metabolic rate and pork quality. Journal of Animal Science, 84(4), pp. 894-901. https://doi.org/10.2527/2006.844894x

SAGARPA., 2003. Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación. Norma Oficial Mexicana NMX-FF-081-2003. Productos Pecuarios. Carne de Porcino en Canal-Calidad de la Carne-Clasificación. Dirección General Jurídica, SAGARPA, México, pp.12.

SAGARPA. 1995a. Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación. Norma Oficial Mexicana NOM-051-ZOO-1995. Trato Humanitario en la Movilización de Animales. Dirección General Jurídica, SAGARPA, México. Disponible en: https://dof.gob.mx/nota_detalle.php?codigo=4904331&fecha=31/10/1996#gsc.tab=0 (Consultado: 11-04-2023).

SAGARPA., 1995b. Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación. Norma Oficial Mexicana NOM-033-ZOO. Sacrificio Humanitario de los Animales Domésticos y Silvestres. Dirección General Jurídica, SAGARPA, México. Disponible en: https://www.dof.gob.mx/nota_detalle.php?codigo=5405210&fecha=26/08/2015#gsc.tab=0 (Consultado: 11-04-2023).

Sang, H.L., Hun-Mo, K., Youn, Ch.R. and Kwang, S.K., 2016. Effects of morphological characteristics of muscle fibers on porcine growth performance and pork quality. Korean Journal Food Science Animal Resources, 36(5), pp. 583-593. https://doi.org/10.5851%2Fkosfa.2016.36.5.583

SAS., 2016. Supported Operating System. TS1M7. SAS Institute. Statistical Analysis Software. SAS/STAT System for Windows 9.0. Cary, NC, USA. SAS Institute Inc. ISBN: 978-1-60764-599-3. http://www.sas.com/en_us/software/analytics/stat.html#

Sierra-Vásquez, A.C., Ortiz-Ortiz, J.R., Bojórquez-Cat, J.C., Canul-Solís, M.A., Tamayo-Canul, J.R., Rodríguez-Pérez, J.C., Sanginés-García, J.R., Magaña-Magaña, M.A., Montes-Pérez, R.C. and Segura-Correa, J.C., 2016. Conservación y uso sustentable del cerdo Pelón en Yucatán. Quehacer científico en Chiapas, 11(1), pp. 13-28.

Stachowiak, N., Nowacka-Woszuc, J., Szydlowski, M. and Switonski, M., 2013. The ACACA and SREBFI genes are promising markers for pigs carcass and performance traits, but not for fatty acids content in the Longissimus dorsi muscle and adipose tissue. Meat Science, 95(1), pp. 64-71. https://doi.org/10.1016/j.meatsci.2013.04.021

Steel, R.G.D., Torrie, J.H. and Dickey, D.A., 1997. Principles and procedures of statistics: A biometrical approach. 3rd ed. USA: McGraw-Hill Series in Probability and Statistics, pp. 622.

Valenzuela-Grijalva, N., Jiménez.Estrada, I., Mariscal-Tovar, S., López-García, K., Pinelli-Saavedra, A., Peña-Ramos, E.A., Mulhia-Almazán, A., Zamorano-García, L., Valenzuela-Melendres, M. and González-Rios, H., 2021. Effects of ferulic acid supplementation on growth performance, cascass traits and histochemical characteristics of muscle fibers in finishing pigs. Animals, 11(8), pp. 2455-2468. https://doi.org/10.3390/ani11082455

Valenzuela, R., Morales, I., González, A., Morales, P., Sanhueza, C., and Valenzuela, B., 2014. Ácidos grasos poliinsaturados de cadena larga ?-3 y enfermedad cardiovascular. Revista Chilena de Nutrición, 41(3), pp. 319-327. http://www.redalyc.org/pdf/469/46932089014.pdf

Urquiaga, I., Echeverría, G., Dussaillant, C., Rigotti, A., 2017. Origen, componentes y posibles mecanismos de acción de la dieta mediterránea. Revista Médica de Chile, 145(1), pp. 85-95. http://dx.doi.org/10.4067/S0034-98872017000100012

Warris, P.D. and Brown, S.N., 1987. The relationships between initial pH, reflectance and exudation in pig muscle. Meat Science, 20(1), pp. 65-74. https://doi.org/10.1016/0309-1740(87)90051-9

Weiler, U., Appell, H.J., Kermser, M., Hofaker, S. and Claus, R., 1995. Consequences of selection on muscle composition. A comparative study on Gracilis muscle in wild and domestic pigs. Anatomy Histology and Embryology, 24(2), pp. 77-80. https://doi.org/10.1111/j.1439-0264.1995.tb00013.x




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v27i2.50667

DOI: http://dx.doi.org/10.56369/tsaes.5066



Copyright (c) 2024 Ignacio Dominguez Vara

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.