Jesús Israel Vega-García, Felipe López González, Ernesto Morales-Almaraz, Carlos Manuel Arriaga-Jordán


Background: Given the demand for meat and milk, it is necessary to increase the productivity of ruminant animals, nevertheless livestock also contributes to climate change due to annual methane (CH4) emissions, having a detrimental effect on the atmosphere, due to its effect greenhouse and also represents a loss of dietary energy for ruminant animals. Objective: The objective was to evaluate the nutritional quality in vitro, as well as the production and estimation of methane of small grain cereals in small-scale milk production systems, through two experiments. Methodology: In experiment 1, twelve dairy cows were compared through continuous grazing (6 h/d) in a 3x3 Latin square design, replicated three times with three 14-d experimental periods and three small-grain cereals: rye (Secale cereale) (CEN), wheat (Triticum aestivum) (TRG) and triticale (Triticosecale Witt.) (TRT), in addition the cows were supplemented with 4.5 kg DM/cow/d of commercial concentrate. In experiment 2, six cows grazing continuously (8 h/d) on a kikuyu grass (Cenchrus clandestinus) pasture were used in a double reversible design with the inclusion of 10 kg DM of rye silage (ECE) or rye silage. triticale (ETR), in addition the cows were supplemented with 3.6 kg DM/cow/d of commercial concentrate; this experiment also had three 14-d experimental periods. Forage (for chemical composition) and milk samples were taken at the end of each experimental period. Results: In experiment 1, the nutritional composition presented a high quality (mean of 145 and 740 g/kg DM, for CP and IVDMD, respectively), on the other hand, for experiment 2 the quality was medium-low (mean of 76 and 653 g/kg DM, for CP and IVDMD, respectively) regarding the fermentation parameters obtained through the in vitro gas production technique, as well as the methane production of the forages and the estimation of enteric CH4 production. No significant differences (P>0.05) were detected between the evaluated treatments. Implications: The results of this work provide information on the role that small grain cereals can play in methane emissions, in these production systems according to their nutritional value. Conclusions: in Experiment 1, it is concluded that rye, wheat and triticale are viable options to obtain medium-quality forage suitable for grazing, presenting enteric methane emissions, as well as moderate emission intensity, similar to those produced by quality pasture grazing. Regarding Experiment 2, both rye silage and triticale silage are presented as options to be used in these milk production systems in winter, without greatly increasing enteric methane emissions.


emission intensity; grazing; silage; family dairy.

Full Text:



Aboagye, I.A., Rosser, C.L., Baron, V.S. and Beauchemin, K.A. 2021. In vitro assessment of enteric methane emission potential of whole-plant barley, oat, triticale and wheat. Animals, 11 P. 450. HTTP://

Blümmel, M., Haileslassie, A., Herrero, M., Beveridge, M., Phillips, M. and Havlik, P. 2015. Feed resources vis-á-vis livestock and fish productivity in a changing climate. In: Livestock Production and Climate Change. CAB International.

Burbano-Muñoz, V.A., López-González, F., Estrada-Flores, J.G., Sainz-Sánchez, P.A. and Arriaga-Jordán, C.M., 2018. Oat silage for grazing dairy cows in small scale dairy systems in the highlands of central Mexico. African Journal of Range and Forage Science, 35, pp. 63-70.

Carrillo-Hernández, S., López-González, F., Estrada-Flores, J.G. and Arriaga-Jordán, C.M., 2020. Milk production and estimated enteric methane emission from cows grazing ryegrass pastures in small-scale dairy systems in Mexico. Tropical Animal Health and Production, 52, pp. 3609-3619.

Castelán-Ortega, O.A., Ku-Vera, J.C. and Estrada-Flores, J.G. 2014. Modeling methane emissions and methane inventories for cattle productions systems in Mexico. Atmósfera, 27, pp. 185-191.

Celis-Alvarez, M.D., López-González, F., Estrada-Flores, J.G., Domínguez-Vara, I.A., Heredia-Nava, D., Munguía-Contreras, A. and Arriaga-Jordán, C.M. 2017. Evaluación nutricional in vitro de forrajes de cereales de grano pequeño para sistemas de producción de leche en pequeña escala. Tropical and Subtropical Agroecosystems, 20, pp. 439-446.

Conroy, C., 2005. Participatory livestock research, (ITDG Publishing, Bourton on Dunsmore, Warwickshire, UK.).

Clark, H., Pinares-Patiño, C.S. and de Klein, C.A.M., 2005. Methane and nitrous oxide emissions from grazed grasslands. In: McGilloway, D.A. (Ed.), Grassland: A Global Resource. Wageningen Academic, Wageningen, The Netherlands, pp. 279–293.

Eckard, R.J., Grainger, C. and de Klein, C.A.M., 2010. Options for the abatement of methane and nitrous oxide from ruminant production: A review. Livestock Science, 130, pp. 47-56.

Ellis J.L., Kebreab E., Odongo N.E., McBride B.W., Okine E.K. and France J., 2007. Prediction of methane production from dairy and beef cattle. Journal of Dairy Science, 90, pp. 3456–3467.

Evans, B. 2018. The role ensiled forage has on methane production in the rumen. Animal Husbandry, Dairy and Veterinary Science, 2, pp. 1-4.

García-González, R., López, S., Fernández, M., Bodas, R. and González, J.S., 2008. Screening the activity of plants and spices for decreasing ruminal methane production in vitro. Animal Feed Science and Technology, 147: 36-52.

Geatchew, G., Blummel, M., Makkar, H.P.S. and Becker, K., 1998. In vitro gas measuring techniques for assessment of nutritional quality of feeds: a review. Animal Feed Science and Technology, 72, pp. 261-281.

Gómez-Miranda, A., Estrada-Flores, J.G., Morales-Almaraz, E., López-González, F., Flores-Calvete, G. and Arriaga-Jordán, C.M., 2020. Barley or black oat silages in feeding strategies for small-scale dairy systems in the highlands of Mexico. Canadian Journal of Animal Science, 100, pp. 221-227.

Hristov, A.N., Oh, J., Firkins, L., Dijkstra, J., Kebreab, E., Waghorn, G., Makkar, H.P.S., Adesogan, T., Yang, W., Lee, C., Gerber, P.J., Henderson, B. and Tricarico, J.M., 2013. Special Topics. Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options. Journal of Animal Science, 91, pp. 5045–5069.

IPCC, 2019. Emissions from livestock and manure management. In: Intergovernmental Panel on Climate Change (IPCC) (ed) 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Cambridge University Press, Cambridge, United Kingdom and New York, USA.

Jessop, N.S. and Herrero M., 1996. Influence of soluble components on parameter estimation using the in vitro gas production technique. Animal Science, 62, pp. 626–627.

Juárez-Reyes, A.S., Cerrillo-Soto, M.A., Gutiérrez-Ornelas, E., Romero-Treviño, E.M., Colín-Negrete J. and BernalBarragán, H., 2009. Assessment of the nutritional value of tropical grasses obtained from conventional analyses and in vitro gas production. Técnica Pecuaria de México, 47, pp. 55-67.

Kafilzadeh, F. and Heidary, N., 2013. Chemical composition, in vitro digestibility and kinetics of fermentation of whole-crop forage from 18 different varieties of oat (Avena sativa L.). Journal of Applied of Animal Research, 41, pp. 61-68.

Kilic, U., 2010. Nutritive values of whole-crop wheat hay and silage and effect of microbial inoculants on in vitro gas production. Journal of Applied Animal Research, 37, pp. 67-71.

Liu, X., Yang, J., Ye, T. and Han, Z., 2018. Establishment of analysis method for methane detection by gas chromatography. Earth and Environmental Science, 113, p. 012023.

Limón-Hernández, D., Rayas-Amor, A.A., García-Martínez, A., Estrada-Flores, J.G., Núñez-López, M., Cruz-Monterrosa, R.G. and Morales-Almaráz, E., 2019. Chemical composition, in vitro gas production, methane production and fatty acid profile of canola silage (Brassica napus) with four levels of molasses. Tropical Animal Health and Production, 51, pp. 1579-1584.

Martin, C., Ferlay, A., Mosoni, P., Rochette, Y., Chilliard, Y. and Doreau, M., 2016. Increasing linseed supply in dairy cow diets based on hay or corn silage: Effect on enteric methane emission, rumen microbial fermentation, and digestion. Journal of Dairy Science, 99, pp. 3445-3456.

Martínez-Loperena, R., Castelán-Ortega, O.A., González-Ronquillo, M. and Estrada-Flores, J.G, 2011. Determinación de la calidad nutritiva, fermentación In Vitro y metabolitos secundarios en arvenses y rastrojo de maíz utilizados para la alimentación del Ganado lechero. Tropical and Subtropical Agroecosystems, 14, pp. 525-536.

Meale, S.J., Chavez, A.V., Baah, J. and McAllister, T.A., 2012. Methane Production of Different Forages in: In vitro Ruminal Fermentation. Asian-Australasian Journal of Animal Science, 25, pp. 86-91.

Mejía-Uribe, L.A., Domínguez-Vara, I.A., Hernández-Ruipérez, F., Rayas-Amor, A.A. and Morales-Almaraz, E. 2021. Fatty acid profile and in vitro rumen fermentation characteristics of maize silage augmented with canola silage. South African Journal of Animal Science, 51, pp. 212-220.

Menke, K.H. and Steingass, H., 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Research and Development, 28, pp. 7-55.

Morales, A., Godoy, M., Beltrán, I., Muller, A., Balocchi, O. and Pulido, R., 2018. Changes in herbage mass and time of herbage allocation modify nutritional and metabolic status of dairy cows. Chilean Journal of Agricultural Research, 78, pp. 409-418.

Muciño-Álvarez, M., Albarrán-Portillo, B., López-González, F. and Arriaga-Jordán, C.M., 2021. Multi-species pastures for grazing dairy cows in small-scale dairy systems in the highlands of Mexico. Tropical Animal Health and Production, 53, p. 113.

Murillo-Amador, B., Escobar, H.A., Fraga-Mancillas, H. and Pargas-Lara, R. 2001. Forage and grain yield of triticale and rye lines at Baja California Sur, Mexico. Revista Fitotecnia Mexicana, 24, pp. 145-153.

Niu, M., Kebreab, E., Hristov, A.N., Oh, J., Arndt, C., Bannink, A., Bayat, A.R., Brito, A.F., Boland, T., Casper, D., Crompton, L.A., Dijkstra, J., Eugene, M.A., Garnsworthy, P.C., Haque, M.N., Hellwing, A.L.F., Huhtanen, P., Kreuzer, M., Kuhla, B., Lund, P., Madsen, J., Martin, C., McClelland, S.C., McGee, M., Moate, P.J., Muetzel, S., Munoz, C., O’Kiely, P., Peiren, N., Reynolds, C.K., Schwarm, A., Shingfield, K.J., Storlien, T.M., Weisbjerg, M.R., Yanez-Ruiz, D.R. and Yu, Z., 2018. Prediction of enteric methane production, yield, and intensity in dairy cattle using an intercontinental database. Global Change Biology, 24, pp. 3368–3389.

Niu, W., Wang, H., He, Y., Qiu, Q., Shao, T., Cao, B. and Su, H. 2020. Comparative analysis of wheat hay and silage in methane production, fermentation characteristics and microbiota using in vitro rumen cultures. Applied Sciences, 10, p. 8456.

Plata-Reyes, D.A., Hernández-Mendo, O., Vieyra-Alberto, R., Albarrán-Portillo, B., Martínez-García, C.G. and Arriaga-Jordán, C.M., 2021. Kikuyu grass in winter–spring time in small-scale dairy systems in the highlands of central Mexico in terms of cow performance and fatty acid profle of milk. Tropical Animal Health and Production, 53, p. 225.

Sainz-Ramírez, A., Estrada-Flores, J.G., Morales-Almaraz, E., Flores-Calvete, G., López-González, F. and Arriaga-Jordán, C.M., 2021. Effect of the inclusion of sunflower silage for cows in small-scale dairy systems in the highlands of Mexico. Journal of Livestock Science, 12, pp. 95-102.

Salas-Riega, C.Y., Osorio, S., del Pilar-Gamarra, Y., Alvarado-Volovich, A., Mauro-Osorio, C. and Gómez, C.A., 2022. Enteric methane emissions by lactating and dry cows in the high Andes of Peru. Tropical Animal Health and Production, 54, pp. 144.

Theodorou, M.K., Williams, B.A., Dhanoa, M.S., McAllan, A.B., France, J.A, 1994. Simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminants feeds. Animal Feed Science and Technology, 48, pp. 185–197.

Vega-García, J.I., Colín-Navarro, V., Estrada-Flores, J.G., Arriaga-Jordán, C.M. and López-González, F. 2021. In vitro nutritional value of black oat (Avena strigosa) in grazing or silage for small scale dairy systems. Tropical and Subtropical Agroecosystems, 24, p. 102.

Vega-García, J.I., López-González, F., Estrada-Flores, J.G., Flores-Calvete, G., Prospero-Bernal, F. and Arriaga-Jordán CM. 2020. Black oat (Avena strigosa Schreb.) grazing or silage for small-scale dairy systems in the highlands of central Mexico. Part I. Crop and dairy cow performance. Chilean Journal of Agricultural Research, 80, pp. 515-525. http://doi,org/10.4067/S0718-58392020000400515

Vega-García, J.I., López-González, F., Morales-Almaraz, E. and Arriaga-Jordán, C.M. 2021. Grazed rain-fed small-grain cereals as a forage option for small-scale dairy systems in central Mexico. Tropical Animal Health and Production, 53, pp. 511.

Vega-García, J.I., López-González, F., Morales-Almaraz, E. and Arriaga-Jordán, C.M. 2023. Secondary growth rye or silage: small-grain cereals as a dual-purpose forage for small-scale dairy Systems in the highlands of Mexico. Chilean Journal of Agricultural Research, 83, pp. 31-42.

Velarde-Guillén, J., López-González, F., Estrada-Flores, J.G., Rayas-Amor, A.A., Heredia-Nava, D., Vicente, F., Martínez-Fernández, A. and Arriaga-Jordán, C.M., 2017. Productive, economic and environmental effects of optimised feeding strategies in small-scale dairy farms in the Highlands of Mexico. Journal of Agriculture and Environment for International Development, 111(1), pp. 225-243.



Copyright (c) 2024 Felipe López González, Jesús Israel Vega-García, Ernesto Morales-Almaraz, Carlos Manuel Arriaga-Jordán

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.