CARBON STORAGE IN TREE BIOMASS AND SOILS IN SILVOPASTORAL SYSTEMS OF THE HUMID TROPICS

C. A. De la Cruz-López, G. Villanueva-López, F. Casanova-Lugo, P. Martínez-Zurimendi, D. R. Aryal

Abstract


Background: The transformation native of forests into pasturelands for livestock farming, affects ecosystems carbon (C) stores and soil properties. Objective: Estimate the carbon stored in tree biomass (above and below ground) and determine soil organic carbon and some physical and chemical properties in two silvopastoral systems (SPS): scattered trees in paddocks (STP) and living fences (LF), taking grass monoculture (PM) as reference. Methodology: The C content in the above and below-ground biomass of the trees was estimated through allometric models, the C fraction of the soil from 0-100 cm was determined by chemical digestion, and the soil organic carbon (SOC) stock was estimated. The physical and chemical properties of the soil were determined. Results: SSPs with STP and LF stored a greater amount of total C (387.0 and 362.6 Mg ha-1 de C) compared to GM (312.5 Mg ha-1 de C), tree biomass contributed 6.3% and 8.4% for STP and LF respectively. Soils stored 90% of the total C in STP and LF. The tree component favorably modified soil pH, the bulk density, the organic matter, carbon, and nitrogen content. Implications: This study contributes with scientific information useful to develop low-emission livestock systems for transition towards climate-smart farming systems essential to meet the Sustainable Development Goals. Conclusions: Tree diversity and density in STP ADP and LF play an important role in the storage of total C, favor C accumulation in the deeper layers of the soil and improve the physical and chemical properties of the soil.

Keywords


agroforestry; tree biomass; carbon reservoirs; environmental services; soils; silvopastoral systems.

Full Text:

PDF

References


Aryal, D.R., 2022. Grazing intensity in grassland ecosystems: implications for carbon storage and functional properties. CABI Reviews, 2022. https://doi.org/10.1079/cabireviews202217032.

Aryal, D.R., Gómez-González, R.R., Hernández-Nuriasmú, R. and Morales-Ruiz, D.E., 2019. Carbon stocks and tree diversity in scattered tree silvopastoral systems in Chiapas, Mexico. Agroforestry Systems, 93(1), pp. 213–227. https://doi.org/10.1007/s10457-018-0310-y.

Ayala-Montejo, D., Monterroso Rivas, A.I., Baca Del Moral, J., Escamilla Prado, E., Sánchez Hernández, R., Pérez Nieto, J., Rajagopal, I., Alegre Orihuela, J.C. and Valdes Velarde, E., 2020. Identificación de necesidades de investigación sobre la dinámica de carbono y nitrógeno en sistemas agroforestales de café en méxico. Tropical and Subtropical Agroecosystems, 23, p. 99. https://doi.org/10.56369/tsaes.3403.

Beckert, M.R., Smith, P., Lilly, A. and Chapman, S.J., 2016. Soil and tree biomass carbon sequestration potential of silvopastoral and woodland-pasture systems in North East Scotland. Agroforestry Systems, 90(3), pp. 371–383. https://doi.org/10.1007/s10457-015-9860-4.

Brown, S., 2002. Measuring carbon in forests: Currentstatus and future challenges. Environmental Pollution, 116(3), pp. 363–372. https:// doi.org/10.1016/S0269-7491(01)00212-3.

Cairns, M.A., Brown, S., Helmer, E.H. and Baumgardner, G.A., 1997. Root biomass allocation in the world’s upland forests. Oecologia, 111(1), pp. 1–11. https://doi.org/10.1007/s004420050201.

Cárdenas, A., Moliner, A., Hontoria, C. and Ibrahim, M., 2019. Ecological structure and carbon storage in traditional silvopastoral systems in Nicaragua. Agroforestry Systems, 93(1), pp. 229–239. https://doi.org/10.1007/s10457-018-0234-6.

Cardinael, R., Chevallier, T., Cambou, A., Béral, C., Barthès, B.G., Dupraz, C., Durand, C., Kouakoua, E. and Chenu, C., 2017. Increased soil organic carbon stocks under agroforestry: A survey of six different sites in France. Agriculture, Ecosystems & Environment, 236, pp. 243–255. https://doi.org/10.1016/j.agee.2016.12.011.

Caro, D., Davis, S.J., Bastianoni, S. and Caldeira, K., 2014. Global and regional trends in greenhouse gas emissions from livestock. Climatic Change, 126(1–2), pp. 203–216. https://doi.org/10.1007/s10584-014-1197-x.

Chatterjee, N., Nair, P.K.R., Nair, V.D., Viswanath, S. and Bhattacharjee, A., 2020. Depth-wise distribution of soil-carbon stock in aggregate-sized fractions under shaded-perennial agroforestry systems in the Western Ghats of Karnataka, India. Agroforestry Systems, 94(2), pp. 341–358. https://doi.org/10.1007/s10457-019-00399-z.

Chave, J., Réjou-Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M.S., Delitti, W.B.C., Duque, A., Eid, T., Fearnside, P.M., Goodman, R.C., Henry, M., Martínez-Yrízar, A., Mugasha, W.A., Muller-Landau, H.C., Mencuccini, M., Nelson, B.W., Ngomanda, A., Nogueira, E.M., Ortiz-Malavassi, E., Pélissier, R., Ploton, P., Ryan, C.M., Saldarriaga, J.G. and Vieilledent, G., 2014. Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology, 20(10), pp. 3177–3190. https://doi.org/10.1111/gcb.12629.

Choudhury, B.U., 2023. Controls on vertical distribution of organic carbon in the intermontane valley soils (Barak, Northeast India). Soil and Tillage Research, 225, p.105532. https://doi.org/10.1016/j.still.2022.105532.

Dawud, S.M., Raulund-Rasmussen, K., Domisch, T., Finér, L., Jaroszewicz, B. and Vesterdal, L., 2016. Is Tree Species Diversity or Species Identity the More Important Driver of Soil Carbon Stocks, C/N Ratio, and pH? Ecosystems, 19(4), pp. 645–660. https://doi.org/10.1007/s10021-016-9958-1.

De la Cruz López, C.A., Ramos Arcos, S.A. and López Martínez, S., 2018. Efecto de la adición de ácidos orgánicos sobre la bioacumulación de Plomo, Talio y Vanadio en Chrysopogon zizanioides creciendo sobre suelos contaminados de un relleno sanitario. Nova Scientia, 10(21), pp. 403–422. https://doi.org/10.21640/ns.v10i21.1582.

Ferreiro-Domínguez, N., Palma, J.H.N., Paulo, J.A., Rigueiro-Rodríguez, A. and Mosquera-Losada, M.R., 2022. Assessment of soil carbon storage in three land use types of a semi-arid ecosystem in South Portugal. Catena, 213(March), p. 106196. https://doi.org/10.1016/j.catena.2022.106196.

Guzmán-Camposeco, F., Aguirre-Medina, J.F., Villalobos-Villalobos, V., Espinosa-Zaragoza, S. and Aguirre-Cadena, J.F., 2021. Estimación de biomasa y carbono en elaeis guineensis jacq. En dos suelos contrastantes de la planicie costera de chiapas. Tropical and Subtropical Agroecosystems, 24, p. 12. https://doi.org/10.56369/tsaes.3390.

Havlík, P., Valin, H., Herrero, M., Obersteiner, M., Schmid, E., Rufino, M.C., Mosnier, A., Thornton, P.K., Böttcher, H., Conant, R.T., Frank, S., Fritz, S., Fuss, S., Kraxner, F. and Notenbaert, A., 2014. Climate change mitigation through livestock system transitions. Proceedings of the National Academy of Sciences, 111(10), pp. 3709–3714. https://doi.org/10.1073/pnas.1308044111.

Houghton, R.A. and Nassikas, A.A., 2017. Global and regional fluxes of carbon from land use and land cover change 1850-2015. Global Biogeochemical Cycles, 31(3), pp. 456–472. https://doi.org/10.1002/2016GB005546.

Kim, D.-G. and Isaac, M.E., 2022. Nitrogen dynamics in agroforestry systems. A review. Agronomy for Sustainable Development, 42(4), p. 60. https://doi.org/10.1007/s13593-022-00791-7.

Laborde, D., Mamun, A., Martin, W., Piñeiro, V. and Vos, R., 2021. Agricultural subsidies and global greenhouse gas emissions. Nature Communications, 12(1), p. 2601. https://doi.org/10.1038/s41467-021-22703-1.

Lakaria, B.L., Singh, M., Sammi Reddy, K., Biswas, A.K., Jha, P., Chaudhary, R.S., Singh, A.B. and Subba Rao, A., 2012. Carbon Addition and Storage Under Integrated Nutrient Management in Soybean–Wheat Cropping Sequence in a Vertisol of Central India. National Academy Science Letters, 35(3), pp. 131–137. https://doi.org/10.1007/s40009-012-0040-z.

Lemes, A.P., Garcia, A.R., Pezzopane, J.R.M., Brandão, F.Z., Watanabe, Y.F., Cooke, R.F., Sponchiado, M., de Paz, C.C.P., Camplesi, A.C., Binelli, M. and Gimenes, L.U., 2021. Silvopastoral system is an alternative to improve animal welfare and productive performance in meat production systems. Scientific Reports, 11(1), p. 14092. https://doi.org/10.1038/s41598-021-93609-7.

López-Santiago, J.G., Casanova-Lugo, F., Villanueva-López, G., Díaz-Echeverría, V.F., Solorio-Sánchez, F.J., Martínez-Zurimendi, P., Aryal, D.R. and Chay-Canul, A.J., 2019. Carbon storage in a silvopastoral system compared to that in a deciduous dry forest in Michoacán, Mexico. Agroforestry Systems, 93(1), pp. 199–211. https://doi.org/10.1007/s10457-018-0259-x.

Lozano-García, B. and Parras-Alcántara, L., 2014. Variation in soil organic carbon and nitrogen stocks along a toposequence in a traditional mediterranean olive grove. Land Degradation & Development, 25(3), pp. 297–304. https://doi.org/10.1002/ldr.2284.

Mathieu, J.A., Hatté, C., Balesdent, J. and Parent, É., 2015. Deep soil carbon dynamics are driven more by soil type than by climate: a worldwide meta-analysis of radiocarbon profiles. Global Change Biology, 21(11), pp. 4278–4292. https://doi.org/10.1111/gcb.13012.

Mendoza-Vega, J., Messing, I., Ku-Quej, V.M., Pool-Novelo, L. and Chi-Quej, J., 2021. Land evaluation and carbon flux estimation to reinforce natural protected areas: a case study in Southern Mexico. Environmental Earth Sciences, [online] 80(3), p.7 8. https://doi.org/10.1007/s12665-021-09369-0.

Morales-Ruiz, D.E., Aryal, D.R., Pinto-Ruiz, R., Guevara-Hernández, F., Casanov-Lugo, F. and Villanueva-López, G., 2021. Carbon contents and fine root production in tropical silvopastoral systems. Land Degradation and Development, 32(2), pp. 738–756. https://doi.org/10.1002/ldr.3761.

Osei, A.K., Kimaro, A.A., Peak, D., Gillespie, A.W. and Van Rees, K.C.J., 2017. Soil carbon stocks in planted woodlots and Ngitili systems in Shinyanga, Tanzania. Agroforestry Systems, 92, pp. 251–262. https://doi.org/10.1007/s10457-016-0028-7.

Palma-López, D.J., Jiménez Ramírez, R., Zavala-Cruz, J., Bautista-Zúñiga, F., Gavi Reyes, F. and Palma-Cancino, D.Y., 2017. Actualización de la clasificación de suelos de Tabasco, México. Agroproductividad, 10(12), pp. 29–35.

Polanía-Hincapié, K.L., Olaya-Montes, A., Cherubin, M.R., Herrera-Valencia, W., Ortiz-Morea, F.A. and Silva-Olaya, A.M., 2021. Soil physical quality responses to silvopastoral implementation in Colombian Amazon. Geoderma, 386, pp. 1–10. https://doi.org/10.1016/j.geoderma.2020.114900.

Poudel, S., Bansal, S., Podder, S., Paneru, B., Karki, S., Fike, J. and Kumar, S., 2022. Conversion of open pasture to hardwood silvopasture enhanced soil health of an ultisol. Agroforestry Systems. 96, pp. 1237–1247. [online] https://doi.org/10.1007/s10457-022-00783-2.

Rowe, E.C., Evans, C.D., Emmett, B.A., Reynolds, B., Helliwell, R.C., Coull, M.C. and Curtis, C.J., 2006. Vegetation Type Affects the Relationship Between Soil Carbon to Nitrogen Ratio and Nitrogen Leaching. Water, Air, and Soil Pollution, [online] 177(1–4), pp. 335–347. https://doi.org/10.1007/s11270-006-9177-z.

Sales-Baptista, E. and Ferraz-de-Oliveira, M.I., 2021. Grazing in silvopastoral systems: multiple solutions for diversified benefits. Agroforestry Systems, 95(1), pp. 1–6. https://doi.org/10.1007/s10457-020-00581-8.

Schneider, F., Amelung, W. and Don, A., 2021. Origin of carbon in agricultural soil profiles deduced from depth gradients of C:N ratios, carbon fractions, ?13C and ?15N values. Plant and Soil, [online] 460(1–2), pp. 123–148. https://doi.org/10.1007/s11104-020-04769-w.

Steinfeld, H. and Wassenaar, T., 2007. The Role of Livestock Production in Carbon and Nitrogen Cycles. Annual Review of Environment and Resources, 32(1), pp. 271–294. https://doi.org/10.1146/annurev.energy.32.041806.143508.

Suzuki, L.E.A.S., Reinert, D.J., Fenner, P.T., Secco, D. and Reichert, J.M., 2022. Prevention of additional compaction in eucalyptus and pasture land uses, considering soil moisture and bulk density. Journal of South American Earth Sciences, 120, pp. 1–10. https://doi.org/10.1016/j.jsames.2022.104113.

Valenzuela-Que, F.G., Villanueva-López, G., Alcudia-Aguilar, A., Medrano-Pérez, O.R., Cámara-Cabrales, L., Martínez-Zurimendi, P., Casanova-Lugo, F. and Aryal, D.R., 2022. Silvopastoral systems improve carbon stocks at livestock ranches in Tabasco, Mexico. Soil Use and Management, 38(2), pp.1237–1249. https://doi.org/10.1111/sum.12799.

Vásquez, H. V., Valqui, L., Bobadilla, L.G., Arbizu, C.I., Alegre, J.C. and Maicelo, J.L., 2021. Influence of arboreal components on the physical-chemical characteristics of the soil under four silvopastoral systems in northeastern Peru. Heliyon, [online] 7(8), pp 1–7. https://doi.org/10.1016/j.heliyon.2021.e07725.

Villanueva-López, G., Lara-Pérez, L.A., Oros-Ortega, I., Ramírez-Barajas, P.J., Casanova-Lugo, F., Ramos-Reyes, R. and Aryal, D.R., 2019. Diversity of soil macro-arthropods correlates to the richness of plant species in traditional agroforestry systems in the humid tropics of Mexico. Agriculture, Ecosystems & Environment, 286, pp.1–8. https://doi.org/10.1016/j.agee.2019.106658.

Villanueva-López, G., Martínez-Zurimendi, P., Casanova-Lugo, F., Ramírez-Avilés, L. and Montañez-Escalante, P.I., 2015. Carbon storage in livestock systems with and without live fences of Gliricidia sepium in the humid tropics of Mexico. Agroforestry Systems, 89(6), pp. 1083–1096. https://doi.org/10.1007/s10457-015-9836-4.

Wang, C., Li, X., Hu, Y., Zheng, R. and Hou, Y., 2023. Nitrogen addition weakens the biodiversity multifunctionality relationships across soil profiles in a grassland assemblage. Agriculture, Ecosystems & Environment, 342, pp. 1–9. https://doi.org/10.1016/j.agee.2022.108241.

Xu, T., Zhang, M., Ding, S., Liu, B., Chang, Q., Zhao, X., Wang, Y., Wang, J. and Wang, L., 2021. Grassland degradation with saline-alkaline reduces more soil inorganic carbon than soil organic carbon storage. Ecological Indicators, 131, pp.1–8. https://doi.org/10.1016/j.ecolind.2021.108194.

Zanne, A.E., Lopez-Gonzalez, G., Coomes, D.A., Ilic, J., Jansen, S., Lewis, S.L., Miller, R.B., Swenson, N.G., Wiemann, M.C. and Chave, J., 2009. Global Wood Density Database. Dryad Digital Repository. Dryad, Dataset. https://doi.org/10.5061/dryad.234.




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v27i1.50555

DOI: http://dx.doi.org/10.56369/tsaes.5055



Copyright (c) 2023 Gilberto Villanueva-López

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.