METALLIC NANOPARTICLES BY GREEN SYNTHESIS AND THEIR APPLICATION AS INSECTICIDES

Vidal Zavala-Zapata, Luis Alberto Aguirre-Uribe, Sonia Noemí Ramírez-Barrón, Agustín Hernández-Juárez

Abstract


Background: The synthesis of nanoparticles from living organisms better known as biological synthesis or green synthesis has become a potential tool due to the advantages it provides compared to other existing synthesis methods. Green synthesis is presented as an environmentally friendly, safe, less toxic and cost-effective alternative. Due to these properties green nanoparticles have been implemented in the field of agriculture, mainly as nanopesticides. Objective: To review the reports on the evaluation of green nanoparticles against insects, as well as the knowledge on the possible modes of action of these nanoparticles. Methodology: A compilation of scientific information was made in different search engines, from which those that evaluated nanoparticles by green synthesis as insecticides were selected. Results: Among the modes of action caused by metallic nanoparticles, the following stand out: damage and histological changes at intestinal level, antifeedant activity, physical damage to the cuticle, decreased cell viability and inhibition of fecundity. Implications: the availability of information on nanoparticles is fundamental to be able to scientifically propose their implementation in insect pest management strategies. Conclusion: green synthesis of nanoparticles is presented as an alternative to produce nanoinsecticides; however, further research is needed on the mechanisms of action on insects, as well as their long-term repercussions on human and environmental health.

Keywords


biosynthesis; insects; nanoinsecticides; nanoparticles; nanopesticides.

Full Text:

PDF

References


Abd-Elhady, H. M., Ashor, M. A., Hazem, A., Saleh, F. M., Selim, S., El Nahhas, N., Abdel-Hafez, S. H., Sayed, S. and Hassan, E. A., 2021. Biosynthesis and characterization of extracellular silver nanoparticles from Streptomyces aizuneusis: antimicrobial, antilarval, and anticancer activities. Molecules, 27, pp. 212. https://doi.org/10.3390/molecules27010212

Abdo, A. M., Fouda, A., Eid, A. M., Fahmy, N. M., Elsayed, A. M., Khalil, A. M. A., Alzaharani, O. M., Ahmed. A. F. and Soliman, A. M., 2021. Green synthesis of Zinc Oxide Nanoparticles (ZnO-NPs) by Pseudomonas aeruginosa and their activity against pathogenic microbes and common house mosquito, Culex pipiens. Materials, 14, pp. 6983. https://doi.org/10.3390/ma14226983

Abinaya, M., Vaseeharan, B., Divya, M., Sharmili, A., Govindarajan, M., Alharbi, N. S., Shine, K., Khaled, J. M. and Benelli, G., 2018. Bacterial exopolysaccharide (EPS)-coated ZnO nanoparticles showed high antibiofilm activity and larvicidal toxicity against malaria and Zika virus vectors. Journal of Trace Elements in Medicine and Biology, 45, pp. 93–103. https://doi.org/10.1016/j.jtemb.2017.10.002

Abou El-Ela, A. S., Ntiri, E. S., Munawar, A., Shi, X. X., Zhang, C., Pilianto, J., Zhang, Y., Chen, M., Zhou, Y. and Zhu, Z. R., 2022. Silver and copper-oxide nanoparticles prepared with GA3 induced defense in rice plants and caused mortalities to the brown planthopper, Nilaparvata lugens (Stål). NanoImpact, 28, pp. 100428. https://doi.org/10.1016/j.impact.2022.100428

Alshehri, M. A., Panneerselvam, C., Murugan, K., Trivedi, S., Mahyoub, J. A., Maggi, F., Sut, S., Dall’Acqua, S., Canale, A. and Benelli, G., 2018. The desert wormwood (Artemisia herba-alba)–From Arabian folk medicine to a source of green and effective nanoinsecticides against mosquito vectors. Journal of Photochemistry and photobiology B: biology, 180, pp. 225-234. https://doi.org/10.1016/j.jphotobiol.2018.02.012

Amjad, T., Afsheen, S. and Iqbal, T., 2022. Nanocidal effect of rice husk–based silver nanoparticles on antioxidant enzymes of aphid. Biological Trace Element Research, 200, pp. 4855-4864. https://doi.org/10.1007/s12011-021-03067-5

Athanassiou, C. G., Kavallieratos, N. G., Benelli, G., Losic, D., Usha Rani, P. and Desneux, N., 2017. Nanoparticles for pest control: current status and future perspectives. Journal of Pest Science, 91, pp. 1–15. https://doi.org/10.1007/s10340-017-0898-0

Badawy, A. A., Abdelfattah, N. A., Salem, S. S., Awad, M. F. and Fouda, A., 2021. Efficacy assessment of biosynthesized copper oxide nanoparticles (CuO-NPs) on stored grain insects and their impacts on morphological and physiological traits of wheat (Triticum aestivum L.) plant. Biology, 10, pp. 233. https://doi.org/10.3390/biology10030233

Balasubramani, G., Ramkumar, R., Krishnaveni, N., Sowmiya, R., Deepak, P., Arul, D. and Perumal, P., 2015. GC–MS analysis of bioactive components and synthesis of gold nanoparticle using Chloroxylon swietenia DC leaf extract and its larvicidal activity. Journal of Photochemistry and Photobiology B: Biology, 148, pp. 1–8. https://doi.org/10.1016/j.jphotobiol.2015.03.016

Banumathi, B., Vaseeharan, B., Ishwarya, R., Govindarajan, M., Alharbi, N. S., Kadaikunnan, S., Khaled, J. M. and Benelli, G., 2017. Toxicity of herbal extracts used in ethno-veterinary medicine and green-encapsulated ZnO nanoparticles against Aedes aegypti and microbial pathogens. Parasitology Research, 116, pp. 1637-1651. https://doi.org/10.1007/s00436-017-5438-6

Baranitharan, M., Alarifi, S., Alkahtani, S., Ali, D., Elumalai, K., Pandiyan, J., Krishnappa, K., Rajeswary, M. and Govindarajan, M., 2021. Phytochemical analysis and fabrication of silver nanoparticles using Acacia catechu: An efficacious and ecofriendly control tool against selected polyphagous insect pests. Saudi Journal of Biological Sciences, 28, pp. 148-156. https://doi.org/10.1016/j.sjbs.2020.09.024

Bhadani, R. V., Gajera, H. P., Hirpara, D. G., Savaliya, D. D. and Anuj, S. A., 2022. Biosynthesis and characterization of extracellular metabolites-based nanoparticles to control the whitefly. Archives of Microbiology, 204, pp. 311. https://doi.org/10.1007/s00203-022-02917-7

Biswas, P. and Wu, C. Y., 2005. Nanoparticles and the environment. Journal of the Air and Waste Management Association, 55, pp. 708-746. https://doi.org/10.1080/10473289.2005.10464656

Chinnaperumal, K., Govindasamy, B., Paramasivam, D., Dilipkumar, A., Dhayalan, A., Vadivel, A., Sengodan, K. and Pachiappan, P., 2018. Bio-pesticidal effects of Trichoderma viride formulated titanium dioxide nanoparticle and their physiological and biochemical changes on Helicoverpa armigera (Hub.). Pesticide Biochemistry and Physiology, 149, pp. 26–36. https://doi:10.1016/j.pestbp.2018.05.005

Cittrarasu, V., Kaliannan, D., Dharman, K., Maluventhen, V., Easwaran, M., Liu, W. C., Balasubramanian, B. and Arumugam, M., 2021. Green synthesis of selenium nanoparticles mediated from Ceropegia bulbosa Roxb extract and its cytotoxicity, antimicrobial, mosquitocidal and photocatalytic activities. Scientific Reports, 11, pp. 1032. https://doi.org/10.1038/s41598-020-80327-9

Devi, G. D., Murugan, K. and Selvam, C. P., 2014. Green synthesis of silver nanoparticles using Euphorbia hirta (Euphorbiaceae) leaf extract against crop pest of cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae). Journal of Biopesticides, 7, pp. 54-66. http://www.jbiopest.com/users/LW8/efiles/vol_7_0_54-66.pdf

Dinesh, D., Murugan, K., Madhiyazhagan, P., Panneerselvam, C., Mahesh Kumar, P., Nicoletti, M. Jiang, W., Benelli, G., Chandramohan, B. and Suresh, U., 2015. Mosquitocidal and antibacterial activity of green-synthesized silver nanoparticles from Aloe vera extracts: towards an effective tool against the malaria vector Anopheles stephensi?. Parasitology Research, 114, pp. 1519-1529. https://doi.org/10.1007/s00436-015-4336-z

Ealia, S. A. M. and Saravanakumar, M. P., 2017. A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conference Series: Materials Science and Engineering, 263, pp. 1-15. https://doi.org/10.1088/1757-899X/263/3/032019

El-Ashmouny, R. S., Rady, M. H., Merdan, B. A., El-Sheikh, T. A. A., Hassan, R. E. and El Gohary, E. G. E., 2022. Larvicidal and pathological effects of green synthesized silver nanoparticles from Artemisia herba-alba against Spodoptera littoralis through feeding and contact application. Egyptian Journal of Basic and Applied Sciences, 9, pp. 239-253. https://doi.org/10.1080/2314808X.2022.2063012

Elemike, E. E., Onwudiwe, D. C., Ekennia, A. C., Sonde, C. U. and Ehiri, R. C., 2017. Green synthesis of Ag/Ag2O nanoparticles using aqueous leaf extract of Eupatorium odoratum and its antimicrobial and mosquito larvicidal activities. Molecules, 22, pp. 674. https://doi.org/10.3390/molecules22050674

Fouad, H., Hongjie, L., Hosni, D., Wei, J., Abbas, G., Ga’al, H. and Jianchu, M., 2018. Controlling Aedes albopictus and Culex pipiens pallens using silver nanoparticles synthesized from aqueous extract of Cassia fistula fruit pulp and its mode of action. Artificial Cells, Nanomedicine, and Biotechnology, 46, pp. 558-567.

Fouad, H., Yang, G., El-Sayed, A. A., Mao, G., Khalafallah, D., Saad, M. Ga’al, H., Ibrahim, E. and Mo, J., 2021. Green synthesis of AgNP–ligand complexes and their toxicological effects on Nilaparvata lugens. Journal of Nanobiotechnology, 19, pp. 1-17. https://doi.org/10.1186/s12951-021-01068-z

Fouda, A., Al-Otaibi, W. A., Saber, T., AlMotwaa, S. M., Alshallash, K. S., Elhady, M., Badr, N. F. and Abdel-Rahman, M. A., 2022. Antimicrobial, antiviral, and in-vitro cytotoxicity and mosquitocidal activities of Portulaca oleracea-based green synthesis of selenium nanoparticles. Journal of Functional Biomaterials, 13, pp. 157. https://doi.org/10.3390/jfb13030157

Fouda, A., Awad, M. A., Eid, A. M., Saied, E., Barghoth, M. G., Hamza, M. F., Awad, M. F., Abdelbary, S. and Hassan, S. E. D., 2021. An eco-friendly approach to the control of pathogenic microbes and Anopheles stephensi malarial vector using magnesium oxide nanoparticles (Mg-nps) fabricated by Penicillium chrysogenum. International Journal of Molecular Sciences, 22, pp. 5096. https://doi.org/10.3390/ijms22105096

Fouda, A., Eid, A. M., Abdel-Rahman, M. A., El-Belely, E. F., Awad, M. A., Hassan, S. E. D., AL-Faifi, Z. E. and Hamza, M. F., 2022. Enhanced antimicrobial, cytotoxicity, larvicidal, and repellence activities of brown algae, Cystoseira crinita-mediated green synthesis of magnesium oxide nanoparticles. Frontiers in Bioengineering and Biotechnology, 10, pp. 849921. https://doi.org/10.3389/fbioe.2022.849921

Ghidan, A. Y., Al-Antary, T. M., Awwad, A. M., Ghidan, O. Y., Araj, S. E. A. and Ateyyat, M. A., 2018. Comparison of different green synthesized nanomaterials on green peach aphid as aphicidal potential. Fresenius Environmental Bulletin, 27, pp. 7009-7016.

Gour, A. and Jain, N. K., 2019. Advances in green synthesis of nanoparticles. Artificial Cells, Nanomedicine, and Biotechnology, 47, pp. 844-851. https://doi.org/10.1080/21691401.2019.1577878

Govindarajan, M., Hoti, S. L. and Benelli, G., 2016. Facile fabrication of eco-friendly nano-mosquitocides: Biophysical characterization and effectiveness on neglected tropical mosquito vectors. Enzyme and Microbial Technology, 95, pp. 155–163. https://doi.org/10.1016/j.enzmictec.2016.05.005

Govindarajan, M., Rajeswary, M., Veerakumar, K., Muthukumaran, U., Hoti, S. L. and Benelli, G., 2016a. Green synthesis and characterization of silver nanoparticles fabricated using Anisomeles indica: mosquitocidal potential against malaria, dengue and Japanese encephalitis vectors. Experimental Parasitology, 161, pp. 40-47. https://doi.org/10.1016/j.exppara.2015.12.011

Govindarajan, M., Vijayan, P., Kadaikunnan, S., Alharbi, N. S. and Benelli, G., 2016b. One-pot biogenic fabrication of silver nanocrystals using Quisqualis indica: effectiveness on malaria and Zika virus mosquito vectors, and impact on non-target aquatic organisms. Journal of Photochemistry and Photobiology B: Biology, 162, ppm. 646-655. https://doi.org/10.1016/j.jphotobiol.2016.07.036

Gurusamy, D., Mogilicherla, K. and Palli, S. R., 2020. Chitosan nanoparticles help double?stranded RNA escape from endosomes and improve RNA interference in the fall armyworm, Spodoptera frugiperda. Archives of Insect Biochemistry and Physiology, 104, pp. e21677. https://doi.org/10.1002/arch.21677

Gutiérrez-Ramírez, J. A., Betancourt-Galindo, R., Aguirre-Uribe, L. A., Cerna-Chávez, E., Sandoval-Rangel, A., Ángel, E. C. D., Chacón-Hernandez, J. C., Garcia-Lopez, J. I. and Hernández-Juárez, A., 2021. Insecticidal effect of zinc oxide and titanium dioxide nanoparticles against Bactericera cockerelli Sulc. (Hemiptera: Triozidae) on tomato Solanum lycopersicum. Agronomy, 11, pp. 1460. https://doi.org/10.3390/agronomy11081460

Hasan, S., 2015. A review on nanoparticles: their synthesis and types. Research Journal of Recent Sciences, 4, pp. 1-3. https://www.isca.in/rjrs/archive/v4/iISC-2014/3.ISCA-ISC-2014-Poster-3BS-63.pdf

Hazaa, M., Alm-Eldin, M., Ibrahim, A. E., Elbarky, N., Salama, M., Sayed, R. and Sayed, W. 2021. Biosynthesis of silver nanoparticles using Borago officinslis leaf extract, characterization and larvicidal activity against cotton leaf worm, Spodoptera littoralis (Bosid). International Journal of Tropical Insect Science, 41, pp. 145-156. https://doi.org/10.1007/s42690-020-00187-8

Ibrahim, S., Elbehery, H. and Samy, A., 2022. Insecticidal activity of ZnO NPs synthesized by green method using pomegranate peels extract on stored product insects. Egyptian Journal of Chemistry, 65, pp. 135-145. https://dx.doi.org/10.21608/ejchem.2021.92692.4496

Ijaz, I., Gilani, E., Nazir, A. and Bukhari, A., 2020. Detail review on chemical, physical and green synthesis, classification, characterizations and applications of nanoparticles. Green Chemistry Letters and Reviews, 13, pp. 223-245. https://doi.org/10.1080/17518253.2020.1802517

Ishwarya, R., Jayakumar, R., Govindan, T., Govindarajan, M., Alharbi, N. S., Kadaikunnan, S., Khaled, J. M., Nicoletti, M. and Vaseeharan, B., 2022. Swift synthesis of zinc oxide nanoparticles using unripe fruit extract of Pergularia daemia: An enhanced and eco-friendly control agent against Zika virus vector Aedes aegypti. Acta Tropica, 232, pp. 106489. https://doi.org/10.1016/j.actatropica.2022.106489

Ishwarya, R., Vaseeharan, B., Kalyani, S., Banumathi, B., Govindarajan, M., Alharbi, N. S., Kadaikunnan, S., Al-anbr, M. N., Khaled, J. M. and Benelli, G., 2018. Facile green synthesis of zinc oxide nanoparticles using Ulva lactuca seaweed extract and evaluation of their photocatalytic, antibiofilm and insecticidal activity. Journal of Photochemistry and Photobiology B: Biology, 178, pp. 249–258. https://doi.org/10.1016/j.jphotobiol.2017.11.006

Ishwarya, R., Vaseeharan, B., Subbaiah, S., Nazar, A. K., Govindarajan, M., Alharbi, N. S., Kadaikunnan., Nazar, A. K. and Al-Anbr, M. N., 2018. Sargassum wightii-synthesized ZnO nanoparticles–from antibacterial and insecticidal activity to immunostimulatory effects on the green tiger shrimp Penaeus semisulcatus. Journal of Photochemistry and Photobiology B: Biology, 183, pp. 318-330. https://doi.org/10.1016/j.jphotobiol.2018.04.049

Jafer, F. S. and Annon, M. R., 2018. Larvicidal effect of pure and green-synthesized silver nanoparticles against Tribolium castaneum (herb.) and Callosobruchus maculatus (fab.). Journal of Global Pharma Technology, 10, pp. 448-454.

Jamkhande, P. G., Ghule, N. W., Bamer, A. H. and Kalaskar, M. G., 2019. Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. Journal of Drug Delivery Science and Technology, 53, pp. 1-11. https://doi.org/10.1016/j.jddst.2019.101174

Jose, V., Raphel, L., Aiswariya, K. S. and Mathew, P., 2021. Green synthesis of silver nanoparticles using Annona squamosa L. seed extract: characterization, photocatalytic and biological activity assay. Bioprocess and Biosystems Engineering, 44, pp. 1819-1829. https://doi.org/10.1007/s00449-021-02562-2

Kamil, D., Prameeladevi, T., Ganesh, S., Prabhakaran, N., Nareshkumar, R. and Thomas, S. P., 2017. Green synthesis of silver nanoparticles by entomopathogenic fungus Beauveria bassiana and their bioefficacy against mustard aphid (Lipaphis erysimi Kalt.). Indian Journal of Experimental Biology, 55, pp. 555-561. http://nopr.niscpr.res.in/handle/123456789/42555

Kamran, U., Bhatti, H. N., Iqbal, M. and Nazir, A., 2019. Green Synthesis of Metal Nanoparticles and their Applications in Different Fields: A Review. Zeitschrift Für Physikalische Chemie, 233, pp. 1325-1349. https://doi.org/10.1515/zpch-2018-1238

Khatami, M., Iravani, S., Varma, R. S., Mosazade, F., Darroudi, M. and Borhani, F., 2019. Cockroach wings-promoted safe and greener synthesis of silver nanoparticles and their insecticidal activity. Bioprocess and Biosystems Engineering, 42, pp. 2007-2014. https://doi.org/10.1007/s00449-019-02193-8

Kumar, V. A., Ammani, K., Jobina, R., Subhaswaraj, P. and Siddhardha, B., 2017. Photo-induced and phytomediated synthesis of silver nanoparticles using Derris trifoliata leaf extract and its larvicidal activity against Aedes aegypti. Journal of Photochemistry and Photobiology B: Biology, 171, pp. 1-8. https://doi.org/10.1016/j.jphotobiol.2017.04.022

Kumar, V., Ammani, K., Jobina, R., Parasuraman, P., and Siddhardha, B., 2016. Larvicidal activity of green synthesized silver nanoparticles using Excoecaria agallocha L.(Euphorbiaceae) leaf extract against Aedes aegypti. IET Nanobiotechnology, 10, pp. 382-388. https://doi.org/10.1049/iet-nbt.2015.0101

Kumaravel, J., Lalitha, K., Arunthirumeni, M. and Shivakumar, M. S., 2021. Mycosynthesis of bimetallic zinc oxide and titanium dioxide nanoparticles for control of Spodoptera frugiperda. Pesticide Biochemistry and Physiology, 178, pp. 104910. https://doi.org/10.1016/j.pestbp.2021.104910

León-Jiménez, E., Valdéz-Salas, B., González-Mendoza, D. and Tzintzun-Camacho, O., 2019. Síntesis y actividad insecticida de nanopartículas de Cu de Prosopis juliflora (Sw) DC y Pluchea sericea (Nutt.) sobre Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae). Revista de la Sociedad Entomológica Argentina, 78, pp. 12-21. https://doi.org/10.25085/rsea.780202

Malaikozhundan, B. and Vinodhini, J., 2018. Nanopesticidal effects of Pongamia pinnata leaf extract coated zinc oxide nanoparticle against the Pulse beetle, Callosobruchus maculatus. Materials Today Communications, 14, pp. 106–115. https://doi.org/10.1016/j.mtcomm.2017.12.015

Manimegalai, T., Raguvaran, K., Kalpana, M. and Maheswaran, R., 2020. Green synthesis of silver nanoparticle using Leonotis nepetifolia and their toxicity against vector mosquitoes of Aedes aegypti and Culex quinquefasciatus and agricultural pests of Spodoptera litura and Helicoverpa armigera. Environmental Science and Pollution Research, 27, pp. 43103-43116. https://doi.org/10.1007/s11356-020-10127-1

Meenambigai, K., Kokila, R., Chandhirasekar, K., Thendralmanikandan, A., Kaliannan, D., Ibrahim, K. S., Kumar, S., Liu. W., Balasubramanian. and Nareshkumar, A., 2021. Green Synthesis of Selenium Nanoparticles Mediated by Nilgirianthus ciliates Leaf Extracts for Antimicrobial Activity on Foodborne Pathogenic Microbes and Pesticidal Activity Against Aedes aegypti with Molecular Docking. Biological Trace Element Research. 200, pp. 2948-2962. https://doi.org/10.1007/s12011-021-02868-y

Mendez-Trujillo, V., Valdez-Salas, B., Carrillo-Beltran, M., Curiel-Alvarez, M. A., Tzintzun-Camacho, O., Ceceña-Duran, C. and Gonzalez-Mendoza, D., 2019. Green synthesis of bimetallic nanoparticles from Prosopis juliflora (Sw) DC., and its effect against cotton mealybug, Phenacoccus solenopsis (Hemiptera: Pseudococcidae). Phyton, 88, pp. 269. https://doi.org/10.32604/phyton.2019.07316

Mishra, S., Wang, W., de Oliveira, I. P., Atapattu, A. J., Xia, S. W., Grillo, R., Lescano, C. H. and Yang, X., 2021. Interaction mechanism of plant-based nanoarchitectured materials with digestive enzymes of termites as target for pest control: Evidence from molecular docking simulation and in vitro studies. Journal of Hazardous Materials, 403, pp. 123840. https://doi.org/10.1016/j.jhazmat.2020.123840

Mittal, A. K., Chisti, Y. and Banerjee, U. C., 2013. Synthesis of metallic nanoparticles using plant extracts. Biotechnology Advances, 31, pp. 346–356. https://doi.org/10.1016/j.biotechadv.2013.01.003

Mohanraj, V.J. and Chen, Y., 2006. Nanoparticles-A Review. Tropical Journal of Pharmaceutical Research, 5, pp. 561-573. https://doi.org/10.4314/tjpr.v5i1.14634

Murugan, K., Dinesh, D., Kumar, P. J., Panneerselvam, C., Subramaniam, J., Madhiyazhagan, P. Suresh, U., Nicoletti, M., Alarfaj, A. B., Murugan, A. M., Higuchi, A., Mehlhorn, H. and Benelli, G., 2015. Datura metel-synthesized silver nanoparticles magnify predation of dragonfly nymphs against the malaria vector Anopheles stephensi. Parasitology Research, 114, pp. 4645-4654. https://doi.org/10.1007/s00436-015-4710-x

Murugan, K., Dinesh, D., Nataraj, D., Subramaniam, J., Amuthavalli, P., Madhavan, J., Rajasekar, A., Rajan, M., Thiruppathi, K. P., Kumar, S., Higuchi, A., Nicolettim M. and Benelli, G., 2018. Iron and iron oxide nanoparticles are highly toxic to Culex quinquefasciatus with little non-target effects on larvivorous fishes. Environmental Science and Pollution Research, 25, pp. 10504–10514. https://doi.org/10.1007/s11356-017-0313-7

Murugan, K., Samidoss, C. M., Panneerselvam, C., Higuchi, A., Roni, M., Suresh, U., Chandramohan, B., Subramaniam, J., Madhiyazhagan, P., Dinesh, D., Rajaganesh, R., Alarfaj, A. A., Nicoletti, M., Kumar, S., Wei, H., Canale, A., Mehlhorn, H. and Benelli, G., 2015. Seaweed-synthesized silver nanoparticles: an eco-friendly tool in the fight against Plasmodium falciparum and its vector Anopheles stephensi?. Parasitology Research, 114, pp. 4087-4097. https://doi.org/10.1007/s00436-015-4638-1

Muthukumaran, U., Govindarajan, M. and Rajeswary, M., 2015. Green synthesis of silver nanoparticles from Cassia roxburghii—a most potent power for mosquito control. Parasitology Research, 114, pp. 4385-4395. https://doi.org/10.1007/s00436-015-4677-7

Muthukumaran, U., Govindarajan, M. and Rajeswary, M., 2015. Mosquito larvicidal potential of silver nanoparticles synthesized using Chomelia asiatica (Rubiaceae) against Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus (Diptera: Culicidae). Parasitology Research, 114, pp. 989-999. https://doi.org/10.1007/s00436-014-4265-2

Narayanan, M., Devi, P. G., Natarajan, D., Kandasamy, S., Devarayan, K., Alsehli, M., Elfasakhany, A. and Pugazhendhi, A., 2021a. Green synthesis and characterization of titanium dioxide nanoparticles using leaf extract of Pouteria campechiana and larvicidal and pupicidal activity on Aedes aegypti. Environmental Research, 200, pp. 111333. https://doi.org/10.1016/j.envres.2021.111333

Narayanan, M., Vigneshwari, P., Natarajan, D., Kandasamy, S., Alsehli, M., Elfasakhany, A. and Pugazhendhi, A., 2021b. Synthesis and characterization of TiO2 NPs by aqueous leaf extract of Coleus aromaticus and assess their antibacterial, larvicidal, and anticancer potential. Environmental Research, 200, pp. 111335. https://doi.org/10.1016/j.envres.2021.111335

Neira-Vielma, A. A., Meléndez-Ortiz, H. I., García-López, J. I., Sanchez-Valdes, S., Cruz-Hernández, M. A., Rodríguez-González, J. G. and Ramírez-Barrón, S. N., 2022. Green Synthesis of Silver Nanoparticles Using Pecan Nut (Carya illinoinensis) Shell Extracts and Evaluation of Their Antimicrobial Activity. Antibiotics, 11, pp. 1150. https://doi.org/10.3390/antibiotics11091150

Parthiban, E., Ramachandran, M., Jayakumar, M. and Ramanibai, R., 2019. Biocompatible green synthesized silver nanoparticles impact on insecticides resistant developing enzymes of dengue transmitted mosquito vector. SN Applied Sciences, 1, pp. 1-9. https://doi.org/10.1007/s42452-019-1311-9

Patil, C. D., Borase, H. P., Suryawanshi, R. K. and Patil, S. V., 2016. Trypsin inactivation by latex fabricated gold nanoparticles: A new strategy towards insect control. Enzyme and Microbial Technology, 92, pp.18-25. https://doi.org/10.1016/j.enzmictec.2016.06.005

Pavithra Bharathi, V., Ragavendran, C., Murugan, N. and Natarajan, D., 2017. Ipomoea batatas (Convolvulaceae)-mediated synthesis of silver nanoparticles for controlling mosquito vectors of Aedes albopictus, Anopheles stephensi, and Culex quinquefasciatus (Diptera: Culicidae). Artificial Cells, Nanomedicine, and Biotechnology, 45, pp. 1568-1580. https://doi.org/10.1080/21691401.2016.1261873

Pestovsky, Y. S. and Martínez-Antonio, A., 2017. The use of nanoparticles and nanoformulations in agriculture. Journal of nanoscience and nanotechnology, 17, pp. 8699-8730. https://doi.org/10.1166/jnn.2017.15041

Pittarate, S., Rajula, J., Rahman, A., Vivekanandhan, P., Thungrabeab, M., Mekchay, S. and Krutmuang, P., 2021. Insecticidal effect of zinc oxide nanoparticles against Spodoptera frugiperda under laboratory conditions. Insects, 12, pp. 1017. https://doi.org/10.3390/insects12111017

Priyanka, P., Kumar, D., Yadav, A. and Yadav, K., 2020. Nanobiotechnology and its application in agriculture and food production. In Nanotechnology for Food, Agriculture, and Environment (pp. 105-134). Springer, Cham. https://doi.org/10.1007/978-3-030-31938-0_6

PubMed.gov., 2022. Búsqueda de resultados por año (green nanoparticles) and (insects). Recuperado de: https://pubmed.ncbi.nlm.nih.gov/?term=%28green+nanoparticles%29+AND+%28insects%29&filter=years.2022-2022&timeline=expanded [Accessed 05 noviembre 2022].

Rai, M. and Ingle, A., 2012. Role of nanotechnology in agriculture with special reference to management of insect pests. Applied Microbiology and Biotechnology, 94, pp. 287–293. https://doi.org/10.1007/s00253-012-3969-4

Ramadan, R. H., Abdel-Meguid, A. and Emara, M., 2020. Effects of synthesized silver and chitosan nanoparticles using Nerium oleander and Aloe vera on antioxidant enzymes in Musca domestica. Catrina: The International Journal of Environmental Sciences, 21, pp. 9-14. https://doi.org/10.21608/cat.2020.20921.1036

Rao, K. J. and Paria, S., 2015. Aegle marmelos leaf extract and plant surfactants mediated green synthesis of Au and Ag nanoparticles by optimizing process parameters using Taguchi method. ACS Sustainable Chemistry and Engineering, 3(3), 483-491. https://doi.org/10.1021/acssuschemeng.5b00022

Rehman, H., Majeed, B., Farooqi, M. A., Rasul, A., Sagheer, M., Ali, Q. and Akhtar, Z. R., 2021. Green Synthesis of Silver Nitrate Nanoparticles from Camelina Sativa (L.) and Its Effect to Control Insect Pests of Stored Grains. International Journal of Tropical Insect Science, 41, pp. 3031-3039. https://doi.org/10.1007/s42690-021-00495-7

Roni, M., Murugan, K., Panneerselvam, C., Subramaniam, J., Nicoletti, M., Madhiyazhagan, P., Dinesh., D., Suresh, U., Khater, H. F., Wei, H., Canale, A., Alarfaj, A. A., Munusamy, M. A., Higuchi, A. and Benelli, G. 2015. Characterization and biotoxicity of Hypnea musciformis-synthesized silver nanoparticles as potential eco-friendly control tool against Aedes aegypti and Plutella xylostella. Ecotoxicology and Environmental Safety, 121, pp. 31-38. https://doi.org/10.1016/j.ecoenv.2015.07.005

Sahayaraj, K., Madasamy, M. and Radhika, S. A., 2016. Insecticidal activity of bio-silver and gold nanoparticles against Pericallia ricini Fab. (Lepidaptera: Archidae). Journal of Biopesticides, 9, pp. 63-72. http://www.jbiopest.com/users/lw8/efiles/vol_9_1_63-72.pdf

Sajid, M. and P?otka-Wasylka, J., 2020. Nanoparticles: Synthesis, characteristics, and applications in analytical and other sciences. Microchemical Journal, 154, Article 104623. https://doi.org/10.1016/j.microc.2020.104623

Sankar, M. V. and Abideen, S., 2015. Pesticidal effect of green synthesized silver and lead nanoparticles using Avicennia marina against grain storage pest Sitophilus oryzae. International Journal of Nanomaterials and Biostructres, 5, pp. 32-39.

Santhosh, S. B., Yuvarajan, R. and Natarajan, D., 2015. Annona muricata leaf extract-mediated silver nanoparticles synthesis and its larvicidal potential against dengue, malaria and filariasis vector. Parasitology Research, 114, pp. 3087-3096. https://doi.org/10.1007/s00436-015-4511-2

Santos, T. S., de Souza Varize, C., Sanchez-Lopez, E., Jain, S. A., Souto, E. B., Severino, P., and Mendonça, M. D. C., 2022. Entomopathogenic fungi-mediated AgNPs: synthesis and insecticidal effect against Plutella xylostella (Lepidoptera: Plutellidae). Materials, 15, pp. 7596. https://doi.org/10.3390/ma15217596

Sedighi, A., Imani, S., Moshtaghi Kashanian, G. R., Najafi, H. and Fathipour, Y., 2019. Efficiency of Green Synthesized Silver Nanoparticles with Sweet Orange, Citrus sinensis (L.) (Rutaceae, Sapindales) against Tribolium confusum Duval. (Coleoptera, Tenebrionidae). Journal of Agricultural Science and Technology, 21, pp. 1485-1494. http://jast.modares.ac.ir/article-23-21397-en.html

Shahid, M., Naeem-Ullah, U., Khan, W. S., Saeed, S. and Razzaq, K., 2022. Biocidal activity of green synthesized silver nanoformulation by Azadirachta indica extract a biorational approach against notorious cotton pest whitefly, Bemisia tabaci (Homoptera; Aleyrodidae). International Journal of Tropical Insect Science, 42, pp. 2443-2454. https://doi.org/10.1007/s42690-022-00771-0

Siddique, M. A., Hasan, M. U., Sagheer, M. and Sahi, S. T., 2022. Comparative toxic effects of Eucalyptus globulus L.(Myrtales: Myrtaceae) and its green synthesized zinc oxide nanoparticles (ZnONPs) against Rhyzopertha dominica (F.)(Coleoptera: Bostrichidae). International Journal of Tropical Insect Science, 42, pp. 1697-1706. https://doi.org/10.1007/s42690-021-00691-5

Soni, N. and Prakash, S. 2015. Antimicrobial and mosquitocidal activity of microbial synthesized silver nanoparticles. Parasitology Research, 114, 1023-1030. https://doi.org/10.1007/s00436-014-4268-z

Soni, N. and Prakash, S., 2014. Silver nanoparticles: a possibility for malarial and filarial vector control technology. Parasitology Research, 113, pp. 4015-4022. https://doi.org/10.1007/s00436-014-4069-4

Sood, K., Kaur, J., Singh, H., Kumar Arya, S. and Khatri, M., 2019. Comparative Toxicity Evaluation of Graphene Oxide (GO) and Zinc Oxide (ZnO) Nanoparticles on Drosophila melanogaster. Toxicology Reports, 6, pp. 768-781. https://doi.org/10.1016/j.toxrep.2019.07.009

Stadler, T., López, G. P., Gitto, J. G. and Buteler, M., 2017. Nanostructured alumina: biocidal properties and mechanism of action of a novel insecticide powder. Bulletin of Insectology, 70, pp.17-26. http://www.bulletinofinsectology.org/pdfarticles/vol70-2017-017-025stadler.pdf

Suganya, P., Vaseeharan, B., Vijayakumar, S., Balan, B., Govindarajan, M., Alharbi, N. S., Kadaikunnan, S., Khaled, J.M. and Benelli, G., 2017. Biopolymer zein-coated gold nanoparticles: synthesis, antibacterial potential, toxicity and histopathological effects against the Zika virus vector Aedes aegypti. Journal of Photochemistry and Photobiology B: Biology, 173, pp. 404-411. https://doi.org/10.1016/j.jphotobiol.2017.06.004

Sujitha, V., Murugan, K., Paulpandi, M., Panneerselvam, C., Suresh, U., Roni, M., Nicoletti, M., Higuchi, A., Madhiyazhagan, P., Subramaniam, J., Dinesh, D., Vadivalagan, C., Chandramohan., B., Alarfaj, A. A., Munusamy, M. A., Barnard, D. R. and Benelli, G., 2015. Green-synthesized silver nanoparticles as a novel control tool against dengue virus (DEN-2) and its primary vector Aedes aegypti. Parasitology Research, 114, 3315-3325. https://doi.org/10.1007/s00436-015-4556-2

Suman, T. Y., Rajasree, S. R., Jayaseelan, C., Mary, R. R., Gayathri, S., Aranganathan, L. and Remya, R. R., 2016. GC-MS analysis of bioactive components and biosynthesis of silver nanoparticles using Hybanthus enneaspermus at room temperature evaluation of their stability and its larvicidal activity. Environmental Science and Pollution Research, 23, pp. 2705-2714. https://doi.org/10.1007/s11356-015-5468-5

Sundararajan, B. and Kumari, B. D., 2017. Novel synthesis of gold nanoparticles using Artemisia vulgaris L. leaf extract and their efficacy of larvicidal activity against dengue fever vector Aedes aegypti L. Journal of Trace Elements in Medicine and Biology, 43, pp. 187–196. https://doi.org/10.1016/j.jtemb.2017.03.008

Sundaravadivelan, C. and Padmanabhan, M. N., 2014. Effect of mycosynthesized silver nanoparticles from filtrate of Trichoderma harzianum against larvae and pupa of dengue vector Aedes aegypti L. Environmental Science and Pollution Research, 21, pp. 4624-4633. https://doi.org/10.1007/s11356-013-2358-6

Thabet, A. F., Boraei, H. A., Galal, O. A., El-Samahy, M. F., Mousa, K. M., Zhang, Y. Z., Tuda, M., Helmy, E. A., Wen, J. and Nozaki, T., 2021. Silica nanoparticles as pesticide against insects of different feeding types and their non-target attraction of predators. Scientific Reports, 11, pp. 1-13. https://doi.org/10.1038/s41598-021-93518-9

Thakkar, K. N., Mhatre, S. S. and Parikh, R. Y., 2010. Biological synthesis of metallic nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 6, pp. 257–262. https://doi.org/10.1016/j.nano.2009.07.002

Thakur, P., Thakur, S., Kumari, P., Shandilya, M., Sharma, S., Poczai, P., Alarfaj, A. A. and Sayyed, R. Z., 2022. Nano-insecticide: synthesis, characterization, and evaluation of insecticidal activity of ZnO NPs against Spodoptera litura and Macrosiphum euphorbiae. Applied Nanoscience, 12, pp. 3835-3850. https://doi.org/10.1007/s13204-022-02530-6

Thelma, J. and Balasubramanian, C., 2021. Ovicidal, larvicidal and pupicidal efficacy of silver nanoparticles synthesized by Bacillus marisflavi against the chosen mosquito species. Plos One, 16, pp. e0260253. https://doi.org/10.1371/journal.pone.0260253

Udayabhanu, J., Kannan, V., Tiwari, M., Natesan, G., Giovanni, B. and Perumal, V., 2018. Nanotitania crystals induced efficient photocatalytic color degradation, antimicrobial and larvicidal activity. Journal of Photochemistry and Photobiology B: Biology, 178, pp. 496-504. https://doi.org/10.1016/j.jphotobiol.2017.12.005

Veerakumar, K. and Govindarajan, M., 2014. Adulticidal properties of synthesized silver nanoparticles using leaf extracts of Feronia elephantum (Rutaceae) against filariasis, malaria, and dengue vector mosquitoes. Parasitology Research, 113, pp. 4085-4096. https://doi.org/10.1007/s00436-014-4077-4

Veerakumar, K., Govindarajan, M. and Hoti, S. L., 2014a. Evaluation of plant-mediated synthesized silver nanoparticles against vector mosquitoes. Parasitology Research, 113, pp. 4567-4577. https://doi.org/10.1007/s00436-014-4147-7

Veerakumar, K., Govindarajan, M., Rajeswary, M. and Muthukumaran, U., 2014b. Low-cost and eco-friendly green synthesis of silver nanoparticles using Feronia elephantum (Rutaceae) against Culex quinquefasciatus, Anopheles stephensi, and Aedes aegypti (Diptera: Culicidae). Parasitology Research, 113, pp. 1775-1785. https://doi.org/10.1007/s00436-014-3823-y

R K., Sudhahar, S. and Maheshwaran, G., 2019. Effect of biosynthesis of ZnO nanoparticles via Cucurbita seed extract on Culex tritaeniorhynchus mosquito larvae with its biological applications. Journal of Photochemistry and Photobiology B: Biology, 200, pp.111650. https://doi.org/10.1016/j.jphotobiol.2019.111650

Velu, K., Elumalai, D., Hemalatha, P., Janaki, A., Babu, M., Hemavathi, M. and Kaleena, P. K., 2015. Evaluation of silver nanoparticles toxicity of Arachis hypogaea peel extracts and its larvicidal activity against malaria and dengue vectors. Environmental Science and Pollution Research, 22, pp. 17769-17779. https://doi.org/10.1007/s11356-015-4919-3

Wang, X., Xu, J., Wang, X., Qiu, B., Cuthbertson, A. G., Du, C., Wu, J. and Ali, S., 2019. Isaria fumosorosea?based zero?valent iron nanoparticles affect the growth and survival of sweet potato whitefly, Bemisia tabaci (Gennadius). Pest Management Science, 75, pp. 2174-2181. https://doi.org/10.1002/ps.5340

Ziaee, M. and Ganji, Z., 2016. Insecticidal efficacy of silica nanoparticles against Rhyzopertha dominica F. and Tribolium confusum Jacquelin du Val. Journal of Plant Protection Research, 56, pp. 251-256. https://doi.org/10.1515/jppr-2016-0037




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v27i2.50113

DOI: http://dx.doi.org/10.56369/tsaes.5011



Copyright (c) 2024 Agustín Hernández Juárez, Vidal Zavala-Zapata, Luis Alberto Aguirre-Uribe, Sonia Noemí Ramírez-Barrón

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.