EFFECT IN NLP GENES EXPRESION IN Phytophthora capsici DURING INTERACTION WITH Capsicum chinense SPRAYED WITH 2-CHOLOROETHYL PHOSPHONIC ACID

Geovanny Román Hernández-Cisneros, Gabriel Lizama-Uc, Sara Elena Solis-Pereira, Gerardo Rivera-Muñoz, Victor Moo-Huchim, Denis Israel Magaña-Ortiz, Roberto Zamora-Bustillos, Hernan Villanueva-Alonso, José Efraín Ramirez-Benitez, Norma Rodriguez-Avila

Abstract


Background. The NLP-type effectors of Phytophthora capsici are involved in the establishment of the disease and necrosis in solanaceous plants such as Capsicum chinense, a crop that has gained great interest worldwide, and is susceptible to oomycete infection. Objective. To evaluate the expression of 18 NLP-type genes during the interaction of Phytophthora capsici against Capsicum chinense, treated with 2-chloroethyl phosphonic acid (ethephon). Methodology. Capsicum chinense plants were sprayed with ethephon at 0, 2.5, 5 and 10 mM/ml and inoculated with P. capsici mycelium. Gene expression analyzes by RT-PCR were carried out for NLP-type genes. Results. In plants sprayed with 5 mM/ml ethephon, incised and infected, the necrosis transcripts reported were: Pcnpp ART-1, Pnnp BRT-2, Pcnpp FRT-3, Pcnpp GRT-7, Pcnpp LRT-8. While no transcripts were observed in genes Pcnpp KRT-4, Pcnpp HRT-5, Pcnpp JRT-6, Pcnpp MRT-9, Pcnpp RRT-12, Pcnpp TRT-13, Pcnpp URT-14, Pcnpp XRT-15, Pcnpp YRT -16 and Pcnpp SRT-17. With the plants sprayed with phosphate buffer, without incision, the transcripts reported were: Pcnpp BRT-2, Pcnpp LRT-8. Implications. Ethephon induces tolerance to omycete. Conclusions. There are differences in gene expression between plants sprayed with ethephon, with incision and infected with P. capsici compared to plants sprayed and without incision. The transcript that was expressed in both groups of plants was BRT-2 and LRT-8, it is concluded that these genes are of greater relevance for a successful infection in this interaction.

Keywords


Etephon; ethylene; habanero; pathogen; plant.

Full Text:

PDF

References


Abdelsamad, N.A., MacIntosh, G.C. and Leandro, L.F.S., 2019. Induction of ethylene inhibits development of soybean sudden death syndrome by inducing defense-related genes and reducing Fusarium virguliforme growth. Plos One, 1485, pp. 1-21. https://doi.org/10.1371/journal.pone.0215653

Abeles, F., Morgan, P. and Saltveit, M., 1992. Ethylene in plant biology. Academic Press, 2da edición, USA, pp. 222-252.

Bellincampi, D., Cervone, F. and Lionetti, V., 2014. Plant cell wall dynamic sand wall-related susceptibility inplant–pathogen interactions. Frontier in Plant Science, 5, pp.1-8. https://doi.org/10.3389/fpls.2014.00228

Broekaert, W.F., Delauré, S.L., De Bolle, M.F.C. and Cammue, B.P.A., 2006. The role of ethylene in host-pathogen interactions. The Annual Review Phytopathology, 44, pp. 393-416. https://doi.org/10.1146/annurev.phyto.44.070505.143440

Canto, A., Balam, E., Bello, J., Lecona, C., Solís, D., Avilés, S., Gómez, E., López, G. and Santana, N., 2008. Capsaicinoids content in habanero pepper (Capsicum chinense Jacq.). Sociedad Americana de Ciencias Horticolas, 43, pp. 1344-1349. https://doi.org/10.21273/HORTSCI.43.5.1344

Chávez-Díaz, I.F. and Zavaleta-Mejía, E., 2019. Molecular communication in the pathosystem Capsicum species-Phytophthora Capsici. Mexican Journal of Phytopathology, 37(2), pp. 251-278. https://doi.org/10.18781/r.mex.fit.1901-3

Chen, X.R., Huang, S.X., Zhang, Y., Gui-Lin, S. and Feng, Z., 2018. Identification and functional analysis of the NLP-encoding genes from the phytopathogenic oomycete Phytophthora Capsici. Molecular Genetics Genomics, 293, pp. 931-943. https://doi.org/10.1007/s00438-018-1432-7

Cheng, J., Song, N. and Wu J., 2019. A patatin-like protein synergistically regulated by jasmonate and ethylene signaling pathways plays a negative role in Nicotiana attenuata resistance to Alternaria alternata. Plant diversity, 41, pp. 7-12. https://doi.org/10.1016/j.pld.2018.12.001

Dong, S.K.G., Qutob, D., Yu, X., Tang, J., Kang, J., Dai, T., Wang, H., Gijzen, M. and Wang, Y., 2012. The NLP toxin family in Phythophthora sojae includes rapidly evolving groups that lack necrosis-inducing activity. Molecular Plant Microbe Interaction, 25, pp. 896-909. https://doi.org/10.1094/MPMI-01-12-0023-R

Falk, A., Feys, B.J., Frost, L.F., Jones J.D.G., Daniels, M.J. and Parker, J.E., 1999. EDS1, an essential component of R gene-mediated disease resistance in Arabidopsis has homology to eukaryotic lipases. Plant Biology, 96, pp. 3292-3297. https://doi.org/10.1073/pnas.96.6.3292

Fellbrich, G., Romanski, A., Varet, A., Blume, B., Brunner, F., Engelhardt, S., Felix, G., Kemmerling, B., Krzymowska, M. and Nûrnberger, T., 2002. NPP1, a Phytophthora-associated trigger of B plant defense in parsley and Arabidopsis. Plant Journal, 32, pp. 375-90. https://doi.org/10.1046/j.1365-313X.2002.01454.x

Feng, B., Zhu, X., Fu, L., Rong, L., Storey, D., Tooley, P. and Zhang, X., 2014. Characterization of necrosis-inducing NLP proteins in Phytophthora Capsici. Bio Med Central Plan Biology, 14, pp. 126-45. https://doi.org/10.1186/1471-2229-14-126

Feng, B.Z., Li, P.Q., Fu, L., Sun, B.B. and Zhang, X.G., 2011. Identification of 18 genes encoding necrosis-inducing proteins from the plant pathogen Phytophthora capsici (Pythiaceae: Oomycetes). Genetics Molecular Research, 10(2), pp. 910-22. https://doi.org/10.4238/vol10-2gmr1248. PMID: 21644208

García, H., Ortega, J., García, M., Martínez, C. and Beristaín, C., 1995. La capsaicina, el principio pungente del chile; su naturaleza, absorción, metabolismo y efectos farmacológicos. Ciencia, 46, pp. 84-102.

Iqbal, M.K.R., Badar, J.M.F., AlAjmi, Md.T.R. and Nafees, A.K., 2019. Ethephon mitigates nickel stress by modulating antioxidant system, glyoxalase system and proline metabolism in Indian mustard. Physiol Molecular Biology Plants, 26, pp. 1201-1213. https://doi.org/10.1007/s12298-020-00806-1

Jing, J., Huai, Z., Jun, T., Ming, Y., Da, L., Abid, K. and Zhen, G., 2016. A new ethylene-responsive factor CaPTI1 gene of pepper (Capsicum Annuum) involved in regulation of defense reponse to Phytophthora Capsici. Frontiers in Plant Science, 6, pp. 1-12. https://doi.org/10.3389/fpls.2015.01217

Jupe, J., Stam, R., Howden, A.J.M., Morris, J.A., Zhang, R. and Hedley-Huitema, P.E., 2013. Phytophthora capsici-tomato interaction features dramatic shifts in gene expression associated with a hemi-biotrophic lifestyle. Genome Biology, 14(R63), pp. 1-18. https://doi.org/10.1186/gb-2013-14-6-r63

Keates, S., Kostman, T., Anderson, J. and Bailey, B., 2003. Altered gene expression in three plant species in response to treatment with Nep1, a fungal protein that causes necrosis. Plant Physiology, 132, pp. 1610-622. https://doi.org/10:1104/pp.102.019836

Knoester, M., van Loon, L.C., van den Heuvel, J., Hennig, J., Bol, J.F. and Linthorst, H.J., 1998. Ethylene-insensitive tobacco lacks nonhost resistance against soil-borne fungi. Plant Bilogy, 95(4), pp. 1933-1937. https://doi.org/10.1073/pnas.95.4.1933

Lamour, H.S.R., Jupe, J. and Huitema, E., 2012. The oomycete broad-host-range pathogen Phytophthora capsici. Molecular Plant pathology, 13, pp. 329-37. https://doi.org/10.1111/j.1364-3703.2011.00754.x

Lee, S. and Rose, J., 2010. Mediation of the transition from biotrophy to necrotrophy in hemibiotrophic plant pathogens by secreted effector proteins. Plant Signalling Behavior, 5, pp. 769-72. https://doi.org/10.4161/psb.5.6.11778

Mattinen, L., Tshuikina, M., Mae, A., and Pirhonen M. 2004. Identification and characterization of Nip, necrosis-inducing virulence protein of Erwinia carotovora subsp. carotovora. Molecular Plant Microbe Interaction, 17, pp. 1366-375. https://doi.org/10.1094/MPMI.2004.17.12.1366

Mogga, V., Delventhal, R., Weidenbach, D., Langer, S., Bertram, P.M., Andresen, K., Thines, E., Kroj, T. and Schaffrath, U., 2016. Magnaporthe oryzae effectors MoHEG13 and MoHEG16 interfere with host infection and MoHEG13 counteracts cell death caused by Magnaporthe-NLPs in tobacco. Applied Biological Chemistry, 35, pp.1169-185. https://doi.org/10.1007/s00299-016-1943-9

Morgan, W. and Kamoun, S., 2007. RXLR effector of plant pathogenic oomycetes. Current Opinion Microbiology, 10, pp. 332-38. https://doi.org/10.1016/j.mib.2007.04.005

Motteram, J., Küfner, I., Deller, S., Brunner, F., Hammond-Kosack, E. and Nürnberger, T., 2009. Molecular characterization and functional analysis of MgNLP, the sole NPP1 domain-containing protein, from the fungal wheat leaf pathogen Mycosphaerell K a graminicola. Molecular Plant-Microbe Interaction, 22, pp. 790-99. https://doi.org/10.1094/MPMI-22-7-0790

Nakazawa, Y., Núñez, R., Souza, R., Santana, N. and Zúñiga, J., 2010. Mycelium homogenates from a virulent strain of Phytophthora capsici promote a defense-related response in cell suspensions from Capsicum chinense. European Jornual Plant Pathology, 126, pp. 403-15. https://doi.org/10.1007/s10658-009-9544-x

Nguyen, T.M., Iqbal, R.K., Nguyen, A., Xuan, H., Mohd, A., Nafees, A. and Lam, P., 2015. Role of ethylene and its cross talk with other signaling molecules in plant responses to heavy metal Stress. Plant Physiology, 169, pp. 73-84. https://doi.org/10.1104/pp.15.00663

Núñez, R., Arcos, F., Souza, R., Sánchez, C., Nakazawa, Y., García, F., Guzmán, A. and Zúñiga, J., 2011. Ethylene, but not salicylic acid or methyl jasmonate, induces a resistance response against Phytophthora capsici in Habanero pepper. European Journal of Plant Pathology, 131, pp. 669-83. https://doi.org/10.1007/s10658-011-9841-z

Pérez, C., Carrillo, J., Chavez, J., Perales, C. and Enriquez-Villegas R., 2017. Diagnóstico de síntomas asociados con marchitez del chile en Valles Centrales de Oaxaca. Revista Mexicana de Ciencias Agrícolas, 8, pp. 281-293. https://doi.org/10.29312/remexca.v8i2.50

Pooja, B., Mahindra, N., Veena, B. and Ajeet, S., 2018. Ethephon, an organophosphorous, a fruit and vegetable ripener: has potential hepatotoxic effects. Jornual Family Medicine and Primary Care, 7, pp. 179-183. https://doi.org/10.4103/jfmpc.jfmpc_422_16

Qutob, D., Kemmerling, B., Brunner, F., Küfner, I., Engelhardt, S., Andrea, A., Luberacki, B., Ulrich, H., Stahl, D., Rauhut, T., Glawischnig, E., Schween, G., Lacombe, B., Watanabe, N., Lam, E., Schlichting, R., Scheel, D., Nau, K., Dodt, G., Hubert, D., Gijzen, M. and Nürnberger, T., 2006. Phytotoxicity and Innate Immune responses induced by Nep1-Like Proteins. The Plant Cell, 18, pp. 3721-744. https://doi.org/10.1105/tpc.106.044180

Raouf, A. and Girgis, S., 2011. Mutagenic, Teratogenic and biochemical effects of ethephon on pregnant mice and their fetuses. Global Veterinaria, 6, pp. 251-257.

Ristiano, J. and Jhonston, S., 1999. Ecologically based approaches to management of Phythophthora blight on bell pepper. Plant disease, 83, pp,1080-089. https://doi.org/10.1094/PDIS.1999.83.12.1080

Sasidharan, R. and Voesenek, L., 2015. Ethylene-Mediated Acclimations to Flooding Stress. Plant Physiology. 169, pp. 9-22. https://doi.org/10.1104/pp.15.00387

Schornack, S., Huitema, E., Cano, L., Tolga, O., Oliva, R., Van Damme, M., Schwizer, S., Raffaele, S., Chaparro, S., Farrer, R., Segretin, M., Bos, J., Haas, B., Zody, M., Nusbaum, C., Win, J., Thines, M.d. and Kamoun, S., 2009. Ten things to know about oomycete effectors. Molecular Plant Pathology, 10, pp. 795-803. https://doi.org/10.1111/j.1364-3703.2009.00593.x

Sudandara, J.P., Preethi P., Cordilea, H., Matthew, S. and Thomas, S., 2014. Genotoxic effect of ethephon on the root meristems of Allium cepa L. Communications in Plant Sciences, 4(1-2), pp. 19-22.

Ya-Li, F., You-Liang, P. and Jun, F., 2017. La familia de proteínas tipo Nep1 de Magnaporthe oryzae es prescindible para la infección de las plantas de arroz. Informe científico, 7, pp.4372. https://doi.org/10.1038/s41598-017-04430-0

Yu, H., Zhang, Y., Xie, Y., Wang, Y., Duan, L., Zhang, M. and Li Z., 2017. Ethephon improved drought tolerance in maize seedlings by modulating cuticular wax biosynthesis and membrane stability. Journal of Plant Physiology, 214, pp. 123-133. https://doi.org/10.1016/j.jplph.2017.04.008




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v27i2.49145

DOI: http://dx.doi.org/10.56369/tsaes.4914



Copyright (c) 2024 Geovanny Román Hernández

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.