NEW DISCOVERIES IN TAXONOMY OF Dalbergia GENUS IN GUATEMALA REVEALED BY MOLECULAR APPROACHES

José Alejandro Ruiz Chután, Myrna Herrera, Marie Kalousová, José Linares, Bohdan Lojka, Sara Barrios, Pascuala Elisa Choxom-Chamorro, Luis Eduardo Velásquez-Méndez, Amílcar Sánchez-Pérez, Julio Ernesto Berdúo-Sandoval

Abstract


Background. The Dalbergia genus (Fabaceae) in Guatemala harbors valuable rosewood species; however, these timber species face significant threats from illegal logging and deforestation. Due to the morphological similarity between closely related Dalbergia species, accurate morphological identification is challenging, leading to uncertainty about the occurrence of new species in the country. The lack of information about the actual number of Dalbergia tree species complicates the development of management and conservation strategies for this endangered timber species. Objective. To elucidate the taxonomy of the tree species of the Dalbergia genus in Guatemala using species molecular delimitation methods. Methodology. Sixty-one Dalbergia specimens, collected in its natural range in Guatemala, were analyzed using nuclear (ITS) and chloroplast (matK and trnH-psbA) markers. Species delimitation was performed using three methods based on genetic distance, two based on single-locus phylogenetic trees, and two multi-loci. Results. Different Molecular Operational Taxonomic Units (MOTU) were estimated, ranging from 2 to 9 depending on the method and locus used. The molecular approaches consistently delimited the 6 species already reported for Guatemala. Furthermore, 3 MOTUs were identified that did not align with these known species, implying the presence of 3 new species for the country. Implications. Efficient molecular methods identify Dalbergia species from leaf samples, but standardizing wood sample identification is recommended for uncertain wood confiscation origins. This study proposes a new taxonomy of the genus Dalbergia in Guatemala and offers a fast and reliable identification method. Conclusions. With the molecular methods used in the study, three new Dalbergia species in Guatemala are proposed, corroborating previous suggestions based on morphological characterization. This discovery expands the existing inventory of Dalbergia tree species in Guatemala, comprising six previously documented species and three novel species that require detailed botanical descriptions for final naming.

Keywords


Dalbergia; species delimitation; DNA barcoding; molecular markers; conservation

Full Text:

PDF

References


ABGD web. 2023. Accessed 25 February 2023. https://bioinfo.mnhn.fr/abi/public/abgd/abgdweb.html

ASAP web: Assemble Species by Automatic Partitioning. 2023. Accessed 02 March 2023. https://bioinfo.mnhn.fr/abi/public/asap/asapweb.html

Begerow, D., Bochum, R., Stockinger, H., Schoch, C.L., Seifert, K.A., Huhndorf, S., Robert, V., Spouge, J. L. and Levesque, C.A., 2012. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences, 109, pp. 6241-6246. https://doi.org/10.1073/pnas.1117018109

Bhagwat, R.M., Dholakia, B.B., Kadoo, N.Y., Balasundaran, M. and Gupta, V.S., 2015. Two new potential barcodes to discriminate Dalbergia species. PloS ONE, 10, pp. e0142965. https://doi.org/10.1371/journal.pone.0142965

Bieniek, W., Mizianty, M. and Szklarczyk, M., 2015. Sequence variation at the three chloroplast loci (matK, rbcL, trnH-psbA) in the Triticeae tribe (Poaceae): comments on the relationships and utility in DNA barcoding of selected species. Plant Systematics and Evolution, 301, pp. 1275–1286. https://doi.org/10.1007/s00606-014-1138-1

Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu, C. H., Xie, D., Suchard, M. A., Rambaut, A. and Drummond, A.J., 2014. BEAST 2: A software platform for Bayesian evolutionary analysis. PloS Computational Biology, 10, pp. e1003537. https://doi.org/10.1371/journal.pcbi.1003537

bPTP server: a Bayesian implementation of the PTP model for species delimitation. 2013. Accessed 14 March 2023. https://species.h-its.org

Cardoso, D., Pennington, R.T., de Queiroz, L.P., Boatwright, J.S., Van Wyk, B.E., Wojciechowski, M.F. and Lavin, M., 2013. Reconstructing the deep-branching relationships of the papilionoid legumes. South African Journal of Botany, 89, pp. 58–75. https://doi.org/10.1016/j.sajb.2013.05.001

Carstens, B.C., Pelletier, T.A., Reid, N.M. and Satler, J.D., 2013. How to fail at species delimitation. Molecular Ecology, 22, pp. 4369–4383. https://doi.org/10.1111/mec.12413

de Carvalho, A.M., 1997. A Synopsis of the Genus Dalbergia (Fabaceae: Dalbergieae) in Brazil. Brittonia, 49, pp. 87–109. https://doi.org/10.2307/2807701

Chase, M.W., Cowan, R.S., Hollingsworth, P.M., Van Den Berg, C., Madriñán, S., Petersen, G., Seberg, O., Jørgsensen, T., Cameron, K.M., Carine, M., Pedersen, N., Hedderson, T.A.J., Conrad, F., Salazar, G. A., Richardson, J.E., Hollingsworth, M.L., Barraclough, T.G., Kelly, L. and Wilkinson, M., 2007. A proposal for a standardized protocol to barcode all land plants. Taxon, 56, pp. 295–299. https://doi.org/10.1002/tax.562004

Chen, S., Yao, H., Han, J., Liu, C., Song, J., Shi, L., Zhu, Y., Ma, X., Gao, T., Pang, X., Luo, K., Li, Y., Li, X., Jia, X., Lin, Y. and Leon, C., 2010. Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PloS ONE, 5, pp. e8613. https://doi.org/10.1371/journal.pone.0008613

Cheng, S., Zeng, W., Wang, J., Liu, L., Liang, H., Kou, Y., Wang, H., Fan, D. and Zhang, Z., 2021. Species delimitation of Asteropyrum (Ranunculaceae) based on morphological, molecular, and ecological variation. Frontiers in Plant Science, 12, pp. 681864. https://doi.org/10.3389/fpls.2021.681864

Costion, C., Ford, A., Cross, H., Crayn, D., Harrington, M. and Lowe, A., 2011. Plant DNA barcodes can accurately estimate species richness in poorly known floras. PloS ONE, 6, pp. E26841. https://doi.org/10.1371/journal.pone.0026841

Criscuolo, A. and Gribaldo, S., 2010. BMGE (block mapping and gathering with entropy): A new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evolutionary Biology, 10, pp. 210. https://doi.org/10.1186/1471-2148-10-210

Cuénoud, P., Savolainen, V., Chatrou, L.W., Powell, M., Grayer, R.J. and Chase, M.W. 2002. Molecular phylogenetics of Caryophyllales based on nuclear 18S rDNA and plastid rbcL, atpB, and matK DNA sequences. American Journal of Botany, 89, pp. 132-144. https://doi.org/10.3732/ajb.89.1.132

Dayrat, B., 2005. Towards integrative taxonomy. Biological Journal of the Linnean Society, 85, pp. 407–415. https://doi.org/10.1111/j.1095-8312.2005.00503.x

Doyle, J.J. and Doyle, J.L., 1987. A rapid DNA isolation procedure for small quantities of fresh tissue. Phytochemical Bulletin, 19, 11–15.

Dumas, P., Barbut, J., Le Ru, B., Silvain, J.F., Clamens, A.L., D’Alençon, E. and Kergoat, G.J., 2015. Phylogenetic molecular species delimitations unravel potential new species in the pest genus spodoptera guenée, 1852 (Lepidoptera, Noctuidae). PloS ONE, 10, pp. e0122407. https://doi.org/10.1371/journal.pone.0122407

Espinoza, E.O., Wiemann, M.C., Barajas-Morales, J., Chavarria, G.D. and McClure, P.J., 2015. Forensic analysis of cites-protected Dalbergia timber from the Americas. International Association of Wood Anatomists Journal, 36, pp. 311–325. https://doi.org/10.1163/22941932-20150102

Flot, J.F., 2015. Species delimitation’s coming of age. Systematic Biology, 64, pp. 897–899. https://doi.org/10.1093/sysbio/syv071

Fujita, M.K., Leaché, A.D., Burbrink, F.T., McGuire, J.A. and Moritz, C., 2012. Coalescent-based species delimitation in an integrative taxonomy. Trends in Ecology and Evolution, 27, pp. 480–488. https://doi.org/10.1016/j.tree.2012.04.012

Gadagkar, S.R., Rosenberg, M.S. and Kumar, S., 2005. Inferring species phylogenies from multiple genes: Concatenated sequence tree versus consensus gene tree. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 304, pp. 64–74. https://doi.org/10.1002/jez.b.21026

Gagnon, E., Hilgenhof, R., Orejuela, A., McDonnell, A., Sablok, G., Aubriot, X., Giacomin, L., Gouvêa, Y., Bragionis, T., Stehmann, J.R., Bohs, L., Dodsworth, S., Martine, C., Poczai, P., Knapp, S. and Särkinen, T., 2022. Phylogenomic discordance suggests polytomies along the backbone of the large genus Solanum. American Journal of Botany, 109, pp. 580–601. https://doi.org/10.1002/ajb2.1827

Gasson, P., 2011. How precise can wood identification be? Wood anatomy’s role in support of the legal timber trade, especially cites. International Association of Wood Anatomists Journal, 32, pp. 137–154. https://doi.org/10.1163/22941932-90000049

Goldstein, P. Z. and DeSalle, R. 2010. Integrating DNA barcode data and taxonomic practice: Determination, discovery, and description. BioEssays, 33, pp. 135–147. https://doi.org/10.1002/bies.201000036

Gonzalez, M.A., Baraloto, C., Engel, J., Mori, S.A., Pétronelli, P., Riéra, B., Roger, A., Thébaud, C. and Chave, J., 2009. Identification of Amazonian trees with DNA barcodes. PloS ONE, 4, pp. e7483. https://doi.org/10.1371/journal.pone.0007483

Guo, B. and Kong, L., 2022. Comparing the efficiency of single-locus species delimitation methods within Trochoidea (Gastropoda: Vetigastropoda). Genes, 13, pp. 2273. https://doi.org/10.3390/genes13122273

Hartvig, I., Czako, M., Kjær, E. D., Nielsen, L.R. and Theilade, I., 2015. The use of DNA barcoding in identification and conservation of rosewood (Dalbergia spp.). PloS ONE, 10, pp. e0138231. https://doi.org/10.1371/journal.pone.0138231

Hassold, S., Lowry, P.P., Bauert, M.R., Razafintsalama, A., Ramamonjisoa, L. and Widmer, A., 2016. DNA barcoding of Malagasy rosewoods: Towards a molecular identification of CITES-Listed Dalbergia species. PloS ONE, 11, pp. e0157881. https://doi.org/10.1371/journal.pone.0157881

He, T., Jiao, L., Yu, M., Guo, J., Jiang, X. and Yin, Y., 2019. DNA barcoding authentication for the wood of eight endangered Dalbergia timber species using machine learning approaches. Holzforschung, 73, pp. 277–285. https://doi.org/10.1515/hf-2018-0076

Hebert, P.D.N., Cywinska, A., Ball, S.L. and DeWaard, J.R., 2003. Biological identifications through DNA barcodes. Proceedings of the Royal Society B: Biological Sciences, 270, pp. 313–321. https://doi.org/10.1098/rspb.2002.2218

Hebert, P.D.N. and Gregory, T.R., 2005. The promise of DNA barcoding for taxonomy. Systematic Biology, 54, pp. 852–859. https://doi.org/10.1080/10635150500354886

Hebert, P.D.N., Ratnasingham, S. and DeWaard, J.R., 2003. Barcoding animal life: Cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society B: Biological Sciences, 270, pp. 96–99. https://doi.org/10.1098/rsbl.2003.0025

Hilu, K., & Liang, H. (1997). The matK gene: sequence variation and application in plant systematics. American journal of botany, 84(6), 830. https://doi.org/10.2307/2445819

Hilu, K.W., Borsch, T., Müller, K., Soltis, D.E., Soltis, P.S., Savolainen, V., Chase, M.W., Powell, M.P., Alice, L.A., Evans, R., Sauquet, H., Neinhuis, C., Slotta, T.A.B., Rohwer, J.G., Campbell, C.S. and Chatrou, L.W. 2003. Angiosperm phylogeny based on matK sequence information. American Journal of Botany, 90, pp. 1758-1776. https://doi.org/10.3732/ajb.90.12.1758

Ji, Y., Yang, J., Landis, J. B., Wang, S., Yang, Z. and Zhang, Y., 2021. Deciphering the taxonomic delimitation of Ottelia acuminata (Hydrocharitaceae) using complete plastomes as super-barcodes. Frontiers in Plant Science, 12, pp. 1–13. https://doi.org/10.3389/fpls.2021.681270

Jones, G., 2017. Algorithmic improvements to species delimitation and phylogeny estimation under the multispecies coalescent. Journal of Mathematical Biology, 74, pp. 447–467. https://doi.org/10.1007/s00285-016-1034-0

Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K.F., Von Haeseler, A. and Jermiin, L.S., 2017. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nature Methods, 14, pp. 587–589. https://doi.org/10.1038/nmeth.4285

Kapli, P., Lutteropp, S., Zhang, J., Kobert, K., Pavlidis, P., Stamatakis, A. and Flouri, T., 2017. Multi-rate Poisson tree processes for single-locus species delimitation under maximum likelihood and Markov chain Monte Carlo. Bioinformatics, 33, pp. 1630–1638. https://doi.org/10.1093/bioinformatics/btx025

Katoh, K. and Standley, D.M., 2013. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution, 30, pp. 772–780. https://doi.org/10.1093/molbev/mst010

Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P. and Drummond, A., 2012. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28, pp. 1647–1649. https://doi.org/10.1093/bioinformatics/bts199

Kekkonen, M. and Hebert, P.D.N., 2014. DNA barcode-based delineation of putative species: Efficient start for taxonomic workflows. Molecular Ecology Resources, 14, pp. 706–715. https://doi.org/10.1111/1755-0998.12233

Kimura, M., 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16, pp. 111–120. https://doi.org/10.1007/BF01731581

Kress, W.J., Wurdack, K.J., Zimmer, E.A., Weigt, L.A. and Janzen, D.H., 2005. Use of DNA barcodes to identify flowering plants. Proceedings of the National Academy of Sciences of the United States of America, 102, pp. 8369–8374. https://doi.org/10.1073/pnas.0503123102

Kumar, S., Stecher, G., Li, M., Knyaz, C. and Tamura, K., 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35, pp. 1547–1549. https://doi.org/10.1093/molbev/msy096

Leigh, J. and Bryant, D., 2015. PopART: Full-feature software for haplotype network construction. Methods in Ecology and Evolution, 6, pp. 1110–1116. https://doi.org/https://doi.org/10.1111/2041-210X.12410

Li, Q., Wu, J., Wang, Y., Lian, X., Wu, F., Zhou, L., Huang, Z. and Zhu, S., 2017. The phylogenetic analysis of Dalbergia (Fabaceae: Papilionaceae) based on different DNA barcodes. Holzforschung, 71, pp. 939–949. https://doi.org/10.1515/hf-2017-0052

Linares, J., Herrera Sosa, M.E., Velásquez Méndez, L.E., Choxom Chamorro, P.E. and Ruiz-Chután, J.A, 2022. Informe de la prospección botánica del género Dalbergia en Guatemala. Análisis integral de especies arbóreas del género Dalbergia y similares a través del laboratorio forense de maderas para el fortalecimiento de la CITES en Guatemala. Proyecto CITES S-566. https://cites-tsp.org/sites/default/files/project_files/2023-01/Informe_de_la_Prospeccion_Botanica_del_Genero_Dalbergia_en_Guatemala_0.pdf

Linares, J. and Sousa, M., 2007. Nuevas especies de Dalbergia (Leguminosae: Papilionoideae: Dalbergieae) en México y Centroamérica. Ceiba, 48, pp. 61–82. https://doi.org/10.5377/ceiba.v48i1-2.439

Liu, J., Zhou, W. and Gong, X., 2015. Species delimitation, genetic diversity and population historical dynamics of Cycas diannanensis (Cycadaceae) occurring sympatrically in the red river region of China. Frontiers in Plant Science, 6, pp. 696. https://doi.org/10.3389/fpls.2015.00696

Mace, G.M., 2004. The role of taxonomy in species conservation. Philosophical Transactions of the Royal Society B: Biological Sciences, 359, pp. 711–719. https://doi.org/10.1098/rstb.2003.1454

Meier, R., Shiyang, K., Vaidya, G. and Ng, P.K.L., 2006. DNA barcoding and taxonomy in diptera: A tale of high intraspecific variability and low identification success. Systematic Biology, 55, pp. 715–728. https://doi.org/10.1080/10635150600969864

Miller, M.A., Pfeiffer, W. and Schwartz, T., 2012. The CIPRES science gateway: Enabling high-impact science for phylogenetics researchers with limited resources. In C. Stewart (Ed.), XSEDE ’12. Proceedings of the 1st Conference of the Extreme Science and Engineering Discovery Environment: Bridging from the extreme to the campus and beyond (pp. 1–8). NY: Association for Computing Machinery.

Minh, B.Q., Nguyen, M.A.T. and Von Haeseler, A., 2013. Ultrafast approximation for phylogenetic bootstrap. Molecular Biology and Evolution, 30, pp. 1188–1195. https://doi.org/10.1093/molbev/mst024

Müller, K.F., Borsch, T. and Hilu, K.W. 2006. Phylogenetic utility of rapidly evolving DNA at high taxonomical levels: contrasting matK, trnT-F, and rbcL in basal angiosperms. Molecular Phylogenetics and Evolution, 41, pp. 99-117. https://doi.org/10.1016/j.ympev.2006.06.017

Mutanen, M., Kekkonen, M., Prosser, S. W. J., Hebert, P. D. N. and Kaila, L., 2015. One species in eight: DNA barcodes from type specimens resolve a taxonomic quagmire. Molecular Ecology Resources, 15, pp. 967–984. https://doi.org/10.1111/1755-0998.12361

Nguyen, L.T., Schmidt, H.A., Von Haeseler, A. and Minh, B.Q., 2015. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32, pp. 268–274. https://doi.org/10.1093/molbev/msu300

Nithaniyal, S., Newmaster, S. G., Ragupathy, S., Krishnamoorthy, D., Vassou, S. L. and Parani, M., 2014. DNA barcode authentication of wood samples of threatened and commercial timber trees within the tropical dry evergreen forest of india. PloS ONE, 9, pp. e107669. https://doi.org/10.1371/journal.pone.0107669

Niyomdham, C., 2002. An account of Dalbergia (Leguminosae-Papillionoideae) in Thailand. Thai Forest Bulletin (Botany), 30, pp. 124–166. https://li01.tci-thaijo.org/index.php/ThaiForestBulletin/article/view/24860

Okonechnikov, K., Golosova, O., Fursov, M., Varlamov, A., Vaskin, Y., Efremov, I., German Grehov, O. G., Kandrov, D., Rasputin, K., Syabro, M. and Tleukenov, T., (2012). Unipro UGENE: A unified bioinformatics toolkit. Bioinformatics, 28, 1166–1167. https://doi.org/10.1093/bioinformatics/bts091

Parmentier, I., Duminil, J., Kuzmina, M., Philippe, M., Thomas, D. W., Kenfack, D., Chuyong, G. B., Cruaud, C.and Hardy, O. J., 2013. How effective are DNA barcodes in the identification of African rainforest trees? PloS ONE, 8, pp. e54921. https://doi.org/10.1371/journal.pone.0054921

Petzold, A. and Hassanin, A., 2020. A comparative approach for species delimitation based on multiple methods of multi-locus DNA sequence analysis: A case study of the genus Giraffa (Mammalia, Cetartiodactyla). PloS ONE, 15, pp. 1–28. https ://doi.org/10.1371/journal.pone.0217956

Puillandre, N., Brouillet, S. and Achaz, G., 2021. ASAP: assemble species by automatic partitioning. Molecular Ecology Resources, 21, pp. 609–620. https://doi.org/10.1111/1755-0998.13281

Puillandre, N., Lambert, A., Brouillet, S. and Achaz, G., 2012. ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular Ecology, 21, pp. 1864–1877. https://doi.org/10.1111/j.1365-294X.2011.05239.x

R Core Team. R: A Language and Environment for Statistical Computing; GBIF: Vienna, Austria, 2022.

Rahaingoson, F.R., Oyebanji, O., Stull, G.W., Zhang, R. and Yi, T., 2022. A dated phylogeny of the pantropical genus Dalbergia L. f. (Leguminosae: Papilionoideae) and its implications for historical biogeography. Agronomy, 12, pp. 1612. https://doi.org/10.3390/agronomy12071612

Rambaut, A., Drummond, A.J., Xie, D., Baele, G. and Suchard, M.A., 2018. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology, 67, pp. 901–904. https://doi.org/10.1093/sysbio/syy032

Reid, N.M. and Carstens, B.C., 2012. Phylogenetic estimation error can decrease the accuracy of species delimitation: A Bayesian implementation of the general mixed Yule-coalescent model. BMC Evolutionary Biology, 12, pp. 1471–2148. https://doi.org/10.1186/1471-2148-12-196

Ronquist, F. and Huelsenbeck, J.P., 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, pp. 1572–1574. https://doi.org/10.1093/bioinformatics/btg180

Rossini, B.C., Oliveira, C.A.M., Melo, F.A.G.de., Bertaco, V. de A., Astarloa, J. M.D,de., Rosso, J. J., Foresti, F. and Oliveira, C.. 2016. Highlighting Astyanax species diversity through DNA barcoding. PloS ONE, 11, pp. e0167203. https://doi.org/10.1371/journal.pone.0167203

Rozas, J., Ferrer-Mata, A., Sanchez-DelBarrio, J.C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S.E. and Sanchez-Gracia, A., 2017. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Molecular Biology and Evolution, 34, pp. 3299–3302. https://doi.org/10.1093/molbev/msx248

Sabadini, C.P., Machado, C.B., Vilhena, P.D.S., Garófalo, C.A. and Del Lama, M.A., 2020. Species delimitation and phylogenetic relationships in the genus Trypoxylon (Hymenoptera: Crabronidae) using molecular markers: an alternative to taxonomic impediment. Systematics and Biodiversity, 18, pp. 315–327. https://doi.org/10.1080/14772000.2020.1758824

Satler, J.D., Carstens, B.C. and Hedin, M., 2013. Multilocus species delimitation in a complex of morphologically conserved trapdoor spiders (mygalomorphae, antrodiaetidae, Aliatypus). Systematic Biology, 62, pp. 805–823. https://doi.org/10.1093/sysbio/syt041

Sonet, G., Jordaens, K., Nagy, Z.T., Breman, F.C., De Meyer, M., Backeljau, T. and Virgilio, M., 2013. Adhoc: An R package to calculate ad hoc distance thresholds for DNA barcoding identification. ZooKeys, 365, 329–335. https://doi.org/10.3897/zookeys.365.6034

Sotuyo, S. and Pedraza-Ortega, E., 2022. Insights into phylogenetic divergence of Dalbergia (Leguminosae : Dalbergiae) from Mexico and Central America. Frontiers in Ecology and Evolution, 10, pp. 910250. https://doi.org/10.3389/fevo.2022.910250

Sun, X. Q., Zhu, Y.J., Guo, J.L., Peng, B., Bai, M.M. and Hang, Y.Y., 2012. DNA barcoding the Dioscorea in China, a vital group in the evolution of monocotyledon: Use of matk gene for species discrimination. PloS ONE, 7, pp. e32057. https://doi.org/10.1371/journal.pone.0032057

Sunarno, B. and Ohashi, H., 1997. Dalbergia (Leguminosae) of Borneo. Japanese Journal of Botany, 72, pp. 198–220. https://doi.org/10.51033/jjapbot.72_4_9168

Tallei, T.E. and Kolondam, B.J., 2015. DNA Barcoding of Sangihe Nutmeg (Myristica fragrans) using matK Gene. HAYATI Journal of Biosciences, 22, pp. 41–47. https://doi.org/10.4308/hjb.22.1.41

Templeton, A.R., Crandall, K.A. and Sing, C.F., 1992. A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics, 132, pp. 619–633. https://doi.org/10.1093/genetics/132.2.619

The Exelixis Lab. 2013. Accessed 18 April 2023. https://cme.h-its.org/exelixis/

Tsykun, T., Rellstab, C., Dutech, C., Sipos, G. and Prospero, S., 2017. Comparative assessment of SSR and SNP markers for inferring the population genetic structure of the common fungus Armillaria cepistipes. Heredity, 119, pp. 371–380. https://doi.org/10.1038/hdy.2017.48

Vardeman, E. and Runk, J.V., 2020. Panama’s illegal rosewood logging boom from Dalbergia retusa. Global Ecology and Conservation, pp. e01098. https://doi.org/10.1016/j.gecco.2020.e01098

Vatanparast, M., Klitgård, B. B., Adema, F.A.C.B., Pennington, R.T., Yahara, T. and Kajita, T., 2013. First molecular phylogeny of the pantropical genus Dalbergia: Implications for infrageneric circumscription and biogeography. South African Journal of Botany, 89, pp. 143–149. https://doi.org/10.1016/j.sajb.2013.07.001

Vitecek, S., Ku?ini?, M., Previši?, A., Živi?, I., Stojanovi?, K., Keresztes, L., Bálint, M., Hoppeler, F., Waringer, J., Graf, W., & Pauls, S.U., 2017. Integrative taxonomy by molecular species delimitation: multi-locus data corroborate a new species of Balkan Drusinae micro-endemics. BMC Evolutionary Biology, 17, pp. 129. https://doi.org/10.1186/s12862-017-0972-5

Wang, S.N., Zhang, F.D., Huang, A.M. and Zhou, Q., 2016. Distinction of four Dalbergia species by FTIR, 2nd derivative IR, and 2D-IR spectroscopy of their ethanol-benzene extractives. Holzforschung, 706, pp. 503–510. https://doi.org/10.1515/hf-2015-0125

Wei, S.J., Lu, Y. Bin, Ye, Q.Q. and Tang, S.Q., 2017. Population genetic structure and phylogeography of Camellia flavida (Theaceae) based on chloroplast and nuclear DNA sequences. Frontiers in Plant Science, 8, pp. 718. https://doi.org/10.3389/fpls.2017.00718

Wu, C.C., Chu, F.H., Ho, C.K., Sung, C.H. and Chang, S.H., 2017. Comparative analysis of the complete chloroplast genomic sequence and chemical components of Cinnamomum micranthum and Cinnamomum kanehirae. Holzforschung, 71, pp. 189–197. https://doi.org/10.1515/hf-2016-0133

Young, A.D. and Gillung, J.P., 2020. Phylogenomics — principles, opportunities and pitfalls of big-data phylogenetics. Systematic Entomology, 45, pp. 225–247. https://doi.org/10.1111/syen.12406

Yu, M., Jiao, L., Guo, J., Wiedenhoeft, A.C., He, T., Jiang, X. and Yin, Y., 2017. DNA barcoding of vouchered xylarium wood specimens of nine endangered Dalbergia species. Planta, 246, pp. 1165–1176. https://doi.org/10.1007/s00425-017-2758-9

Yu, M., Liu, K., Zhou, L., Zhao, L. and Liu, S., 2016. Testing three proposed DNA barcodes for the wood identification of Dalbergia odorifera T. Chen and Dalbergia tonkinensis Prain. Holzforschung, 70, pp. 127–136. https://doi.org/10.1515/hf-2014-0234

Zhang, J., Kapli, P., Pavlidis, P. and Stamatakis, A., 2013. A general species delimitation method with applications to phylogenetic placements. Bioinformatics, 29, pp. 2869–2876. https://doi.org/10.1093/bioinformatics/btt499

Zimmerman, S.J., Aldridge, C.L. and Oyler-Mccance, S.J., 2020. An empirical comparison of population genetic analyses using microsatellite and SNP data for a species of conservation concern. BMC Genomics, 21, 1–16. https://doi.org/10.1186/s12864-020-06783-9




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v27i3.49138

DOI: http://dx.doi.org/10.56369/tsaes.4913



Copyright (c) 2024 José Alejandro Ruiz Chután

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.