José Martín Barreda-Castillo, Rebeca Alicia Menchaca-García, Miguel Angel Lozano-Rodríguez


Background. Vanilla planifolia is a species of commercial and cultural importance. However, its growth and development could be affected by the increase in temperature caused by climate change. In contrast, V. pompona and V. insignis are wild species with potential use as aromatic species and they show greater tolerance to prolonged exposure to high temperatures. Objective. To determine the effect of temperature on the development of roots and shoots of V. planifolia, V. pompona and V. insignis under controlled conditions. Methodology. Cuttings of approximately 20 cm with two nodes were grown at 25, 32, 35 and 38 °C under controlled conditions, with a relative humidity of 100%, for six weeks. To evaluate cutting development, the number of roots produced was recorded, as well their length, their growth rate and their diameter. Likewise, the number of shoots generated, their length, growth rate and diameter were also counted. The experimental design was completely random, and the data were analyzed using Tukey post hoc analysis of variance (P < 0.05). Results. The increase in temperature affected the promotion and root growth in V. planifolia, which showed the greatest length at 25 °C (20.64 ± 0.26 cm) and the lowest value at 35 °C (1.22 ± 0.49 cm), contrary to V. insignis, where the increase in temperature at 35 °C favored root elongation (4.76 ± 0.07 cm), while the lowest growth was observed at 25 °C (1.74 ± 0.13 cm). V. pompona did not present significant differences in root growth at the three temperatures evaluated. Similarly, the increase in temperature showed a distinct influence on the promotion and growth of the shoot. V. planifolia only produced shoots at 32 °C (8.4 ± 0.4 cm) and V. pompona generated them at 32 and 35 °C, being those of greater length at 35 °C (3.3±0.13 cm) and did not produce at 25 °C; while V. insignis showed the highest shoot growth at 25 °C (7.22 ± 0.2 cm) and the lowest at 32 °C (6.56 ± 0.12). At 38 °C, 100% mortality was observed in the three species. Implications. The growth of roots and shoots of V. planifolia are affected by an increase in temperature above 32 °C, therefore, conservation and genetic improvement programs are needed that could start from the qualities that V. pompona and V. insignis showed. Conclusion. Temperature ranges between 25 and 35 °C have a differential effect on the promotion and growth of roots and shoots for the species V. planifolia, V. insignis and V. pompona.


Cultivation; tropical crops; climate change; abiotic stress; Vanilla

Full Text:



Adame-García, J., Rodríguez-Guerra, R., Iglesias-Andreu, L. G., Ramos-Prado, J. M. and Luna-Rodríguez, M., 2015. Molecular identification and pathogenic variation of fusarium species isolated from Vanilla planifolia in Papantla Mexico. Botanical Sciences, 93 (3), pp. 669-678. https://doi.org/10.17129/botsci.142

Armenta-Montero, S., Menchaca-García, R., Pérez-Silva, A. and Velázquez-Rosas, N., 2022. Changes in the potential distribution of Vanilla planifolia Andrews under different climate change projections in Mexico. Sustainability, 14, pp. 2881. https://doi.org/10.3390/su14052881

Cameron, K. M., 2018. Vanilla phylogeny and classification. In: Havkin-Frenkel, D. and Belanger, F. (eds.). Handbook of Vanilla Science and Technology. 2nd ed. Hoboken: Wiley, pp. 377-390. https://doi.org/10.1002/9781119377320.ch20

de Oliveira, R., da Silva-Oliveira, J. and Macedo, A., 2022. Vanilla beyond Vanilla planifolia and Vanilla x tahitensis: taxonomy and historical notes, reproductive biology, and metabolites. Plants, 11, pp. 3311. https://doi.org/10.3390/plants11233311

Edwards, E. J., 2019. Evolutionary trajectories, accessibility and other metaphors: the case of C4 and CAM photosynthesis. Tansley Reviews, 223, pp. 1742-1755. https://doi.org/10.1111/nph.15851

Faget, M., Blossfeld, S., Jahnke, S., Huber, G., Schurr, U. and Nagel, K. A., 2013. Temperature effects on root growth. In: Eshel, A. and Beeckman, T. (eds.). Plant roots the hidden half. 4th ed. Boca Raton: Taylor and Francis Group, pp. 487-497.

Fahad, S., Adnan, M., Hassan, S., Saud, S., Hussain, S., Wu, C., Wang, D., Hakeem, K. R., Alharby, H. F., Turan, V., Ahmad, M. and Huang, J.,2019. Rice responses and tolerance to high temperature. In: Hasanuzzaman, M., Fujita, M., Nahar, K. and Biswas, J. B. (eds.). Advances in Rice Research for Abiotic Stress Tolerance. Duxford: Woodhead Publishing, pp 201-224. https://doi.org/10.1016/B978-0-12-814332-2.00010-1

Flores-Jiménez, A., Reyes-López, D., Jiménez-García, D., Romero-Arenas, O., Rivera-Tapia, J. A., Huerta-Lara, J. A. and Pérez-Silva, A., 2016. Diversidad de Vanilla spp (Orchidaceae) y sus perfiles bioclimáticos en México. Revista de Biología Tropical, 65 (3), pp. 975-987. https://doi.org/10.15517/rbt.v65i3.29438

Gaveliené, V., Jurkoniené, S., Jankovska-Bortkevic, E. and Svegzdiené, D. 2022., Effects of elevated temperature on root system development of two lupine species. Plants, 11, pp. 192. https://doi.org/10.3390/plants11020192

Gray, S. B. and Brady, S. M., 2016. Plant developmental responses to climate change. Developmental Biology, 419, pp. 64-77. http://dx.doi.org/10.1016/j.ydbio.2016.07.023

Hasanuzzaman, M., Nahar, K., Alam, M. M., Roychowdhury, R. and Fujita, M., 2013. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. International Journal of Molecular Sciences, 14, pp. 9643-9684. https://doi.org/10.3390/ijms14059643

Hatfield, J. L. and Prueger, J. H., 2015. Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes, 10, pp. 4-10. http://dx.doi.org/10.1016/j.wace.2015.08.001

Hernández-Hernández, J., 2018. Vanilla diseases. In: Havkin-Frenkel, D. and Belanger, F. (eds.). Handbook of Vanilla Science and Technology. 2nd ed. Hoboken: Wiley, pp. 27-40. https://doi.org/10.1002/9781119377320.ch2

Hernández-Ruíz, J., Herrera-Cabrera, B.E., Delgado-Alvarado, A., Salazar-Rojas, V.M., Bustamante-González, Á., Campos-Contreras, J.E. and Ramírez-Juárez, J., 2016. Distribución potencial y características geográficas de poblaciones silvestres de Vanilla planifolia (Orchidaceae) en Oaxaca, México. Revista de Biología Tropical, 64, pp. 235–246. https://doi.org/10.15517/rbt.v64i1.17854

Hernández-Ruíz, J., Delgado-Alvarado, A., Salazar-Rojas, V.M. and Herrera-Cabrera, B. E., 2020. Variación morfológica del labelo de Vanilla planifolia Andrews (Orchidaceae) en Oaxaca, México. Revista de la Facultad de Ciencias Agrarias, 52, pp. 160-175.

Li, J., Chen, X., and Hu, X., 2018. Comparative physiological and proteomic analyses reveal different adaptative strategies by Cymbidium sinense and C. tracyanum to drought. Planta, 247, pp. 69.91. https://doi.org/10.1007/s00425-017-2768-7

Luo, H., Xu, H., Chu, C., He, F. and Fang, S., 2020. High temperature can change root system architecture and intensify root interactions of plant seedlings. Frontiers in plant Science, 11, pp. 160. https://doi.org/10.3389/fpls.2020.00160

Maruenda, H., Vico, M., Householder, E., Janovec, J., Cañari, C., Naka, A. and González, A., 2013. Exploration of Vanilla pompona from the Peruvian Amazon as a potential source of vanilla essence: quantification of phenolics by HPLC-DAD. Food Chemistry, 138, pp. 161-167. https://doi.org/10.1016/j.foodchem.2012.10.037

Menchaca-García, R. A., 2018. In vitro germination of Vanilla. In: Havkin-Frenkel, D. and Belanger, F. (eds.). Handbook of Vanilla Science and Technology. 2nd ed. Hoboken: Wiley, pp. 181-190. https://doi.org/10.1002/9781119377320.ch12

Menchaca-García, R. A., Moreno-Martínez, D., Barreda-Castillo, M., Pérez-Silva, A. and Lozano-Rodríguez, M. A., 2019. Vainilla, café y cítricos: triángulo amoroso. La Ciencia y el Hombre, 32, pp. 28-33.

Paine, C. E. T., Marthews, T. R., Vogt, D. R., Purves, D., Rees, M., Hector, A. and Turnbull, L. A., 2011. How to fit nonlinear plant growth models and calculate growth rates: an update for ecologists. Methods in Ecology and Evolution, 3, pp. 245-256. https://doi.org/10.1111/j.2041-210X.2011.00155.x

R Core Team. 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Available at: https://www.R-project.org/ [Accessed: January 11, 2023].

Ranadive, A. S., 2018. Quality control of vanilla beans and extracts. In: Havkin-Frenkel, D. and Belanger, F. (eds.). Handbook of Vanilla Science and Technology. 2nd ed. Hoboken: Wiley, pp. 239-260. https://doi.org/10.1002/9781119377320.ch15.

Reddy, K. R., Brand, D., Wijerwardana, C. and Gao, W., 2017. Temperature effects on cotton seedling emergence, growth, and development. Agronomy Journal, 109, pp. 1379-1387. https://doi.org/10.2134/agronj2016.07.0439

SEMARNAT. 2010. NORMA Oficial Mexicana NOM-059-SEMARNAT-2010. Protección ambiental-especies nativas de México de flora y fauna silvestres-Categorías de riesgo y especificaciones para su inclusión, exclusión o cambio-Lista de especies en riesgo. Secretaría del Medio Ambiente y Recursos Naturales. Diario Oficial de la Federación. Ciudad de México, México. http://dof.gob.mx/nota_detalle.php?codigo=5173091&fecha=20/12/2010.

Soto-Arenas, M. A. and Dressler. R. L., 2009. A revision of the Mexican and Central American species of Vanilla Plumier ex Miller with a characterization of their its region of the nuclear ribosomal DNA. Lankesteriana International Journal on Orchidology, 9 (3), pp. 285-354. https://doi.org/10.15517/lank.v0i0.12065

Zhang, S., Hu, H. and Zhou, Z.,2005. Photosynthetic performances of transplanted Cypripedium flavum plants. Botanical Bulletin of Academia Sinica, 46, pp. 307-303.

Zhang, S., Yang, Y., Li, J., Qin, J., Zhang, W., and Hu, H., 2018. Physiological diversity of orchids. Plant Diversity, 40, pp. 196-208. https://doi.org/10.1016/j.pld.2018.06.003

Zhao, J., Lu, Z., Wang, L. and Jin, B., 2021. Plant responses to heat stress: physiology, transcription, noncoding RNAs, and epigenetics. International Journal of Molecular Sciences, 22, pp. 117. https://dx.doi.org/10.3390/ijms22010117

URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v26i3.48556

DOI: http://dx.doi.org/10.56369/tsaes.4855

Copyright (c) 2023 José Martín Barreda-Castillo, Miguel Angel Lozano-Rodríguez, Rebeca Alicia Menchaca-García

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.