SUSTAINABLE ALTERNATIVES FOR THE CONTROL OF Lasiodiplodia theobromae (Pat.) Griffon & Maubl IN MANGO

Arturo Morales Pizarro, Isabel Neira Rojas, Elizabeth Saavedra Alberca, Karla Zapatel Sime, L.A Álvarez, Ricardo Peña-Castillo, René Aguilar-Anccota, Miguel Galecio-Julca, Javier Javier-Alva

Abstract


Background: Peru is considered the third largest exporter of mango in the world and Piura is the first mango producing region representing 68% of the national production; however, the fungus Lasiodiplodia theobromae has been associated with dieback and the presence of cankers in mango cultivation, reducing fruit production and quality. Objective: To evaluate sustainable alternatives for in vitro and in vivo control of L. theobromae in mango, using products based on copper sulfate pentahydrate and a liquid biofertilizer. Methodology: Treatments were applied: T0 (Control), T1 (Vacun-Q organic 0.35 mL100 mL-1), T2 (Vacun-Q organic 0.175 mL 100 mL-1), T3 (Phyton 27® 0.35 mL100 mL-1), T4 (Phyton 27® 0.175 mL100 mL-1), T5 (Biol 10%) and T6 (Biol 20%). Radial growth and mycelial growth inhibition percentage (GIP) of the pathogen were evaluated in the in vitro phase with poisoned media, and necrotic area progression was assessed in the in vivo phase on mango leaves. Results: At 72 h after inoculation, treatments T3, T5 and T6 showed the lowest radial growth of L. theobromae, statistically equal to each other and inferior to the control that completed its development in the Petri dish; likewise, they showed 100% GIP. Five days after inoculation of mango leaves, T5 and T6 presented the smallest necrotic areas with 1.44 cm2 and 1.61 cm2 respectively, followed by T4 with 1.64 cm2 and T2 with 1.69 cm2 compared to the control with 2.05 cm2. Implications: In view of the constant restrictions of active molecules, sustainable and innocuous alternatives for humans and the environment are sought for the control of L. theobromae. Conclusion: Treatments T5 and T6 based on liquid biofertilizers showed to be effective in the in vitro and in vivo control of L. theobromae.

Keywords


Biofertilizer; in vitro and in vivo control; Mangifera indica; dieback; copper sulfate.

Full Text:

PDF

References


Aguilar, P., Navarro, A., Sánchez, A., Meneses, M. and Ávila R. 2011. Efecto antifúngico de plantas originarias del estado de Puebla sobre Colletotrichum gloeosporioides. CIENCIAUAT, 7(2), pp. 06-11. https://www.redalyc.org/pdf/4419/441942929001.pdf

Álvarez, R., Espinoza, L., Ruiz, O. and Peralta, E. L. 2011. Efecto de los biofertilizantes líquidos de producción local “Bioles”, sobre el desarrollo de síntomas causados por el virus del mosaico de la calabaza (SQMV) en el cultivo de melón (Cucumis melo l.) var. Edisto en condiciones de invernadero (Bachelor's thesis, Facultad de Ingeniería en Mecánica y Ciencias de la Producción). http://www.dspace.espol.edu.ec/handle/123456789/17063

Asitimbay-Mendoza, C.J. 2019. Uso de las alternativas biológicas para el control de Pseudocercospora fijiensis, agente causal de la Sigatoka negra en banano (Bachelor's thesis, Facultad de Ciencias Naturales. Universidad de Guayaquil). http://repositorio.ug.edu.ec/handle/redug/39668

Beltrán, M.F., Paz-Millas, A.F., Lemus, G. and Sagredo, B. 2020. Resistencia al cobre: una complicación para el control del cáncer bacterial de cerezos en la región de O'Higgins. Rengo: Informativo INIA Rayentué, 71. http://ry3.s3.amazonaws.com/51_i_18116121200.8f33674.4150.full.pdf

Cabrera, S.T.G., Quille, l.Q., Huancollo, C.P. and Turpo, J.R.C. 2022. Exportación del mango peruano. Una revisión durante la pandemia del COVID-19. Universidad y Sociedad, 14(s6), pp.716-724. https://rus.ucf.edu.cu/index.php/rus/article/view/3503/3447

Carreño-Toala, J., Sánchez, L., Guzmán-Cedeño, Á., Suarez-Palacios, C. and Vélez-Zambrano, S. 2021. Efecto in vitro de fungicidas para el control de Colletotrichum spp., en frutales Manabí-Ecuador. Ciencia Unemi, 14(35), pp. 37-42. https://doi.org/10.29076/issn.2528-7737vol14iss35.2021pp37-42p

Chacín, A.E.C., Bonafine, O., Laverde, D., Rodríguez, R. and Natera, J.R.M. 2009. Caracterización química y organoléptica de néctares a base de frutas de lechosa, mango, parchita y lima. Revista Científica UDO Agrícola, 9(1), 74-79. https://dialnet.unirioja.es/servlet/articulo?codigo=3293770

Contreras, S.S., Espejo, M.R. and Ruiz, J.C. 2015. Actividad antifúngica del extracto etanólico de las hojas de Schinus molle sobre el crecimiento de Lasiodiplodia theobromae en condiciones de laboratorio. Rebiol, 35(2), pp. 47-52. https://core.ac.uk/download/pdf/267888134.pdf

Denman, S., Crous, P. W., Taylor, J.E., Kang, J. C., Pascoe, I. and Wingfield, M.J. 2000. An overview of the taxonomic history of Botryosphaeria and a re-evaluation of its anamorphs based on morphology and ITS rDNA phylogeny. Studies in mycology, 45, pp. 129-140.

Dos Santos, A.C. 1992. Biofertilizante líquido: o defensivo agrícola da natureza. 2a ed. Rev. Niterói: EMATER-RJ, 1992.

Dries, L., Hendgen, M., Schnell, S., Löhnertz, O. and Vortkamp, A. 2021. Rhizosphere engineering: leading towards a sustainable viticulture?. OENO One, 55(2), pp. 353-363. https://doi.org/10.20870/oeno-one.2021.55.2.4534

El Salous, A., Martillo-García, J., Gómez-Vargas, J. and Martínez-Alcívar, F. 2020. Mejoramiento de la calidad del cultivo de cacao en Ecuador. Revista Venezolana de Gerencia, 25(3).

Ezziyyani, M., Sánchez, C. P., Requena, M. E., Rubio, L., and Castillo, M. E. C., 2004. Biocontrol por Streptomyces rochei–Ziyani–, de la podredumbre del pimiento (Capsicum annuum L.) causada por Phytophthora capsici. In Anales de Biología, 26, pp. 61-68. https://revistas.um.es/analesbio/article/view/30471

Galecio-Julca, M., Neira-Ojeda, M., Chanduví-García, R., Peña-Castillo, R., Álvarez-Bernaola, L. A., Granda-Wong, C., Lindo-Seminario, D., Saavedra-Alberca, E., Javier-Alva, J. and Morales-Pizarro, A. 2023. Efecto de los microorganismos eficientes nativos y compost en tres pisos altitudinales en el cultivo de quinua (Chenopodium quinoa) variedad INIA 415-Pasankalla. Terra Latinoamericana, 41, pp. e1622. https://doi.org/10.28940/terra.v41i0.1622

Heredia, J.M.S. and Giraldo, C.A.C. 2018. Uso de inductores de defensa en la prevención de infecciones ocasionadas por Lasiodiplodia theobromae, en plantones de vid (Vitis vinifera) en Perú. Anales Científicos, 79 (2), pp. 346-352. http://dx.doi.org/10.21704/ac.v79i2.1245

Kamil-Fatima, h., Saeed-Ssam, E., El-Tarabily Khaled, A., Abuqamar-Synan, F. 2018. Biological control of mango dieback disease caused by Lasiodiplodia theobromae using Streptomycete and non-Streptomycete actinobacteria in the united arab emirates. Frontiers in Microbiology, 9, pp. 1-19. https://doi.org/10.3389/fmicb.2018.00829

Lima, J. S., Moreira, R. C., Cardoso, J. E., Martins, M. V. V. and Viana, F. M. P. 2013. Cultural, morphological and pathogenic characterization of Lasiodiplodia theobromae associated with tropical fruit plants. Summa phytopathologica, 39, pp. 81-88. https://doi.org/10.1590/S0100-54052013000200001

Morales-Pizarro, D. A., Javier-Alva, J., Álvarez, L. A., Mayta-Obos, R., Aguilar-Anccota., Peña-Castillo, R. and Lindo-Seminario, D. 2022a. Isolation, identification and in vitro evaluation of native isolates of Bacillus, Trichoderma and Streptomyces with potential for the biocontrol of grapevine trunk fungi. Tropical and Subtropical Agroecosystems, 25(2), pp. 86. http://dx.doi.org/10.56369/tsaes.4206

Morales-Pizarro, D., Javier-Alva, J., Álvarez, L.A., Peña-Castillo, R., Chanduví-García, R., Granda-Wong, C., Mayta-Obos, R., Lindo-Seminario, D. and Condori-Pacsi, S. 2022 b. In vivo control of Phaeoacremonium parasiticum with native antagonists Bacillus, Trichoderma and actinomycetes and their growth promoting effect in grapevine. Tropical and Subtropical Agroecosystems, 25(3), pp. 1-10. http://dx.doi.org/10.56369/tsaes.4232

Nwachukwu, E.O. and Umechuruba, C.I. 2001. Antifungal activities of some leaf extracts on seed-borne fungi of African yam bean seeds, seed germination and seedling emergence. Journal of Applied Sciences and Environmental Management, 5(1), pp. 29-32. https://doi.org/10.4314/jasem.v5i1.54936

Pacheco, A.J. 2022. Evaluación del efecto de fungicidas para el control de Botrytis spp. y Fusarium spp. en hojas de cinco variedades de tomate (Solanum lycopersicum L.) bajo condiciones de laboratorio (Disertación Doctoral, Zamorano: Escuela Agrícola Panamericana. https://bdigital.zamorano.edu/handle/11036/7368

Pasmiño, R.W.P., Tomaylla, M.M.C., Marticorena, E.S., Panduro, P.P.V. and Gómez, R.V. 2022. Biol, Microorganismos Eficientes y Trichoderma spp., en el control de Colletotrichum spp. en Myrciaria dubia HBK Pucallpa, Ucayali. Investigación Universitaria UNU, 12(2), pp. 822-835. http://www.revistas.unu.edu.pe/index.php/iu/article/view/101

Rivera, M.C. and Wright, E.R. 2020. Apuntes de patología vegetal. Fundamentos y prácticas para la salud de las plantas. Editorial Facultad de Agronomía, UBA. http://hdl.handle.net/20.500.12123/13075

Rodríguez-Gálvez, E., Guerrero, P., Barradas, C., Crous, P.W. and Alves, A. 2017. Phylogeny and pathogenicity of Lasiodiplodia species associated with dieback of mango in Peru. Fungal biology, 121(4), pp. 452-465. https://doi.org/10.1016/j.funbio.2016.06.004

Yrigoyen-Bustamante, P.I., Yrigoyen-Bustamante, L.B., Jiménez-Neyra, R. and Castro-Monroe, C.S. 2018. Planeamiento estratégico del mango en la región Piura 2017-2022. (Tesis maestría, Pontificia Universidad Católica del Perú). https://renati.sunedu.gob.pe/handle/sunedu/2651931




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v27i1.48393

DOI: http://dx.doi.org/10.56369/tsaes.4839



Copyright (c) 2023 Arturo Morales Pizarro, Isabel Neira Rojas, Elizabeth Saavedra Alberca, Karla Zapatel Sime, L.A Álvarez, Ricardo Peña-Castillo, René Aguilar-Anccota, Miguel Galecio-Julca, Javier Javier-Alva

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.