Jesús Vásquez-Arroyo, Zaida L. Ramírez-Guajardo, Eduardo Blanco-Contreras, Erika Nava-Reyna, Gerardo Zapata-Sifuentes, Felipe Vaca-Paniagua, Clara E. Díaz-Velásquez, Aldo De la Cruz-Montoya, Luis M. Valenzuela-Núñez, Cristina García-De la Peña


Background. Soil management practices modify the microbial communities and the carbon stocks (organic, inorganic, and total). The increase in microbiological communities’ diversity improves the production of plants; thus, it is essential to understand the predominant bacterial taxa in the soil. Objective. The objective of the present study was to establish the bacterial communities’ alteration by agroecological management in maize crops in arid northern Mexico. Methodology. Bacterial diversity and composition were determined in soils from Coahuila, Mexico, under three different scenarios: i) Agroecological management (AM), ii) Conventional management (CM), and iii) Control (T, with no vegetation). In addition, pH, electrical conductivity (EC), and soil organic matter (SOM) were analyzed using standard methods. Bacterial DNA was extracted from the soil, amplifying the V3-V4 region of the 16S rRNA gene and sequencing with Illumina. The gene sequences were analyzed in QIIME. Results. A total of 20 bacterial phyla and 631 genera were registered. For AM, CM, and T, respectively, the most abundant genera were Tepidisphaera (7.02, 9.29, and 9.93 %), Sphingomonas (6.55, 5.15, and 4.06 %), Microvirga (2.64, 2.39, and 3.63 %), and Blastococcus (2.91, 3.10, and 3.37 %). A significant difference was observed among groups (p = 0.004), where AM was different, which suggests that the type of substrate determines the diversity and abundance of the bacterial community. Significant differences were found for pH and EC, with higher pH in CM (7.87) and T (7.86) soils. The EC was higher in AM (446 μ Scm-1) and T (419 μ Scm-1). On the other hand, AM showed the best result in SOM content (21.80 ± 1.10 gC kg-1). Implication. Therefore, AM in maize crops has the potential to conserve or restore C stock in degraded arid lands, increasing bacterial diversity, favoring the health of the soil. Conclusion. Agroecological management of maize crops soils in arid North of Mexico promotes greater bacterial diversity, which will favor the availability of nutrients for the future development of healthy plants.


Bacterial diversity; Electrical conductivity; Microbiome; pH; 16S rRNA.

Full Text:



Akpoveta, O.V., Osakwe, S.A., Okoh, B.E. and Otuya, B.O., 2010. Physicochemical characteristics and levels of some heavy metals in soils around metal scrap dumps in some parts of Delta State, Nigeria. Journal of Applied Sciences and Environmental Management, 14(4), p. 4. https://doi.org/10.4314/jasem.v14i4.63258

Alteio, L.V., Schulz, F., Seshadri, R., Varghese, N., Rodriguez-Reillo, W., Ryan, E., Goudeau, D., Eichorst, S.A., Malmstrom, R.R., Bowers, R.M., Katz, L.A., Blanchard, J.L. and Woyke, T., 2020., Complementary metagenomic approaches improve reconstruction of microbial diversity in a forest soil. Msystems, 5(2), p. e00768-19.

Altieri, M.A., 2020., How bugs showed me the way to Agroecology. Agroecology and Sustainable Food Systems, 44(10), pp. 1255-1259. https://doi.org/10.1080/21683565.2020.1766636

Alvarez, A. L., Weyers, S. L., Goemann, H. M., Peyton, B. M. and Gardner, R. D., 2021. Microalgae, soil and plants: A critical review of microalgae as renewable resources for agriculture. Algal Research, 54, 102200. https://doi.org/10.1016/J.ALGAL.2021.102200

Asaf, S., Numan, M., Khan, A.L. and Al-Harrasi, A., 2020. Sphingomonas: From diversity and genomics to functional role in environmental remediation and plant growth. Critical Reviews in Biotechnology, 40(2), pp. 138-152. https://doi.org/10.1080/07388551.2019.1709793

Aso, Y., Miyamoto, Y., Mine Harada, K., Momma, K., Kawai, S., Hashimoto, W., Mikami, B. and Murata, K., 2006., Engineered membrane superchannel improves bioremediation potential of dioxin-degrading bacteria. Nature Biotechnology, 24(2), pp. 188-189. https://doi.org/10.1038/nbt1181

Bao, Y., Dolfing, J., Guo, Z., Chen, R., Wu, M., Li, Z., Lin, X. and Feng, Y., 2021. Important ecophysiological roles of non-dominant Actinobacteria in plant residue decomposition, especially in less fertile soils. Microbiome, 9(1), 1–17. https://doi.org/10.1186/S40168-021-01032-X/FIGURES/7

Beals, E.W., 1984. Bray-Curtis. Ordination: An effective strategy for analysis of multivariate ecological data. In: A. MacFadyen and E. D. Ford (eds.). Advances in Ecological Research, 14, pp. 1-55. Academic Press. https://doi.org/10.1016/S0065-2504(08)60168-3

Bertocchi, C., Navarini, L., Cesàro, A. and Anastasio, M., 1990. Polysaccharides from cyanobacteria. Carbohydrate Polymers, 12(2), pp. 127–153. https://doi.org/10.1016/0144-8617(90)90015-K

Blair, G.J., Lefroy, R.D.B. and Lisle, L., 1995., Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Australian Journal of Agricultural Research, 46(7), pp. 1459-1466. https://doi.org/10.1071/ar9951459

Bonch-Osmolovskaya, E., Elcheninov, A., Zayulina, K., Kublanov, I. and Kublanov, I., 2018. New thermophilic prokaryotes with hydrolytic activities. Microbiology Australia, 39(3), pp. 122-125. https://doi.org/10.1071/MA18038

Burton, J., Chen, C., Xu, Z. and Ghadiri, H., 2010. Soil microbial biomass, activity and community composition in adjacent native and plantation forests of subtropical Australia. Journal of Soils and Sediments, 10(7), pp. 1267–1277. https://doi.org/10.1007/S11368-010-0238-Y/FIGURES/3

Cabrera-Rodríguez, A., Nava-Reyna, E., Trejo-Calzada, R., García-De la Peña, C., Arreola-Ávila, J.G., Collavino, M.M., Vaca-Paniagua, F., Díaz-Velásquez, C. and Constante-García, V., 2020., Effect of organic and conventional systems used to grow pecan trees on diversity of soil microbiota. Diversity, 12(11), p. 436. https://doi.org/10.3390/d12110436

Cabrera-Rodríguez, A., Trejo-Calzada, R., García-De la Peña, C., Arreola-Ávila, J.G., Nava-Reyna, E., Vaca-Paniagua, F., Díaz-Velásquez, C. and Meza-Herrera, C.A., 2020., A metagenomic approach in the evaluation of the soil microbiome in coffee plantations under organic and conventional production in tropical agroecosystems. Emirates Journal of Food and Agriculture, 32(4), pp. 263-270.

Cai, H., Shi, Y., Wang, Y., Cui, H. and Jiang, H., 2017. Aquidulcibacter paucihalophilus gen. nov., sp. nov., a novel member of family Caulobacteraceae isolated from cyanobacterial aggregates in a eutrophic lake. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, 110(9), pp. 1169–1177. https://doi.org/10.1007/S10482-017-0889-4/TABLES/3

Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., Fierer, N., Gonzalez Peña, A., Goodrich, J.K., Gordon, J.I., Huttley, G.A., Kelley, S.T., Knights, D., Koenig, J.E., Ley, R., Lozupone, C.A., McDonald, D., Muegge, B.D., Pirrung, M., Reeder, J., Sevinsky, J.R., Turnbaugh, P.J., Walters, W.A., Widmann, J., Yatsunenko, T., Zaneveld, J. and Knight, R., 2010., QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7, pp. 335–336. https://doi.org/10.1038/nmeth.f.303

Chavarria, D. N., Pérez-Brandan, C., Serri, D. L., Meriles, J. M., Restovich, S. B. andriulo, A. E., Jacquelin, L. and Vargas-Gil, S., 2018. Response of soil microbial communities to agroecological versus conventional systems of extensive agriculture. Agriculture, Ecosystems & Environment, 264, pp. 1–8. https://doi.org/10.1016/J.AGEE.2018.05.008

Clark, I.M., Hughes, D.J., Fu, Q., Abadie, M. and Hirsch, P.R., 2021., Metagenomic approaches reveal differences in genetic diversity and relative abundance of nitrifying bacteria and archaea in contrasting soils. Scientific Reports, 11(1), pp. 1-9. https://doi.org/10.1038/s41598-021-95100-9

Crouzet, O., Consentino, L., Pétraud, J. P., Marrauld, C., Aguer, J. P., Bureau, S., Le Bourvellec, C., Touloumet, L. and Bérard, A., 2019. Soil photosynthetic microbial communities mediate aggregate stability: Influence of cropping systems and herbicide use in an agricultural soil. Frontiers in Microbiology, 10(JUN), p. 1319. https://doi.org/10.3389/FMICB.2019.01319/BIBTEX

Delgado-Baquerizo, M., Oliverio, A.M., Brewer, T.E., Benavent-González, A., Eldridge, D.J., Bardgett, R.D., Maestre, F.T., Singh, B.K. and Fierer, N., 2018., A global atlas of the dominant bacteria found in soil. Science, 359(6373), pp. 320-325. https://doi.org/10.1126/science.aap9516

De Neve, S., Van de Steene, J., Hartmann, R. and Hofman, G., 2000., Using time domain reflectometry for monitoring mineralization of nitrogen from soil organic matter: Monitoring N mineralization by TDR. European Journal of Soil Science, 51(2), pp. 295-304. https://doi.org/10.1046/j.1365-2389.2000.00306.x

Di Felice, V., Mancinelli, R., Proulx, R. and Campiglia, E., 2012., A multivariate analysis for evaluating the environmental and economical aspects of agroecosystem sustainability in central Italy. Journal of Environmental Management, 98, pp. 119-126. https://doi.org/10.1016/j.jenvman.2011.12.015

Edgar, R.C. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 26, pp. 2460–2461.

Francis, C., Lieblein, G., Gliessman, S., Breland, T.A., Creamer, N., Harwood, R., Salomonsson, L., Helenius, J., Rickerl, D., Salvador, R., Wiedenhoeft, M., Simmons, S., Allen, P., Altieri, M., Flora, C. and Poincelot, R., 2003. Agroecology: The Ecology of Food Systems. Journal of Sustainable Agriculture, 22(3), pp. 99-118. https://doi.org/10.1300/J064v22n03_10

Fuerst, J.A. and Sagulenko, E., 2011., Beyond the bacterium: Planctomycetes challenge our concepts of microbial structure and function. Nature Reviews Microbiology, 9(6), pp. 403-413. https://doi.org/10.1038/nrmicro2578

Gantar, M., Rowell, P., Kerby, N.W. and Sutherland, I.W., 1995. Role of extracellular polysaccharide in the colonization of wheat (Triticum vulgare L.) roots by N2-fixing cyanobacteria. Biology and Fertility of Soils, 19(1), pp. 41–48. https://doi.org/10.1007/BF00336345/METRICS

Gao, Y., Dang, P., Zhao, Q., Liu, J. and Liu, J., 2018. Effects of vegetation rehabilitation on soil organic and inorganic carbon stocks in the Mu Us Desert, northwest China. Land Degradation & Development, 29(4), 1031–1040. https://doi.org/10.1002/LDR.2832

Gazdag, O., Takács, T., Ködöböcz, L., Krett, G. and Szili-Kovács, T., 2018. Alphaproteobacteria communities depend more on soil types than land managements. Acta Agriculturae Scandinavica, Section B – Soil & Plant Science, 69(2), pp. 147–154. https://doi.org/10.1080/09064710.2018.1520289

Gliessman, S.R., 2013., Agroecología: Plantando las raíces de la resistencia. Agroecología, 8(2), pp. 19-26.

Gliessman, S., 2020., Confronting Covid-19 with agroecology. Agroecology and Sustainable Food Systems, 44(9), pp. 1115-1117. https://doi.org/10.1080/21683565.2020.1791489

Hammer, Ø., Harper, D.A.T. and Ryan, P.D., 2001., Past: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4(1), pp. 1–9.

He, Y., DeSutter, T., Prunty, L., Hopkins, D., Jia, X. and Wysocki, D.A., 2012. Evaluation of 1:5 soil to water extract electrical conductivity methods. Geoderma, 185-186, pp. 12-17. https://doi.org/10.1016/j.geoderma.2012.03.022

Illumina., 2017a. 16S Metagenomic sequencing library preparation, Preparing 16S ribosomal RNA gene amplicons for the Illumina MiSeq system. Consulted on august 10, 2017: https://support.illumina.com/content/dam/illumina-support/documents/documentation/chemistry_documentation/16s/16smetagenomic-library-prep-guide-15044223-b.pdf

Illumina., 2017b. Nextera XT DNA library prep kit reference guide. Consulted on august 10, 2017: https://support.illumina.com/content/dam/illumina- support/documents/documentation/chemistry_documentation/samplepreps_nextera/nextera-xt/nextera-xt- library-prep-referenceguide-15031942-02.pdf

Ingole, S. 2015. A review on role of physico-chemical properties in soil quality. Chemical Science Review and Letters, 4, pp. 57-66.

Jansson, J.K. and Hofmockel, K.S., 2018. The soil microbiome-from metagenomics to metaphenomics. Current Opinion in Microbiology, 43, pp. 162-168. https://doi.org/10.1016/j.mib.2018.01.013

Idris, H., Goodfellow, M., Sanderson, R., Asenjo, J. A. and Bull, A. T., 2017. Actinobacterial rare biospheres and dark matter revealed in habitats of the Chilean Atacama Desert. Scientific Reports, 7, p. 8373. https://doi.org/10.1038/s41598-017-08937-4

Knapen, A., Poesen, J., Galindo-Morales, P., De Baets, S. and Pals, A., 2007. Effects of microbiotic crusts under cropland in temperate environments on soil erodibility during concentrated flow. Earth Surface Processes and Landforms, 32(12), pp. 1884–1901. https://doi.org/10.1002/ESP.1504

Kosty, M., Pule-Meulenberg, F., Humm, E.A., Martínez-Hidalgo, P., Maymon, M., Mohammadi, S., Cary, J., Yang, P., Reddi, K., Huntemann, M., Clum, A., Foster, B., Foster, B., Roux, S., Palaniappan, K., Varghese, N., Mukherjee, S., Reddy, T.B.K., Daum, C., Copeland, A., Ivanova, N.N., Kyrpides, N.C., Glavina del Rio, T., Eloe-Fadrosh, E.A. and Hirsch, A.M., 2020. Isolation of potential plant growth-promoting bacteria from nodules of legumes grown in arid Botswana soil [Preprint]. bioRxiv, https://doi.org/10.1101/2020.09.02.257907

Kovaleva, O.L., Merkel, A.Y., Novikov, A.A., Baslerov, R.V., Toshchakov, S.V. and Bonch-Osmolovskaya, E.A., 2015. Tepidisphaera mucosa gen. nov., sp. nov., a moderately thermophilic member of the class Phycisphaerae in the phylum Planctomycetes, and proposal of a new family, Tepidisphaeraceae fam. nov. and a new order, Tepidisphaerales ord. nov. International Journal of Systematic and Evolutionary Microbiology, 65(Pt_2), pp. 549-555. https://doi.org/10.1099/ijs.0.070151-0

Lauber, C.L., Hamady, M., Knight, R. and Fierer, N., 2009. Pyrosequencing-based assessment of soil pH as a Predictor of soil bacterial community structure at the continental scale. Applied and Environmental Microbiology, 75(15), pp. 5111-5120. https://doi.org/10.1128/AEM.00335-09

Liu, Z., Gu, H., Liang, A., Li, L., Yao, Q., Xu, Y., Liu, J., Jin, J., Liu, X. and Wang, G., 2021. Conservation tillage regulates soil bacterial community assemblies, network structures and ecological functions in black soils. Research Square. https://doi.org/10.21203/rs.3.rs-580080/v1

Luján-Soto, R., Martínez-Mena, M., Padilla, M.C. and de Vente, J., 2021. Restoring soil quality of woody agroecosystems in Mediterranean drylands through regenerative agriculture. Agriculture, Ecosystems and Environment, 306, 107191.

Ma, X., Li, X., Wang, X., Liu, G., Zuo, J., Wang, S. and Wang, K., 2020. Impact of salinity on anaerobic microbial community structure in high organic loading purified terephthalic acid wastewater treatment system. Journal of Hazardous Materials, 383, 121132. https://doi.org/10.1016/j.jhazmat.2019.121132

Ma, L., Lv, X., Cao, N., Wang, Z., Zhou, Z. and Meng, Y., 2021. Alterations of soil labile organic carbon fractions and biological properties under different residue-management methods with equivalent carbon input. Applied Soil Ecology, 161, 103821

Marchesi, J.R. and Ravel, J., 2015. The vocabulary of microbiome research: A proposal. Microbiome, 3, 31. https://doi.org/10.1186/s40168-015-0094-5

Martínez H.E., Fuentes E.J.P. and Acevedo H.E., 2008. Carbono orgánico y propiedades del suelo. Revista de la Ciencia del Suelo y Nutrición Vegetal, 8(1), pp. 68-96. https://doi.org/10.4067/S0718-27912008000100006

Matsushita, Y., Bao, Z., Kurose, D., Okada, H., Takemoto, S., Sawada, A., Nagase, H., Takano, M., Murakami, H., Koitabashi, M., Yoshida, S., Saito, M., Sano, T. and Tsushima, S., 2015. Community structure, diversity, and species dominance of bacteria, fungi, and nematodes from naturally and conventionally farmed soil: a case study on Japanese apple orchards. Organic Agriculture, 5(1), 11–28. https://doi.org/10.1007/S13165-015-0096-4/FIGURES/2

Mei, N., Zhang, X., Wang, X., Peng, C., Gao, H., Zhu, P. and Gu, Y., 2021. Effects of 40 years applications of inorganic and organic fertilization on soil bacterial community in a maize agroecosystem in northeast China. European Journal of Agronomy, 130, 126332. https://doi.org/10.1016/J.EJA.2021.126332

Mi, W., Wu, L., Brookes, P. C., Liu, Y., Zhang, X. and Yang, X., 2016. Changes in soil organic carbon fractions under integrated management systems in a low-productivity paddy soil given different organic amendments and chemical fertilizers. Soil and Tillage Research, 163, pp. 64–70. https://doi.org/10.1016/J.STILL.2016.05.009

Miller, T.R., Delcher, A.L., Salzberg, S.L., Saunders, E., Detter, J.C. and Halden, R.U., 2010. Genome sequence of the dioxin-mineralizing bacterium Sphingomonas wittichii RW1. Journal of Bacteriology, 192(22), pp. 6101-6102. https://doi.org/10.1128/JB.01030-10

Moreno-Reséndez, A., García-Mendoza, V., Reyes-Carrillo, J.L., Vásquez-Arroyo, J. and Cano-Ríos, P., 2018. Rizobacterias promotoras del crecimiento vegetal: una alternativa de biofertilización para la agricultura sustentable. Revista Colombiana de Biotecnología. XX(1), pp. 68-83.

Navarrete, A.A., Diniz, T.R., Braga, L.P., Silva, G.G., Franchini, J.C., Rossetto, R., Edwards, R.A. and Tsai, S.M., 2015. Multi-analytical approach reveals potential microbial indicators in soil for sugarcane model systems. PLoS One, 10, e0129765. http://doi.org/10.1371/journal.pone.0129765

Nesme, J., Achouak, W., Agathos, S.N., Bailey, M., Baldrian, P., Brunel, D., Frostegård, Å., Heulin, T., Jansson, J.K., Jurkevitch, E., Kruus, K.L., Kowalchuk, G.A., Lagares, A., Lappin-Scott, H.M., Lemanceau, P., Le Paslier, D., Mandic-Mulec, I., Murrell, J.C., Myrold, D.D., Nalin, R., Nannipieri, P., Neufeld, J.D., O'Gara, F., Parnell, J.J., Pühler, A., Pylro, V., Ramos, J.L., Roesch, L.F.W., Schloter, M., Schleper, C., Sczyrba, A., Sessitsch, A., Sjöling, S., Sørensen, J., Sørensen, S.J., Tebbe, C.C., Topp, E., Tsiamis, G., van Elsas, J.D., van Keulen, G., Widmer, F., Wagner, M., Zhang, T., Zhang, X., Zhao, L., Zhu, Y-G., Vogel, T.M., Simonet, P., 2016., Back to the future of soil metagenomics. Frontiers in Microbiology, 7, p.73. https://doi.org/10.3389/fmicb.2016.00073

Nisha, R., Kiran, B., Kaushik, A. and Kaushik, C.P., 2018. Bioremediation of salt affected soils using cyanobacteria in terms of physical structure, nutrient status and microbial activity. International Journal of Environmental Science and Technology, 15(3), pp. 571–580. https://doi.org/10.1007/S13762-017-1419-7/FIGURES/3

Okie, J.G., Van Horn, D.J., Storch, D., Barrett, J.E., Gooseff, M.N., Kopsova, L. and Takacs-Vesbach, C.D., 2015. Niche and metabolic principles explain patterns of diversity and distribution: Theory and a case study with soil bacterial communities. Proceedings of the Royal Society B: Biological Sciences, 282(1809), p. 20142630. https://doi.org/10.1098/rspb.2014.2630

Piccoli, I., Sartori, F., Polese, R. and Berti, A., 2020. Crop yield after 5 decades of contrasting residue management. Nutrient Cycling in Agroecosystems, 117(2), pp. 231-241.

Reddy, I. N. B. L., Kim, B. K., Yoon, I. S., Kim, K. H. and Kwon, T.R., 2017. Salt tolerance in rice: focus on mechanisms and approaches. Rice Science, 24(3), pp. 123–144. https://doi.org/10.1016/J.RSCI.2016.09.004

Semenov, M.V., 2021. Metabarcoding and metagenomics in soil ecology research: Achievements, challenges, and prospects. Biology Bulletin Reviews, 11(1), pp. 40-53. https://doi.org/10.1134/S2079086421010084

Sepehr, A., Hassanzadeh, M. and Rodriguez-Caballero, E., 2019. The protective role of cyanobacteria on soil stability in two Aridisols in northeastern Iran. Geoderma Regional, 16, p. e00201. https://doi.org/10.1016/J.GEODRS.2018.E00201

Shafi, M., Bakht, J., Jan, M.T. and Shah, Z., 2007. Soil C and N dynamics and maize (Zea may L.) yield as affected by cropping systems and residue management in North-western Pakistan. Soil and Tillage Research, 94(2), pp. 520-529.

Shen, M., Li, J., Dong, Y., Zhang, Z., Zhao, Y., Li, Q., Dang, K., Peng, J. and Liu, H., 2021. The effects of microbial inoculants on bacterial communities of the rhizosphere soil of maize. Agriculture, 11(5), p. 389. https://doi.org/10.3390/agriculture11050389

Shi, Y., Baumann, F., Ma, Y., Song, C., Kühn, P., Scholten, T. and He, J. S., 2012. Organic and inorganic carbon in the topsoil of the Mongolian and Tibetan grasslands: Pattern, control and implications. Biogeosciences, 9(6), pp. 2287–2299. https://doi.org/10.5194/BG-9-2287-2012

Singh, R.P., Yadav, P., Kujur, R., Pandey, K.D. and Gupta, R.K., 2022. Cyanobacteria and salinity stress tolerance. In: Cyanobacterial Lifestyle and Its Applications in Biotechnology, P. Singh, M. Fillat and A. Kumar (eds). pp. 253–280. Academic Press. https://doi.org/10.1016/B978-0-323-90634-0.00003-2

Singh, S., 2014. A review on possible elicitor molecules of cyanobacteria: their role in improving plant growth and providing tolerance against biotic or abiotic stress. Journal of Applied Microbiology, 117(5), pp. 1221–1244. https://doi.org/10.1111/JAM.12612

Singh, V.K., Dwivedi, B.S., Singh, S.K., Mishra, R.P., Shukla, A.K., Rathore, S.S., Shekhawat, K., Majumdar, K. and Jat, M.L., 2018. Effect of tillage and crop establishment, residue management and K fertilization on yield, K use efficiency and apparent K balance under rice-maize system in north-western India. Field Crops Research, 224, pp. 1-12.

Smita-Tale, K. and Ingole, S., 2015. A review on role of physico-chemical properties in soil quality. Chemical Science Review and Letters, 4, pp. 57-66.

Swarnalakshmi, K., Senthilkumar, M. and Ramakrishnan, B., 2016. Endophytic Actinobacteria: nitrogen fixation, phytohormone production, and antibiosis. In: G. Subramaniam, S. Arumugam and V. Rajendran (eds.), Plant Growth Promoting Actinobacteria: A New Avenue for Enhancing the Productivity and Soil Fertility of Grain Legumes (pp. 123-145). Springer. https://doi.org/10.1007/978-981-10-0707-1_8

Thomson, B. C., Ostle, N., McNamara, N., Bailey, M. J., Whiteley, A. S. and Griffiths, R.I., 2010. Vegetation affects the relative abundances of dominant soil bacterial taxa and soil respiration rates in an upland grassland soil. Microbial Ecology, 59(2), 335–343. https://doi.org/10.1007/S00248-009-9575-Z/TABLES/3

Torsvik, V., Goksøyr, J. and Daae, F.L., 1990. High diversity in DNA of soil bacteria. Applied and Environmental Microbiology, 56(3), pp. 782-787. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC183421/

Torsvik, V. and Øvreås, L., 2002. Microbial diversity and function in soil: From genes to ecosystems. Current Opinion in Microbiology, 5(3), pp. 240-245. https://doi.org/10.1016/S1369-5274(02)00324-7

van Bergeijk, D.A., Terlouw, B.R., Medema, M.H. and van Wezel, G.P., 2020. Ecology and genomics of Actinobacteria: New concepts for natural product discovery. Nature Reviews Microbiology, 18(10), pp. 546-558. https://doi.org/10.1038/s41579-020-0379-y

Walkley, A.J. and Black, I.A., 1934. Estimation of soil organic carbon by the chromic acid titration method. Soil Science, 37, pp. 29-38.

Weiss, S., Xu, Z. Z., Peddada, S., Amir, A., Bittinger, K., Gonzalez, A., Lozupone, C., Zaneveld, J.R., Vázquez-Baeza, Y., Birmingham, A., Hyde, E.R. and Knight, R., 2017. Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome, 5(1), p. 27. https://doi.org/10.1186/s40168-017-0237-y

White, D.C., Sutton, S.D. and Ringelberg, D.B., 1996. The genus Sphingomonas: Physiology and ecology. Current Opinion in Biotechnology, 7(3), pp. 301-306. https://doi.org/10.1016/S0958-1669(96)80034-6

Xue, J.F., Pu, C., Zhao, X., Wei, Y.H., Zhai, Y.L., Zhang, X.Q., Lal, R. and Zhang, H.L., 2018. Changes in soil organic carbon fractions in response to different tillage practices under a wheat?maize double cropping system. Land Degradation & Development, 29(6), pp. 1555-1564.

Yescas-Coronado, P., Álvarez-Reyna, V. de P., Segura-Castruita, M.A., García-Carrillo, M., Hernández-Hernández, V. and González-Cervantes, G., 2018. Spatial variability of organic and inorganic carbon in soils of the Comarca Lagunera, México. Boletín de La Sociedad Geológica Mexicana, 70(3), pp. 591-610. https://doi.org/10.18268/bsgm2018v70n3a2

Yoon, S.H., Ha, S.M., Kwon, S., Lim, J., Kim, Y., Seo, H. and Chun, J., 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole genome assemblies. International Journal of Systematic and Evolutionary Microbiology, 67, pp. 1613–1617. http://doi.org/10.1099/ijsem,0.001755

Zhang, D., Yang, X., Wang, Y., Zong, J., Ma, J. and Li, C., 2019. Changes in soil organic carbon fractions and bacterial community composition under different tillage and organic fertiliser application in a maize?wheat rotation system. Acta Agriculturae Scandinavica, Section B – Soil & Plant Science, 70(6), pp. 457–466. https://doi.org/10.1080/09064710.2019.1700301

Zhang J., Kobert, K., Flouri, T. and Stamatakis, A., 2014. PEAR: a fast and accurate Illumina Paired-End read merger. Bioinformatics, 30, pp. 614–620.

Zhang, L., Chen, X., Xu, Y., Jin, M., Ye, X., Gao, H., Chu, W., Mao, J. and Thompson, M.L., 2020. Soil labile organic carbon fractions and soil enzyme activities after 10 years of continuous fertilization and wheat residue incorporation. Scientific Reports, 10(1), p. 11318. https://doi.org/10.1038/s41598-020-68163-3

Zhou, Z., Wang, C. and Luo, Y., 2020. Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality. Nature Communications, 11(1), p. 3072. https://doi.org/10.1038/s41467-020-16881-7

Zulpa, G., Florencia Siciliano, M., Cristina Zaccaro, M., Storni, M. and Palma, M., 2008. Effect of Cyanobacteria on the Soil Microflora Activity and Maize Remains Degradation in a Culture Chamber Experiment. International Journal of Agriculture & Biology, 10, pp. 388–392. http://www.fspublishers.org

URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v26i3.48089

DOI: http://dx.doi.org/10.56369/tsaes.4808

Copyright (c) 2023 Cristina García-De la Peña, Jesús Vásquez-Arroyo, Zaida L. Ramírez-Guajardo, Eduardo Blanco-Contreras, Erika Nava-Reyna, Gerardo Zapata-Sifuentes, Felipe Vaca-Paniagua, Clara E. Díaz-Velásquez, Aldo De la Cruz-Montoya, Luis M. Valenzuela-Núñez

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.