Sandra Yarenssy Martínez-Martínez, Amaury Martín Arzate-Fernández, Monserrath Hernández-Solis, Laura Acosta-Villagran


Background. Agaves are an important economic source in industrial products, in the food and pharmaceutical industry, steroidal animal feed, ornamental plants and as a material for biofuels. Despite their economic importance, some species present problems in their conventional propagation, which makes their reproduction difficult and has caused some species to be in some risk category. Therefore, there is a need to develop efficient protocols for in vitro micropropagation via somatic embryogenesis. The positive effect of the application of exogenous putrescine on the maturation and germination of somatic embryos is known. Objective. To determine the effect of exogenous putrescine on the maturation and germination of somatic embryos of A. cupreata and A. angustifolia. Methodology. Two concentrations of putrescine (100 and 150 mg/L) and two controls, one positive and one negative, were evaluated in the somatic embryo maturation medium and later in the germination of somatic embryos. Results. Putrescine favors the maturation and germination of somatic embryos in both species. Implications. The results of this research contribute to a better understanding of the process of somatic embryogenesis and open the possibility of applying putrescine in the process of somatic embryogenesis at a commercial level. Conclusion. Exogenous putrescine in culture medium significantly improves the maturation and germination of somatic embryos in Agave.


Agave cupreata; A. angustifolia; mezcal; propagation.

Full Text:



Aydin, M., Hossein, A., Haliloglu, K. and Tosun, M., 2016. Effect of polyamines on somatic embryogenesis via mature embryo in wheat. Turkish Journal of Biology, 40, pp. 1178–1184. https://doi.org/10.3906/biy-1601-21

Alcázar, R., Bueno, M. and Tiburcio, A.F., 2020. Polyamines: small amines with large effects on plant abiotic stress tolerance. Cells, 9, pp. 1-20. https://doi.org/10.3390/ cells9112373

Arun, M., Chinnathambi, A., Subramanyam, K., Karthik, S., Sivannadhan, G., Theboral, J., Ali, S., Kil, C. and Ganapathi, J., 2016. Involvement of exogenous polyamines enhances regeneration and Agrobacterium-mediated genetic transformation in half-seeds of soybean. Biotech, 6(148), pp. 1-12. http://doi.org/10.1007/s13205-016-0448-0

Bajaj, S. and Rajam, M.V., 1996. Polyamine accumulation and near loss of morphogenesis in long-term callus cultures of rice: restoration of plant regeneration by manipulation of cellular polyamine levels. Plant Physiology, 112, pp. 1343-1348. http://doi.org/10.1104/pp.112.3.1343

Bautista-Montes, E., Hernández-Soriano, L. and Simpson, J., 2022. Advances in the micropropagation and genetic transformation of Agave species. Plants, 11, 1-12. https://doi.org/10.3390/ plants11131757

Bertoldi, D., Tassoni, A. Martinelli, L. and Bagni, N., 2004. Polyamine and somatic embryogenesis in two Vitis vinifera cultivars. Physiologia Plantarum, 120, pp. 657-666. http://doi.org/10.1111/j.0031-9317.2004.0282.x

Chée, R.P. and Cantliffe, D.J., 1989. Composition of embryogenic suspension cultures of Ipomoea batatas Poir. and production of individualized embryos. Plant Cell, Tissue and Organ Culture, 17(1), 39-52. https://doi.org/10.1007/BF00042280

Consejo Mexicano Regulador de la Calidad del Mezcal COMERCAM., 2022. Informe estadístico. (Consultado: 10 de enero de 2023). Disponible en: https://comercam-dom.org.mx/estadisticas/

Davis, S.C., Dohleman, F.G. and Long, S.P., 2011. The global potential for Agave as a biofuel feedstock. GCB Bioenergy, 3, pp. 68-78. http://doi.org/10.1111/j.1757-1707.2010.01077.x

Domínguez, M.S., Alpuche, A.G., Vasco, N.L. and Molphe, E.P., 2008. Efecto de citocininas en la propagación in vitro de agaves mexicanos. Revista Fitotecnia Mexicana, 31(4), pp. 314-322. https://revistafitotecniamexicana.org/documentos/31-4/3a.pdf

Domínguez, C., Martínez, O., Nieto, O., Ferradás, Y., González, M. and Rey, M., 2023. Involvement of polyamines in the maturation of grapevine (Vitis vinifera L. ‘Mencía’) somatic embryos over a semipermeable membrane. Scientia Horticulturae, 308, pp. 1-10. https://doi.org/10.1016/j.scienta.2022.111537

El Dawayati, M.M., Abd, E.B.O.H., Zaid, Z.E. and Din, A.F.M., 2012. In vitro morpho-histological studies of newly developed embryos from abnormal malformed embryos of date palm cv. Gundila under desiccation effect of polyethelyne glycol treatments. Annals of Agricultural Sciences, 57(2), pp. 117–128. https://doi.org/10.1016/j. aoas.2012.08.005

García-Mendoza, A., 2002. Distribution of Agave (Agavaceae) in Mexico. Cactus and Succulent Journal, 74(4), pp. 177-187.

García, C., Furtado, A., Costa, M., Britto, D., Valle, R., Royaert, S. and Marelli, J., 2019. Abnormalities in somatic embryogenesis caused by 2,4-D: an overview. Plant Cell, Tissue and Organ Culture, 137, pp. 193–212 https://doi.org/10.1007/s11240-019-01569-8

Ha, H.C., Sirisoma, N.S., Kuppusamy, P., Zweier, J.L., Woster, P.M. and Casero, R.A., 1998. The natural polyamine spermine functions directly as a free radical scavenger. Proceedings of the National Academy of Sciences, 95, pp. 11140- 11145. http://doi.org/10.1073/pnas.95.19.11140

Hazubska, T., Kalemba, E., Ratajczak, E. and Bojarczuk, K., 2016. Effects of abscisic acid and an osmoticum on the maturation, starch accumulation and germination of Picea spp. somatic embryos. Acta Physiologiae Plantarum, 38(59), pp. 1-14. http://doi.org/10.1007/s11738-016-2078-x

Kakkar, R.K., Nagar, P.K., Ahuja, P.S. and Rai, V.K., 2000. Polyamines and plant morphogenesis. Biologia Plantarum, 43(1), pp. 1–11. https://doi.org/10.1023/a:1026582308902

Kie?kowska, A. and Adamus, A., 2021. Exogenously applied polyamines reduce reactive oxygen species, enhancing cell division, and the shoot regeneration from Brassica oleracea L. var. capitata protoplasts. Agronomy, 11(735), pp. 1-19. https://doi.org/10.3390/agronomy11040735

Kevers, C., Le Gal, N., Monteiro, M., Dommes, J. and Gaspar, T., 2000. Somatic embryogenesis of Panax ginseng in liquid cultures: a role for polyamines and their metabolic pathways. Plant Growth Regulation, 31(3), pp. 209–214. https://doi.org/10.1023/a:1006344316683

Lelu, M.A. and Pâques, L.E., 2009. Simplified and improved somatic embryogenesis of hybrid larches (Larix x eurolepis and Larix x marschlinsii). Perspectives for breeding. Annals of Forest Science, 66, pp. 1-10. https://doi.org/10.1051/forest/2008079

Mandal, C., Ghosh, N., Dey, N. and Adak, M.K., 2014. Effects of putrescine on oxidative stress induced by hydrogen peroxide in Salvinia natans L. J. Journal of Plant Interactions, 9(1), pp. 550–558. https://doi.org/10.1080/17429145.2013.871076

Martínez, S.Y., Arzate, A.M., Álvarez, C., Martínez, I. and Norman, T., 2021. Regeneration of Agave marmorata Roelz plants in temporary immersion systems, via organogenesis and somatic embryogenesis. Tropical and Subtropical Agroecosystems, 24 (3), pp. #84. http://doi.org/10.56369/tsaes.3472

Méndez, H.A., Ledezma, M., Avilez, R.N., Juárez, Y.L., Skeete, A., Avilez, J., De-la-Peña, C. and Loyola, V.M., 2019. Signaling Overview of Plant Somatic Embryogenesis. Frontiers in Plant Science, 10(77), pp. 1-19. http://doi.org/10.3389/fpls.2019.00077

Minocha, R., Minocha, S.C. and Long, S., 2004. Polyamines and their biosynthetic enzymes during somatic embryo development in red spruce (Picea rubens Sarg.). In vitro Cellular Developmental Biology– Plant, 40(6), pp. 572–580. https://doi.org/10.1079/IVP2004569

Montague, M.J., Koppenbrink, J.W. and Jaworski, E.G., 1978. Polyamine metabolism in embryogenic cells of Daucus carota [J]. Plant Physiology, 62(3), pp. 430-433. http://doi.org/10.1104/pp.62.3.430

Murashige, T. and Skoog, F.A, 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiology Plant, 15, pp.473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

Nookaraju, A., Barreto, M.S. and Agrawal, D.C., 2008. Cellular polyamines influence maturation and germination of somatic embryos from pro-embryonal masses of two grapevine cultivars. Vitis, 47(1), pp. 31–34. https://doi.org/10.5073/vitis.2008.47.31-34

Paul, A., Mitter, K. and Raychaudhuri, S., 2009. Effect of polyamines on in vitro somatic embryogenesis in Momordica charantia L. Plant Cell, Tissue33 and Organ Culture, 97(3), pp. 303-311. https://doi.org/10.1007/s11240-009-9529-7

Pasternak, T.P., Prinsen, E., Ayaydin, F., Mislolczi, P., Potters, G., Asard, H., Onckelen, H., Dudits, D. and Fehér, A., 2002. The role of auxin, pH, and stress in the activation of embryogenic cell division in leaf protoplast-derived cells of alfalfa. Plant Physiology, 129, pp. 1807–1819. https://doi.org/10.1104/pp.000810

Phillips, G.C. and Collins, G.B., 1979. In vitro tissue culture of selected legumes and plant regeneration from callus cultures of red clover. Crop Science, 19, pp. 59-64. https://doi.org/10.2135/cropsci1979.0011183X001900010014x

Portillo, L., Santacruz-Ruvalcaba, F., Gutiérrez-Mora, A. and Rodríguez-Garay, B., 2007. Somatic embryogenesis in Agave tequilana Weber cultivar azul. In Vitro Cellular & Developmental Biology, 43, pp. 569-575. https://doi.org/10.1007/s11627-007-9046-5

Ruffoni, B. and Savona, M., 2013. Physiological and biochemical analysis of growth abnormalities associated with plant tissue culture. Horticulture, Environment, and Biotechnology, 54, pp. 191–205. https://doi. org/10.1007/s13580-013-0009y

Takeda, T. F., Hayakawa, K. O.E. and Matsuoka, H., 2002. Effects of exogenous polyamine on embryogenic carrot cells. Biochemical Engineering Journal, 12, pp. 21-28. https://doi.org/10.1016/S1369-703X(02)00037-2

Torres, I., García, A.J., Sandoval, D. and Casas, A., 2020. Agave cupreata. The IUCN Red List of Threatened Species. https://dx.doi.org/10.2305/IUCN.UK.2020-1.RLTS.T114979361A116353713

Rajesh, M.K., Radha, E., Sajini, K.K. and Anitha, K., 2014. Polyamine-induced somatic embryogenesis and plantlet regeneration in vitro from plumular explants of dwarf cultivars of coconut (Cocos nucifera). Indian Journal of Agricultural Sciences, 84, pp. 527–530.

Reis, R.S., de Moura Vale, E., Heringer, A.S., Santa-Catarina, C. and Silveira, V., 2016. Putrescine induces somatic embryo development and proteomic changes in embryogenic callus of sugarcane. Journal of Proteomics, 130, pp. 170–179. https://doi. org/10.1016/j.jprot.2015.09.029

Reyes, J. I., Arzate, A.M., Piña, J.L. and Vázquez, L.M., 2017. Media culture affecting somatic embryogenesis in Agave angustifolia Haw. Industrial Crops & Products, 108, pp. 81-85. https://doi.org/10.1016/j.indcrop.2017.06.021

Sathish, D., Theboral, J., Vasudevan, V., Pavan, G., Ajithan, C., Appunu, C. and Manickavasagam, M., 2020. Exogenous polyamines enhance somatic embryogenesis and Agrobacterium tumefaciens-mediated transformation efficiency in sugarcane (Saccharum spp. hybrid). In Vitro Cellular & Developmental Biology, 56, pp. 29–40. https:// doi.org/10.1007/s11627-019-10022-6

Sharry, S., Cabrera, J.L., Estrella, L.H., Rangel, R. M., Lede, S. and Abedini, W., 2006. An alternative pathway for plant in vitro regeneration of chinaberry-tree Melia azedarach L. derived from the induction of somatic embryogenesis. Electronic Journal of Biotechnology, 9(3), pp. 187-194. http://doi.org/10.2225/vol9-issue3-fulltext-13

Shu, S., Yuan, Y.H., Chen, J., Sun, J., Zhang, W.H., Tang, Y.Y., Zhong, M. and Guo, S., 2015. The role of putrescine in the regulation of proteins and fatty acids of thylakoid membranes under salt stress. Scientic Reports, 5, p. 14390. https://doi.org/10.1038/srep14390

Silveira, V., Vita, A.M., Macedo, A.F., Dias, M.F.R., Floh, E.I.S. and Santa-Catarina, C., 2013. Morphological and polyamine content changes in embryogenic and non- embryogenic callus of sugarcane. Plant Cell, Tissue and Organ Culture, 114, pp. 351–364. https://doi.org/10.1007/s11240-013-0330-2

Szczygie?, K., Hazubska, T. and Bojarczuk, K., 2007. Somatic embryogenesis of selected coniferous tree species of the genera Picea, Abies and Larix. Acta Societatis Botanicorum Poloniae, 7, pp. 7–15. https://agro.icm.edu.pl/agro/element/bwmeta1.element.agro-article-6260fe36-84dc-4e85-b07d-71e9021f3649/c/470-1346-1-PB.pdf

Wu, X.B., Wang, J., Liu, J.H. and Deng, X.X., 2009. Involvement of polyamine biosynthesis in somatic embryogenesis of Valencia sweet orange (Citrus sinensis) induced by glycerol. Journal Plant Physiology, 166, pp. 52–62. https://doi.org/10.1016/j.jplph.2008.02.005

Yadav, J.S. and Rajam, M.V., 1998. Temporal regulation of somatic embryogenesis by adjusting cellular polyamine content in egg- plant. Plant Physiology, 116, pp. 617-625. https://doi.org/10.1104/pp.116.2.617

Yan, X., Corbin, K., Burton, R. and Ta, D., 2020. Agave: A promising feedstock for biofuels in the water-energy-food environment (WEFE) nexus. Journal of Cleaner Production. 261, pp. 1-26. https://doi.org/10.1016/j.jclepro.2020.121283

Zavattieri, M.A., Frederico, A.M., Lima, M., Sabino, R. and Arnholdt, B., 2010. Induction of somatic embryogenesis as an example of stress-related plant reactions. Electronic Journal of Biotechnology, 13(1), pp. 1–9. http://doi.org/10.2225/vol13-issue1-fulltext-4

URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v26i3.48046

DOI: http://dx.doi.org/10.56369/tsaes.4804

Copyright (c) 2023 Sandra Yarenssy Martínez, Amaury Martín Arzate Fernández, Monserrath Hernández, Laura Acosta

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.