ESTIMATION OF METABOLIZABLE AND DIGESTIBLE ENERGY OF RAMON (Brosimum alicastrum Swartz) SEED IN BROILERS UNDER TROPICAL CONDITIONS
Abstract
Keywords
Full Text:
PDFReferences
AOAC, 1990. Official Methods Of Analysis of the Official analytical Chemists, 15th ed.
Amoako, D.B. and Awika, J.M., 2016. Polymeric tannins significantly alter properties and in vitro digestibility of partially gelatinized intact starch granule. Food Chemistry, 208, pp. 10–17. https://doi.org/10.1016/j.foodchem.2016.03.096
Anwar, M.N., Ravindran, V., Morel, P.C.H., Ravindran, G. and Cowieson, A., 2018. Measurement of true ileal calcium digestibility of some feed ingredients for broiler chickens. Animal Feed Science and Technology, 237, pp. 118–128. https://doi.org/10.1016/j.anifeedsci.2018.01.010
Batal, A.B. and Parsons, C.M., 2002. Effects of Age on Nutrient Digestibility in Chicks fed Different Diets. Poultry Science, 81, pp. 400–407. https://doi.org/10.1093/ps/81.3.400
CONAFAB. Consejo Nacional de Fabricantes de Alimentos Balanceados y de la Nutrición Animal, A. C. [Internet]. La Industria Alimentaria Animal en México 2022. Estimación Balance de Producción de granos forrajeros 2022. Available from: http://www.conafab.org/informativos/anuario-estadistico (accessed 08.02.23).
Cornejo-Ramírez, Y.I., Martínez-Cruz, O., Del Toro-Sánchez, C.L., Wong-Corral, F.J., Borboa-Flores, J. and Cinco-Moroyoqui, J., 2018. The structural characteristics of starches and their functional properties. CyTA - Journal of Food, 16, pp. 1003–1017. https://doi.org/10.1080/19476337.2018.1518343
Dale. N., 1996. The Metabolizable Energy of Wheat By-Produts. Journal of Applied Poultry Research, 5, pp. 105–108. https://doi.org/10.1038/203678a0
Hill, F.W., Anderson, D.L., Renner, R. and Carew, L.B., 1960. Studies of the Metabolizable Energy of Grain and Grain Products for Chickens. Poultry Science, 39, pp. 573–579. https://doi.org/10.3382/ps.0390573
Huang, K.H., Ravindran, V., Li, X. and Bryden, W.L., 2005. Influence of age on the apparent ileal amino acid digestibility of feed ingredients for broiler chickens. British Poultry Science, 46, pp. 236–245. https://doi.org/10.1080/00071660500066084
Kumar, S.A. and Kyun, K.W., 2021. Effects of Dietary Fiber on Nutrients Utilization and Gut Health of Poultry: A Review of Challenges and Opportunities. Animals, 11, pp. 181. https://doi.org/https://doi.org/10.3390/ani11010181
McDonald, P., Edwards, R.A., Greenhalgh, J.F.D., Morgan, C.A., Sinclair, L.A. and Wilkinson, R.G., 2010. Animal Nutrition, 7th ed. Edinburgh: Pearson Prentice Hall.
Minitab., 2019. Minitab Inc. USA.
Moo-Huchin, V.M., Cabrera-Sierra, M.J., Estrada-León, R.J., Ríos-Soberanis, C.R., Betancur-Ancona, D., Chel-Guerrero, L., Ortiz-Fernández, A., Estrada-Mota, I.A. and Pérez-Pacheco, E., 2015. Determination of some physicochemical and rheological characteristics of starch obtained from Brosimum alicastrum swartz seeds. Food Hydrocolloids, 45, pp. 48–54. https://doi.org/10.1016/j.foodhyd.2014.11.009
Mtei, A.W., Abdollahi, M.R., Schreurs, N., Girish, C.K. and Ravindran, V., 2019. Dietary inclusion of fibrous ingredients and bird type influence apparent ileal digestibility of nutrients and energy utilization. Poultry Science, 98, pp. 6702–6712. https://doi.org/10.3382/ps/pez383
Olguin-Maciel, E., Larqué-Saavedra, A., Pérez-Brito, D., Barahona-Pérez, L.F, Alzate-Gaviria, L., Toledano-Thompson, T., Lappe-Oliveras, P.E., Huchin-Poot, E.G. and Tapia-Tussell, R., 2017. Brosimum alicastrum as a novel starch source for bioethanol production. Energies, 10, pp. 1–11. https://doi.org/10.3390/en10101574
Pérez-Pacheco, E., Moo-Huchin, V.M., Estrada-León, R.J., Ortiz-Fernández, A., May-Hernández, L.H., Ríos-Soberanis, C.R. and Betancur-Ancona, D., 2014. Isolation and characterization of starch obtained from Brosimum alicastrum Swarts Seeds. Carbohydrate Polymers, 101, pp. 920–927. https://doi.org/10.1016/j.carbpol.2013.10.012
Peters, C.M. and Pardo-Tejada, E., 1982. Brosimum alicastrum (Moraceae): uses and potential in Mexico. Economic Botany, 36, pp. 166–175. https://doi.org/10.1007/BF02858712
Ratnayake, W.S. and Jackson, D.S., 2009. Starch Gelatinization. In: L.T. Steve, Advances in Food and Nutrition Research. Nebraska: Elsevier. pp. 221–268. https://doi.org/10.1016/S1043-4526(08)00405-1
Rostagno, S., Teixeira, L., Lopes, J., Gomes, P., Flávia, R., Lopes, D., Soares, A. and Toledo, S., 2005. Tablas brasileñas para aves y cerdos: Composición de Alimentos y Requerimientos Nutricionales, 2da ed. Brasil.
Sajilata, M.G., Singhal, R.S. and Kulkarni, P.R., 2006. Resistant Starch - A Review. Comprehensive Reviews in Food Science and Food Safety, 5, pp. 1–17. https://doi.org/https://doi.org/10.1111/j.1541-4337.2006.tb00076.x
SIAP. Servicio de Información Agroalimentaria y Pesquera [Internet]., 2018. Estadísticas del cierre de la Producción agrícola por Cultivo. Available from: http://infosiap.siap.gob.mx:8080/agricola_siap_gobmx/AvanceNacionalSinPrograma.do (acessed 19.11.19)
Sibbald, I.R., 1986. The T.M.E. system of feed evaluation: methodology, feed composition data and bibliography. Ontario, Canada: Agriculture Canada.
Silva, E., Rabello, C.B., Lima, M., Arruda, E.M., Ludke, J. and Ludke, M.C.M., 2012. Determination of the Chemical Composition, Amino Acid Levels and Energy Values of Different Poultry Offal Meals for Broilers. Brazilian Journal of Poultry Science, 14, pp. 71–158. https://doi.org/10.1590/S1516-635X2012000200003
Stevens, L., 1996. Aivan Biochemestry and Molecular Biology. Cambridge: Cambridge University Press.
Subiria-Cueto, R., Larqué-Saavedra, A., Reyes-Vega, M. de la Rosa L., Santana-Contreras, L., Gaytán-Martínez, M., Vázquez-Flores, A., Rodrigo-García, J., Corral-Avitia, A.Y., Núñez-Gastélum, J. A. and Martínez-Ruíz, N. R., 2019. Improve the Nutritional Properties and Functional Potential of the Wheat Flour Tortilla. Foods, 8, pp. 1–18. https://doi.org/doi: 10.3390/foods8120613
Szczurek, W., Szymczyk, B., Arczewska-Wlosek, A. and ?wi?tkiewicz, S., 2020. Apparent and standardised ileal digestibility of amino acids in wheat, triticale and barley for broiler chickens at two different ages. British Poultry Science, 61, pp. 63–69. https://doi.org/10.1080/00071668.2019.1673317
Tang, H., Mitsunaga, T. and Kawamura, Y., 2004. Relationship between functionality and structure in barley starches. Carbohydrate Polymers, 57, pp. 145–152. https://doi.org/10.1016/j.carbpol.2004.03.023
Tejeda, O.J. and Kim, W.K., 2021. Role of Dietary Fiber in Poultry Nutrition. Animals, 11, pp. 461. https://doi.org/doi: 10.3390/ani11020461
Ten Doeschate, R.A.H.M., Scheele, C.W., Schreurs, V.V.A.M. and Van Der Klis, J.D., 1993. Digestibility studies in broiler chickens: Influence of genotype, age, sex and method of determination. British Poultry Science, 34, pp. 131–146. https://doi.org/https://doi.org/10.1080/00071669308417569
Ullah, Z., Ahmed, G., Nisa, M. and Sarwar, M., 2016. Standardized Ileal Amino Acid Digestibility of Commonly Used Feed Ingredients in Growing Broilers. Asian Australasian Journal of Animal Science, 29, pp. 1322–1330. https://doi.org/10.5713/ajas.15.0703
Wu, S., Choct, M. and Pesti, G., 2020. Historical flaws in bioassays used to generate metabolizable energy values for poultry feed formulation: a critical review. Poultry Science, 99, pp. 385–406. https://doi.org/10.3382/ps/pez511
Yang, Z., Pirgozliev, V.R., Rose, S.P., Woods, S., Yang, H.M., Wang, Z.Y. and Bedford, M.R., 2020. Effect of age on the relationship between metabolizable energy and digestible energy for broiler chickens. Poulry Science, pp. 99:320–330. https://doi.org/10.3382/ps/pez495
URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v27i2.47754
DOI: http://dx.doi.org/10.56369/tsaes.4775
Copyright (c) 2024 Luis Armando Sarmiento-Franco
This work is licensed under a Creative Commons Attribution 4.0 International License.