ESTIMATION OF METABOLIZABLE AND DIGESTIBLE ENERGY OF RAMON (Brosimum alicastrum Swartz) SEED IN BROILERS UNDER TROPICAL CONDITIONS

Sofia Montfort-Grajales, Luis Armando Sarmiento-Franco, Rosalinda Urtecho-Novelo, Carlos Alfredo Sandoval-Castro

Abstract


Background. The current maize production in México is insufficient to supply both human and animal consumption. As maize is the main ingredient used in the formulation of poultry diets, each year, the importation of this cereal rises, thereby, the replacement of this conventional input can be made with alternative resources, such as the Ramón (Brosimum alicastrum Swartz) seed. Objective. To determine the chemical composition of Ramon seed meal (RSM), together with the estimation of the apparent metabolizable energy (AME), true metabolizable energy (TME), their digestible coefficients, as well as the apparent ileal digestible energy (AIDE) and apparent ileal digestibility coefficient (AIDC) of gross energy (GE). Methodology. Two experiments were performed using Cobb broilers; in the first experiment AME, TME and the digestible coefficients were calculated using 24 broilers (twelve 3-week-old and twelve 6-week-old) eight of them were randomly selected for determination of endogenous losses (EL). The sixteen remaining were precision-fed a single dose of RSM and total excreta collection was used. In the second experiment, three diets: 1) 100% maize; 2) 40% RSM-60% maize and; 3) 60% RSM-40% maize) were made to determine the AIDE and AIDC of each ingredient using the difference method. Diets were randomly assigned to a total of 51 7-week-old broilers, distributed in six, six and five replicates respectively (three broilers per replicate). Results. No differences were found for the AME (1863 and 1909 kcal/kg for 3 and 6 weeks, respectively) and TME (2234 and 2271 kcal/kg, for 3 and 6 weeks, respectively) values of the RSM. The AIDE and AIDC of RSM at 40 and 60% inclusion (2408 and 2538 kcal/kg, and 0.64 and 0.67, respectively) were found to be lower than that of maize (3179 kcal/kg and 0.81). Implications. These results provide information regarding the incorporation of ramon as an energy resource in tropical poultry diets. Conclusion. The estimated value of RSM in broilers was 1886 Kcal/kg for AME, 2252.5 Kcal/kg for TME and 0.476 and 0.569 for their digestibility coefficients of GE, respectively. For the AIDE, the estimated value was 2408.8 and 2538.7 Kcal/kg at 40 and 60% inclusion of RSM, with 0.640 and 0.674 AIDC, respectively.

Keywords


AME; TME; AIDE; broilers; Brosimum alicastrum Sw.

Full Text:

PDF

References


AOAC, 1990. Official Methods Of Analysis of the Official analytical Chemists, 15th ed.

Amoako, D.B. and Awika, J.M., 2016. Polymeric tannins significantly alter properties and in vitro digestibility of partially gelatinized intact starch granule. Food Chemistry, 208, pp. 10–17. https://doi.org/10.1016/j.foodchem.2016.03.096

Anwar, M.N., Ravindran, V., Morel, P.C.H., Ravindran, G. and Cowieson, A., 2018. Measurement of true ileal calcium digestibility of some feed ingredients for broiler chickens. Animal Feed Science and Technology, 237, pp. 118–128. https://doi.org/10.1016/j.anifeedsci.2018.01.010

Batal, A.B. and Parsons, C.M., 2002. Effects of Age on Nutrient Digestibility in Chicks fed Different Diets. Poultry Science, 81, pp. 400–407. https://doi.org/10.1093/ps/81.3.400

CONAFAB. Consejo Nacional de Fabricantes de Alimentos Balanceados y de la Nutrición Animal, A. C. [Internet]. La Industria Alimentaria Animal en México 2022. Estimación Balance de Producción de granos forrajeros 2022. Available from: http://www.conafab.org/informativos/anuario-estadistico (accessed 08.02.23).

Cornejo-Ramírez, Y.I., Martínez-Cruz, O., Del Toro-Sánchez, C.L., Wong-Corral, F.J., Borboa-Flores, J. and Cinco-Moroyoqui, J., 2018. The structural characteristics of starches and their functional properties. CyTA - Journal of Food, 16, pp. 1003–1017. https://doi.org/10.1080/19476337.2018.1518343

Dale. N., 1996. The Metabolizable Energy of Wheat By-Produts. Journal of Applied Poultry Research, 5, pp. 105–108. https://doi.org/10.1038/203678a0

Hill, F.W., Anderson, D.L., Renner, R. and Carew, L.B., 1960. Studies of the Metabolizable Energy of Grain and Grain Products for Chickens. Poultry Science, 39, pp. 573–579. https://doi.org/10.3382/ps.0390573

Huang, K.H., Ravindran, V., Li, X. and Bryden, W.L., 2005. Influence of age on the apparent ileal amino acid digestibility of feed ingredients for broiler chickens. British Poultry Science, 46, pp. 236–245. https://doi.org/10.1080/00071660500066084

Kumar, S.A. and Kyun, K.W., 2021. Effects of Dietary Fiber on Nutrients Utilization and Gut Health of Poultry: A Review of Challenges and Opportunities. Animals, 11, pp. 181. https://doi.org/https://doi.org/10.3390/ani11010181

McDonald, P., Edwards, R.A., Greenhalgh, J.F.D., Morgan, C.A., Sinclair, L.A. and Wilkinson, R.G., 2010. Animal Nutrition, 7th ed. Edinburgh: Pearson Prentice Hall.

Minitab., 2019. Minitab Inc. USA.

Moo-Huchin, V.M., Cabrera-Sierra, M.J., Estrada-León, R.J., Ríos-Soberanis, C.R., Betancur-Ancona, D., Chel-Guerrero, L., Ortiz-Fernández, A., Estrada-Mota, I.A. and Pérez-Pacheco, E., 2015. Determination of some physicochemical and rheological characteristics of starch obtained from Brosimum alicastrum swartz seeds. Food Hydrocolloids, 45, pp. 48–54. https://doi.org/10.1016/j.foodhyd.2014.11.009

Mtei, A.W., Abdollahi, M.R., Schreurs, N., Girish, C.K. and Ravindran, V., 2019. Dietary inclusion of fibrous ingredients and bird type influence apparent ileal digestibility of nutrients and energy utilization. Poultry Science, 98, pp. 6702–6712. https://doi.org/10.3382/ps/pez383

Olguin-Maciel, E., Larqué-Saavedra, A., Pérez-Brito, D., Barahona-Pérez, L.F, Alzate-Gaviria, L., Toledano-Thompson, T., Lappe-Oliveras, P.E., Huchin-Poot, E.G. and Tapia-Tussell, R., 2017. Brosimum alicastrum as a novel starch source for bioethanol production. Energies, 10, pp. 1–11. https://doi.org/10.3390/en10101574

Pérez-Pacheco, E., Moo-Huchin, V.M., Estrada-León, R.J., Ortiz-Fernández, A., May-Hernández, L.H., Ríos-Soberanis, C.R. and Betancur-Ancona, D., 2014. Isolation and characterization of starch obtained from Brosimum alicastrum Swarts Seeds. Carbohydrate Polymers, 101, pp. 920–927. https://doi.org/10.1016/j.carbpol.2013.10.012

Peters, C.M. and Pardo-Tejada, E., 1982. Brosimum alicastrum (Moraceae): uses and potential in Mexico. Economic Botany, 36, pp. 166–175. https://doi.org/10.1007/BF02858712

Ratnayake, W.S. and Jackson, D.S., 2009. Starch Gelatinization. In: L.T. Steve, Advances in Food and Nutrition Research. Nebraska: Elsevier. pp. 221–268. https://doi.org/10.1016/S1043-4526(08)00405-1

Rostagno, S., Teixeira, L., Lopes, J., Gomes, P., Flávia, R., Lopes, D., Soares, A. and Toledo, S., 2005. Tablas brasileñas para aves y cerdos: Composición de Alimentos y Requerimientos Nutricionales, 2da ed. Brasil.

Sajilata, M.G., Singhal, R.S. and Kulkarni, P.R., 2006. Resistant Starch - A Review. Comprehensive Reviews in Food Science and Food Safety, 5, pp. 1–17. https://doi.org/https://doi.org/10.1111/j.1541-4337.2006.tb00076.x

SIAP. Servicio de Información Agroalimentaria y Pesquera [Internet]., 2018. Estadísticas del cierre de la Producción agrícola por Cultivo. Available from: http://infosiap.siap.gob.mx:8080/agricola_siap_gobmx/AvanceNacionalSinPrograma.do (acessed 19.11.19)

Sibbald, I.R., 1986. The T.M.E. system of feed evaluation: methodology, feed composition data and bibliography. Ontario, Canada: Agriculture Canada.

Silva, E., Rabello, C.B., Lima, M., Arruda, E.M., Ludke, J. and Ludke, M.C.M., 2012. Determination of the Chemical Composition, Amino Acid Levels and Energy Values of Different Poultry Offal Meals for Broilers. Brazilian Journal of Poultry Science, 14, pp. 71–158. https://doi.org/10.1590/S1516-635X2012000200003

Stevens, L., 1996. Aivan Biochemestry and Molecular Biology. Cambridge: Cambridge University Press.

Subiria-Cueto, R., Larqué-Saavedra, A., Reyes-Vega, M. de la Rosa L., Santana-Contreras, L., Gaytán-Martínez, M., Vázquez-Flores, A., Rodrigo-García, J., Corral-Avitia, A.Y., Núñez-Gastélum, J. A. and Martínez-Ruíz, N. R., 2019. Improve the Nutritional Properties and Functional Potential of the Wheat Flour Tortilla. Foods, 8, pp. 1–18. https://doi.org/doi: 10.3390/foods8120613

Szczurek, W., Szymczyk, B., Arczewska-Wlosek, A. and ?wi?tkiewicz, S., 2020. Apparent and standardised ileal digestibility of amino acids in wheat, triticale and barley for broiler chickens at two different ages. British Poultry Science, 61, pp. 63–69. https://doi.org/10.1080/00071668.2019.1673317

Tang, H., Mitsunaga, T. and Kawamura, Y., 2004. Relationship between functionality and structure in barley starches. Carbohydrate Polymers, 57, pp. 145–152. https://doi.org/10.1016/j.carbpol.2004.03.023

Tejeda, O.J. and Kim, W.K., 2021. Role of Dietary Fiber in Poultry Nutrition. Animals, 11, pp. 461. https://doi.org/doi: 10.3390/ani11020461

Ten Doeschate, R.A.H.M., Scheele, C.W., Schreurs, V.V.A.M. and Van Der Klis, J.D., 1993. Digestibility studies in broiler chickens: Influence of genotype, age, sex and method of determination. British Poultry Science, 34, pp. 131–146. https://doi.org/https://doi.org/10.1080/00071669308417569

Ullah, Z., Ahmed, G., Nisa, M. and Sarwar, M., 2016. Standardized Ileal Amino Acid Digestibility of Commonly Used Feed Ingredients in Growing Broilers. Asian Australasian Journal of Animal Science, 29, pp. 1322–1330. https://doi.org/10.5713/ajas.15.0703

Wu, S., Choct, M. and Pesti, G., 2020. Historical flaws in bioassays used to generate metabolizable energy values for poultry feed formulation: a critical review. Poultry Science, 99, pp. 385–406. https://doi.org/10.3382/ps/pez511

Yang, Z., Pirgozliev, V.R., Rose, S.P., Woods, S., Yang, H.M., Wang, Z.Y. and Bedford, M.R., 2020. Effect of age on the relationship between metabolizable energy and digestible energy for broiler chickens. Poulry Science, pp. 99:320–330. https://doi.org/10.3382/ps/pez495




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v27i2.47754

DOI: http://dx.doi.org/10.56369/tsaes.4775



Copyright (c) 2024 Luis Armando Sarmiento-Franco

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.