Lorena Jacqueline Gómez-Godínez, Carlos Iván Cruz-Cárdenas, Edith Rojas-Anaya, Marco Aurelio Aragón-Magadan, Luis Felipe Guzmán


Introduction: The high-throughput genomic and transcriptomic approach has been developed and implemented to address the main challenges that the timber forestry sector faces, such as population growth, climate change, deforestation and the loss of forest ecosystem services. Objective: To carry out a bibliographic review focused on the genomes and transcriptomes of timber trees reported in the databases, with special attention to red cedar (Cedrela odorata L.), due to its importance as precious wood in Mexico. Methodology: A literature review was carried out, directed at studying timber trees with genomic and transcriptomic strategies in different databases such as Pubmed, Scopus, Google Scholar, ScienceDirect, Wiley Online Library, MDPI and Scielo to identify the timber species that have been reported genomes and transcriptomes. The structure of the review was the genomics of timber trees, the transcriptomics of wood, and the potential species for study due to their importance and finally, the databases for consultation. Subsequently, a bibliometric study was carried out with the bibliometrix library in R Studio. Main results: The first genome to be assembled at the chromosome level was the black cottonwood. Among the timber trees, the genomes of black cottonwood, desert poplar, eucalyptus and oak with a length of 392, 496, 691 and 789 Mb have been reported. Through study of the transcriptome, it has been possible to identify genes related to formation of the wood in a hybrid poplar (Populus alba L. × P. glandulosa) and P. tremula L. and with drought tolerance in Pinus massoniana and Pinus pinaster Aiton. In red cedar (Cedrela odorata L.), the transcriptome was obtained by sequencing a single leaf, identifying 52,181 gene models. In the NCBI, EMBL-EBI, TreeGenes, PLAZA databases and the hardwood genomics website it is possible to find information related to the genomics and transcriptomics of timber species. Implications: More research is required in omics in timber, particularly in red cedar, since the search on these topics yielded little information. Conclusion: Through the bibliographic review in databases, the timber trees that have a described genome and transcriptome were identified. This information can be used for the assembly and annotation of new genomes, identification of genes and molecular markers, among other applications.


Cedrela odorata L.; mass sequencing; genomics; transcriptomics; databases.

Full Text:



Alexeyenko, A., Nystedt, B., Vezzi, F., Sherwood, E., Ye, R., Knudsen, B., Simonsen, M., Turner, B., de Jong, P., Wu, C. C. and Lundeberg, J., 2014. Efficient de novo assembly of large and complex genomes by massively parallel sequencing of Fosmid pools. BMC Genomics, 15(1), p. 439.

Amarasinghe, S. L., Su, S., Dong, X., Zappia, L., Ritchie, M. E. and Gouil, Q., 2020. Opportunities and challenges in long-read sequencing data analysis. Genome Biology, 21(1), pp. 1–16.

Best Practices for De Novo Transcriptome Assembly with Trinity - Harvard FAS Informatics. (n.d.). Retrieved March 2, 2022, from

Blumenberg, M., 2019. Introductory Chapter: Transcriptome Analysis. Transcriptome Analysis.

Christenhusz, M. J. M. and Byng, J. W., 2016. The number of known plant species in the world and its annual increase. Phytotaxa, 261(3), pp. 201–217.

CONABIO. 2020. Maderable Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, Cd. de México. México. Contenido: Alejandro Rendón y Lucila Neyra.

Cummings, P. J., Ahmed, R., Durocher, J. A., Jessen, A., Vardi, T. and Obom, K. M., 2013. Pyrosequencing for Microbial Identification and Characterization. Journal of Visualized Experiments, 78, p. e50405.

de las Heras-Saldana, S., Al-Mamun, H. A., Ferdosi, M. H., Khansefid, M. and Gondro, C., 2016. RNA Sequencing Applied to Livestock Production. En H. N. Kadarmideen (Ed.), Systems Biology in Animal Production and Health, Vol. 1 (pp. 63–94). Springer International Publishing.

de María, N., Guevara, M. Á., Perdiguero, P., Vélez, M. D., Cabezas, J. A., López-Hinojosa, M., Li, Z., Díaz, L. M., Pizarro, A., Mancha, J. A., Sterck, L., Sánchez-Gómez, D., Miguel, C., Collada, C., Díaz-Sala, M. C. and Cervera, M. T., 2020. Molecular study of drought response in the Mediterranean conifer Pinus pinaster Ait.: Differential transcriptomic profiling reveals constitutive water deficit-independent drought tolerance mechanisms. Ecology and Evolution, 10(18), pp. 9788–9807.

Dries, R., Chen, J., Del Rossi, N., Khan, M. M., Sistig, A. and Yuan, G. C., 2021. Advances in spatial transcriptomic data analysis. Genome Research, 31(10), p. 1706.

Du, M., Ding, G. and Cai, Q. 2018. The Transcriptomic Responses of Pinus massoniana to Drought Stress. Forests, 9, p. 326.

Du, Q., Lu, W., Quan, M., Xiao, L., Song, F., Li, P., Zhou, D., Xie, J., Wang, L. and Zhang, D., 2018. Genome-wide association studies to improve wood properties: Challenges and prospects. Frontiers in Plant Science, 871, p. 1912.

Falk, T., Herndon, N., Grau, E., Buehler, S., Richter, P., Zaman, S., Baker, E. M., Ramnath, R., Ficklin, S., Staton, M., Feltus, F. A., Jung, S., Main, D. and Wegrzyn, J. L., 2018. Growing and cultivating the forest genomics database, TreeGenes. Database: The Journal of Biological Databases and Curation, 2018, pp. bay084.

Finch, K. N., Jones, F. A. and Cronn, R. C., 2019. Genomic resources for the Neotropical tree genus Cedrela (Meliaceae) and its relatives. BMC Genomics, 20(1), p. 58.

Gaete-Eastman, C., Stappung, Y., Molinett, S., Urbina, D., Moya-Leon, M. A. and Herrera, R., 2022,. RNAseq, transcriptome analysis and identification of DEGs involved in development and ripening of Fragaria chiloensis fruit. Frontiers in Plant Science, 13, p. 976901.

Gálvez López, L., Vallejo Reyna, M. Á., Méndez Espinoza, C., López Upton, J., Gálvez López, L., Vallejo Reyna, M. Á., Méndez Espinoza, C. and López Upton, J., 2020., Cedrela odorata L.: oportunidades para su conservación y mejoramiento genético. Revista Mexicana de Ciencias Forestales, 11(58), pp. 4–25.

Giacomello, S. and Morgante, M.,z 2012. Next-generation sequencing in Populus nigra: de novo assembly, genome-wide SNP map and comparative genomic analysis Candidate. Tesis doctorado. Universita degli Studi di Udine, Italia.

Groover, A. and Cronk, Q., 2017., Comparative and Evolutionary Genomics of Angiosperm Trees. Springer Cham.

Hölzer, M. and Marz, M., 2019. De novo transcriptome assembly: A comprehensive cross-species comparison of short-read RNA-Seq assemblers. GigaScience, 8(5), p. giz039..

Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, 2023. Plantaciones forestales con cedro rojo en el trópico mexicano.

Iskander, M., Hayden, K., Van Domselaar, G. and Tsang, R., 2017. First Complete Genome Sequence of Haemophilus influenzae Serotype a. Genome Announcements, 5(3), p. e01506-16.

Keddy, P. A. 2017. Plant Ecology: Origins, Processes, Consequences.

Kim, M. H., Cho, J. S., Jeon, H. W., Sangsawang, K., Shim, D., Choi, Y. I., Park, E. J., Lee, H. and Ko, J. H., 2019. Wood Transcriptome Profiling Identifies Critical Pathway Genes of Secondary Wall Biosynthesis and Novel Regulators for Vascular Cambium Development in Populus. Genes, 10(9), p. 690.

Kono, N. and Arakawa, K., 2019. Nanopore sequencing: Review of potential applications in functional genomics. Development, Growth and Differentiation, 61(5), pp. 316-326.

Kulski, J. K. 2016. Next-Generation Sequencing — An Overview of the History, Tools, and “Omic” Applications. In: Next Generation Sequencing. J.K. Kulski, ed. InTechOpen.

Lahens, N. F., Ricciotti, E., Smirnova, O., Toorens, E., Kim, E. J., Baruzzo, G. and Grant, G. R., 2017. A comparison of Illumina and Ion Torrent sequencing platforms in the context of differential gene expression. BMC Genomics, 18, p. 602.

Liu, Y., Zhou, J. and White, K.P., 2014. RNA-seq differential expression studies: More sequence or more replication? Bioinformatics, 30(3), p. 301-304.

Lowe, R., Shirley, N., Bleackley, M., Dolan, S. and Shafee, T. 2017. Transcriptomics technologies. PLOS Computational Biology, 13(5), p. e1005457.

Mader, M., Pakull, B., Blanc-Jolivet, C., Paulini-Drewes, M., Bouda, Z. H. N., Degen, B., Small, I. and Kersten, B. 2018. Complete Chloroplast Genome Sequences of Four Meliaceae Species and Comparative Analyses. International Journal of Molecular Sciences, 19(3), p. 701.

Ma, T., Wang, J., Zhou, G., Yue, Z., Hu, Q., Chen, Y., Liu, B., Qiu, Q., Wang, Z., Zhang, J., Wang, K., Jiang, D., Gou, C., Yu, L., Zhan, D., Zhou, R., Luo, W., Ma, H. and Jianquan, L. 2013. Genomic insights into salt adaptation in a desert poplar. Nature Communications, 4(1), pp. 1–9.

Maderable:Biodiversidad Mexicana. (n.d.). Retrieved March 2, 2022, from

Mendizábal-Hernández L. C., Alba-Landa, J., Márquez Ramírez, J., Cruz-Jiménez, H. and Ramírez-García, E. O. 2011. Captura de carbono por Cedrela odorata l. en una prueba genética. Revista Mexicana de Ciencias Forestales, 2(4), pp. 105–111

Myburg, A. A., Grattapaglia, D., Tuskan, G. A., Hellsten, U., Hayes, R. D., Grimwood, J., Jenkins, J., Lindquist, E., Tice, H., Bauer, D., Goodstein, D. M., Dubchak, I., Poliakov, A., Mizrachi, E., Kullan, A. R. K., Hussey, S. G., Pinard, D., Van Der Merwe, K., Singh, P. and Schmutz, J. 2014. The genome of Eucalyptus grandis. Nature, 510, pp. 356–362.

Neale, D. B., McGuire, P. E., Wheeler, N. C., Stevens, K. A., Crepeau, M. W., Cardeno, C., Zimin, A. V., Puiu, D., Pertea, G. M., Sezen, U. U., Casola, C., Koralewski, T. E., Paul, R., Gonzalez-Ibeas, D., Zaman, S., Cronn, R., Yandell, M., Holt, C., Langley, C. H., and Wegrzyn, J. L. 2017. The Douglas-Fir genome sequence reveals specialization of the photosynthetic apparatus in Pinaceae. G3: Genes, Genomes, Genetics, 7(9), pp. 3157–3167.

Ouyang, K., Li, J., Zhao, X., Que, Q., Li, P., Huang, H. and Chen, X. 2016. Transcriptomic analysis of multipurpose timber yielding tree Neolamarckia cadamba during xylogenesis using RNA-seq. PLoS One, 11(7), e0159407.

Paiva, J. A. P., Prat, E., Vautrin, S., Santos, M. D., San-Clemente, H., Brommonschenkel, S., Fonseca, P. G. S., Grattapaglia, D., Song, X., Ammiraju, J. S. S., Kudrna, D., Wing, R. A., Freitas, A. T., Bergès, H. and Grima-Pettenati, J. 2011. Advancing Eucalyptus genomics: Identification and sequencing of lignin biosynthesis genes from deep-coverage BAC libraries. BMC Genomics, 12(1), p. 137.

Parent, G. J., Raherison, E., Sena, J. and MacKay, J. J. 2015. Forest Tree Genomics: Review of Progress. Advances in Botanical Research, 74, pp. 39–92.

Plomion, C., Aury, J. M., Amselem, J., Leroy, T., Murat, F., Duplessis, S., Faye, S., Francillonne, N., Labadie, K., Le Provost, G., Lesur, I., Bartholomé, J., Faivre-Rampant, P., Kohler, A., Leplé, J. C., Chantret, N., Chen, J., Diévart, A., Alaeitabar, T. and Salse, J. 2018. Oak genome reveals facets of long lifespan. Nature Plants, 4(7), pp. 440–452.

Proost, S., Bel, M. Van, Vaneechoutte, D., Van De Peer, Y., Inzé, D., Mueller-Roeber, B. and Vandepoele, K. 2015. PLAZA 3.0: an access point for plant comparative genomics. Nucleic Acids Research, 43(Database issue), D974.

Qin, L., Hu, Y., Wang, J., Wang, X., Zhao, R., Shan, H., Li, K., Xu, P., Wu, H., Yan, X., Liu, L., Yi, X., Wanke, S., Bowers, J. E., Leebens-Mack, J. H., dePamphilis, C. W., Soltis, P. S., Soltis, D. E., Kong, H. and Jiao, Y. 2021. Insights into angiosperm evolution, floral development and chemical biosynthesis from the Aristolochia fimbriata genome. Nature Plants, 7(9), pp. 1239–1253.

Ragauskas, A. J., Beckham, G. T., Biddy, M. J., Chandra, R., Chen, F., Davis, M. F., Davison, B. H., Dixon, R. A., Gilna, P., Keller, M., Langan, P., Naskar, A. K., Saddler, J. N., Tschaplinski, T. J., Tuskan, G. A. and Wyman, C. E. 2014. Lignin valorization: Improving lignin processing in the biorefinery. Science, 344(6185), p. 1246843.

Ramage, M. H., Burridge, H., Busse-Wicher, M., Fereday, G., Reynolds, T., Shah, D. U. and Scherman, O. 2017. The wood from the trees: The use of timber in construction. Renewable and Sustainable Energy Reviews, 68, pp. 333-359.

Raven, P. and Wackernagel, M. 2020. Maintaining biodiversity will define our long-term success. Plant Diversity, 42(4), pp. 211–220.

Regalado, J., Lundberg, D. S., Deusch, O., Kersten, S., Karasov, T., Poersch, K., Shirsekar, G. and Weigel, D. 2020. Combining whole-genome shotgun sequencing and rRNA gene amplicon analyses to improve detection of microbe–microbe interaction networks in plant leaves. The ISME Journal, 14(8), p. 8.

Rhoads, A. and Au, K. F. 2015. PacBio sequencing and its applications. Genomics, proteomics & bioinformatics, 13(5), pp. 278-289.

Romo-Lozano, J. L., Vargas-Hernández, J. J., López-Upton, J., Ávila Angulo, M. L., Romo-Lozano, J. L., Vargas-Hernández, J. J., López-Upton, J. and Ávila Angulo, M. L. 2017. Estimación del valor financiero de las existencias maderables de cedro rojo (Cedrela odorata L.) en México. Madera y Bosques, 23(1), pp. 111–120.

Rueda Sánchez, A., Gallegos Rodríguez, A., González Eguiarte, D., Ruiz Corral, J. A., Benavides Solorio, J. de D., López Alcocer, E. and Acosta Mireles, M. 2014. Estimación de biomasa aérea en plantaciones de Cedrela odorata L. y Swietenia macrophylla King. Revista Mexicana de Ciencias Forestales, 5(25), pp. 8–17.

Sanger, F. and Coulson, A. R. 1975. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. Journal of Molecular Biology, 94(3), pp. 441–448.

Secretaría de Medio Ambiente y Recursos Naturales. 2018. Anuario estadístico de la producción forestal.

Shendure, J., Balasubramanian, S., Church, G. M., Gilbert, W., Rogers, J., Schloss, J. A. and Waterston, R. H. 2017. DNA sequencing at 40: past, present and future. Nature, 50(7676), pp. 345-353.

Simpson, M. 2010. Plant systematics: Second edition. Plant Systematics: Second Edition, pp.1–741.

Slatko, B. E., Gardner, A. F. and Ausubel, F. M. 2018. Overview of Next-Generation Sequencing Technologies. Current Protocols in Molecular Biology, 122(1), p. e59.

State of the World’s Forests 2016 - World | ReliefWeb. (n.d.). Retrieved March 2, 2022, from

Soto Sedano, J. C. and López Carrascal, C. E. 2012. RNA-seq: herramienta transcriptómica útil para el estudio de interacciones planta-patógeno. Fitosanidad, 16(2), pp. 101–113.

Sundell, D., Street, N. R., Kumar, M., Mellerowicz, E. J., Kucukoglu, M., Johnsson, C., Kumar, V., Mannapperuma, C., Delhomme, N., Nilsson, O., Tuominen, H., Pesquet, E., Fischer, U., Niittylä, T., Sundberg, B. and Hvidsten, T. R. 2017. AspWood: High-Spatial-Resolution Transcriptome Profiles Reveal Uncharacterized Modularity of Wood Formation in Populus tremula. The Plant Cell, 29(7), pp. 1585–1604.

Torales, S. L., Rivarola, M., Gonzalez, S., Inza, M. V., Pomponio, M. F., Fernández, P., Acuña, C. v, Zelener, N., Fornés, L., Hopp, H. E., Paniego, N. B. and Marcucci Poltri, S. N. 2018. De novo transcriptome sequencing and SSR markers development for Cedrela balansae C.DC., a native tree species of northwest Argentina. PloS One,13(12), p. e0203768.

Tuskan, G. A., DiFazio, S., Jansson, S., Bohlmann, J., Grigoriev, I., Hellsten, U., Putnam, M., Ralph, S., Rombauts, S., Salamov, A., Schein, J., Sterck, L., Aerts, A., Bhalerao, R. R., Bhalerao, R. P., Blaudez, D., Boerjan, W., Brun, A., Brunner, A. and Rokhsar, D. 2006. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science, 313(5793), pp. 1596–1604.

Uhlen M. and Quake S. R. 2023. Sequential sequencing by synthesis and the next-generation sequencing revolution. Trends in Biotechnology, in press, pp. 1-8.

Van Bel, M., Diels, T., Vancaester, E., Kreft, L., Botzki, A., Van De Peer, Y., Coppens, F. and Vandepoele, K. 2018. PLAZA 4.0: an integrative resource for functional, evolutionary and comparative plant genomics. Nucleic Acids Research, 46(Database issue), D1190-D1196.

Vargas, P. and Zardoya, R., 2012. El a?rbol de la vida: sistema?tica y evolucio?n de los seres vivos. Madrid:International unión of biological sciences.

Voshall, A., Behera, S., Li, X., Yu, X. H., Kapil, K., Deogun, J. S., Shanklin, J., Cahoon, E. B. and Moriyama, E. N. 2021. A consensus-based ensemble approach to improve transcriptome assembly. BMC Bioinformatics, 22(1), pp. 1–24.

Wang, Y., Zhao, Y., Bollas, A., Wang, Y. and Au, K. F. 2021. Nanopore sequencing technology, bioinformatics and applications. Nature Biotechnology, 2021 39:11, 39(11), pp. 1348–1365.

Weber, J. L. and Myers, E. W. 1997. Human whole-genome shotgun sequencing. Genome Research, 7(5), pp. 401–409.

Yasodha, R., Vasudeva, R., Balakrishnan, S., Sakthi, A. R., Abel, N., Binai, N. and Dev, S. A. 2018. Draft genome of a high value tropical timber tree, Teak (Tectona grandis L. f): insights into SSR diversity, phylogeny and conservation. DNA Research, 25(4), pp. 409-419.

Yaya Lancheros, M. L., Rai, K. M., Balasubramanian, V. K., Dampanaboina, L., Mendu, V. and Terán, W. 2021. De novo transcriptome analysis of white teak (Gmelina arborea Roxb) wood reveals critical genes involved in xylem development and secondary metabolism. BMC genomics, 22(1), 494.

Zhang, Q. J. and Gao, L. Z. 2014. The complete chloroplast genome sequence of desert poplar (Populus euphratica). Mitochondrial DNA A DNA Mapping, Sequencing and Analysis, 27(1), pp. 721-7233



Copyright (c) 2023 Lorena Jacqueline Gómez, Carlos Iván Cruz-Cárdenas, Edith Rojas-Anaya, Marco Aurelio Aragón-Magadan, Luis Felipe Guzmán

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.