NUTRITIONAL COMPOSITION OF Arceuthobium vaginatum subsp. vaginatum AND A. globosum subsp. grandicaule AND THEIR EFFECT ON IN VITRO RUMINAL FERMENTATION KINETICS

Maria Mitsi Nalleli Becerril-Gil, Agustín Olmedo-Juárez, Angel Rolando Endara-Agramont, Julieta Gertrudis Estrada-Flores

Abstract


Background: Arceuthobium vaginatum subsp. vaginatum (BM; black mistletoe) and Arceuthobium globosum subsp. grandicaule (YM; yellow mistletoe), are two parasitic plant species abundant in the forests of northern and central Mexico and Central America, affect 43% of the P. hartwegii tree population in the Nevado de Toluca Flora and Fauna Protection Area (NTFFPA), including mistletoe as a complementary feed in sheep can reduce the environmental impact generated by these pests to the forest and also reduce the purchase of feed for livestock. Objective: To evaluate the chemical composition, phenolic content and in vitro fermentation kinetics of two mistletoe species (M) Arceuthobium vaginatum subsp. vaginatum (BM; black mistletoe) and A. globosum subsp. grandicaule (YM; yellow mistletoe), in four age categories (AC) of Pinus hartwegii (AC: small sapling, large sapling, juvenile and adult) collected in the Nevado de Toluca Flora and Fauna Protection Area (NTFFPA). Methodology: The chemical composition (dry matter DM; neutral detergent fiber NDF; acid detergent fiber ADF and crude protein CP), phenolic content (total phenols TP; total tannins TT and condensed tannins, CT), in vitro fermentation kinetics parameters and in vitro digestibility were analysed. The experimental design used was completely randomized design with 2x4 factorial arrangement. Results: DM content was different between M (P< 0.05), the highest was found in BM. The NDF and ADF content was different between M, ranging from 364.45-467.43 g/kg DM. No differences (P>0.05) were observed in CP which averaged 62.08 g/kg DM. The TP, TT and CT content was different between M (P<0.05), the highest content was in YM with no effect observed in AC. B-gas production (mL of gas) presented differences between M and AC sampled (P<0.05). The gas production rate c on average was 0.042. Lag time was different between M (P<0.05). The in vitro digestibility of dry matter and organic matter were different between M (P<0.05). Implications: The results reported here serve as a tool for decision making on its possible inclusion as a forage addition to a diet in sheep feeding. Conclusions: The chemical composition and in vitro digestibility was different between M and the AC, contain secondary metabolites such as total phenols and condensed tannins and have an impact on in vitro fermentation.

Keywords


chemical composition; condensed tannins; in vitro fermentation; Arceuthobium; dwarf mistletoe.

Full Text:

PDF

References


AFRC (Agricultural Food Research Council)., 1993. Energy and protein requirements of ruminants, Wallingford: CAB international.

Ankom, 2023. Procedures for NDF and ADF. Ankom Technology Method. Operator´s manual. https://www.ankom.com. Accessed 18 April 2023.

AOAC (Association of Official Agricultural Chemists)., 2023. Official Methods of Analysis of AOAC INTERNATIONAL. 'Animal Feed—General', Wendt Thiex, Nancy J (ed.), New York. https://doi.org/10.1093/9780197610145.003.037

Atalay, A.?., 2020. Determination of nutritive value and anti-methanogenic potential of mistletoe leaves (Viscum album) grown on different host, International Journal of Agriculture Forestry and Life Sciences 4, pp. 120-123.

Ávila-González R., Arriaga-Jordán C., Estrada-Flores, J. and López González, F., 2022. Evaluación nutricional de tule (Typha latifolia) en la alimentación de ovinos en el altiplano central de México. Tropical and Subtropical Agroecosystems. 25, p. #073. http://doi.org/10.56369/tsaes.4075

Biblioteca Digital de la Medicina Tradicional Mexicana, 2022. Atlas de las Plantas de la Medicina Tradicional Mexicana. Universidad Nacional Autónoma de México (UNAM) http://www.medicinatradicionalmexicana.unam.mx/apmtm/index.html Accessed 28 August 2022.

Bureenok, S., Langsoumechai, S., Pitiwittayakul, N., Yuangklang, C., Vasupen, K., Saenmahayak, B., and Schonewille, J. T., 2019. Effects of fibrolytic enzymes and lactic acid bacteria on fermentation quality and in vitro digestibility of Napier grass silage, Italian Journal of Animal Science, 18:1, pp. 1438-1444, http://doi.org/10.1080/1828051X.2019.1681910

Costa-Santos, A. C., Rejane-de Almeida, W., Maldonado-López, Y., Cuevas-Reyes, P., and Santos, J. C., 2021. Variation in the co-occurrence of pathogen and herbivores between ontogenetic stages of Miconia albicans. Trees, 35, pp. 1001-1011. https://doi.org/10.1007/s00468-021-02097-9

Díaz-Medina, L. K., Colín-Navarro, V., Arriaga-Jordán, C. M., Brunett-Pérez, L., Vázquez-de-Aldana, B. R., and Estrada-Flores, J. G., 2021. In vitro nutritional quality and antioxidant activity of three weed species as feed additives for sheep in the Central Highlands of Mexico. Tropical Animal Health and Production, 53 (3), pp. 394. https://doi.org/10.1007/s11250-021-02819-8

Endara-Agramont A., Heredia-Bobadilla R., Garcia-Almaraz L., Luna-Gil A., Franco-Maass S. and Cibrián-Llanderal V., 2022. Factores asociados con la distribución espacial de muérdagos enanos en dos poblaciones de Pinus hartwegii del centro de México. Revista Mexicana de Biodiversidad. https://doi.org/10.22201/ib.20078706e.2022.93.5008

Fagundes, G. M., G. Benetel, K. C. Santos, K. C. Welter, F. A. Melo, J. P. Muir, and I. C. S. Bueno., 2020. Tannin-Rich Plants as Natural Manipulators of Rumen Fermentation in the Livestock Industry, Molecules. 25, pp. 2943. https://doi.org/10.3390/molecules25122943

France, J.K., Dijkstra, J., Dhanoa, M.S., López, S., and Bannink, A., 2000. Estimating the extent of degradation of ruminant feeds from a description of their gas production profiles observed in vitro: derivation of models and other mathematical considerations. The British Journal of Nutrition, 83 (2), pp. 143-150. https://doi.org/10.1017/s0007114500000180

García-García, J. D., Anguiano-Cabello, J. C., Arredondo-Valdés, R., Candido del Toro, C. A., Martínez-Hernández, J. L., Segura-Ceniceros, E. P., and Govea-Salas, M., 2021. Phytochemical Characterization of Phoradendron bollanum and Viscum album subs. austriacum as Mexican Mistletoe Plants with Antimicrobial Activity. Plants, 10 (7), pp. 1299. http://dx.doi.org/10.3390/plants10071299

Gebeyew, K., Abera, B., Bajigo, A., Gebresilassie, G., Martínez, Y., and Adebowale, T. 2020. Indigenous medicinal uses, toxicity, and chemical composition of browsing plant used by camel in Ethiopia Somali Regional State: a survey. Tropical Animal Health and Production, 52 (3), pp. 1459–1466. https://doi.org/10.1007/s11250-019-02152-1

Giridhar K.S., Prabhu T.M., Singh, K.C., Nagabhushan, V., Thirumalesh, T., Rajeshwari, Y.B. and Umashankar, B.C., 2018. Nutritional potentialities of some tree leaves based on polyphenols and rumen in vitro gas production. Veterinary World. 11 (10), pp. 1479-1485. https://doi.org/10.14202/vetworld.2018.1479-1485

Gunun, P., Gunun, N., Khejornsart, P., Ouppamong, T., Cherdthong, A., Wanapat, M., Sirilaophaisan, S., Yuangklang, C., Polyorach, S., Kenchaiwong, W., and Kang, S., 2019. Effects of Antidesma thwaitesianum Muell. Arg. pomace as a source of plant secondary compounds on digestibility, rumen environment, hematology, and milk production in dairy cows. Animal Science Journal, 90 (3), pp. 372–381. https://doi.org/10.1111/asj.13147

Hawksworth, F.G. and Wiens, D., 1996. Dwarf mistletoes: biology, pathology, and systematics. US Department of Agriculture, Forest Service, USA.

Hawu, O., Ravhuhali, K. E., Musekwa, M. G., Sipango, N., Mudau, H. S., Mokoboki, K. H., & Moyo, B., 2022. Utilization of the Viscum Species for Diet and Medicinal Purposes in Ruminants: A Review. Animals, 12 (19), pp. 2569. https://doi.org/10.3390/ani12192569

Hernández-Luna, G.B., Endara-Agramont, A.R., González-Ronquillo, M., Martínez-Hernández, J., Vilmar-Kozloski, G. and Estrada-Flores, J.G., 2017. La utilización de muérdago enano (Arceuthobium globosum) como forraje en la alimentación de rumiantes. In: Sustentabilidad Agropecuaria. Brunett-Pérez, L., Gómez Demetrio, W., Gutiérrez Castillo, A.C., Jaimes Arriaga, E. (eds). Experiencias de investigación para el desarrollo agropecuario, forestal y rural. Universidad Autónoma del Estado de México. pp. 49-60.

Huang H., Szumacher-Strabel M., Kumar Patra A., ?lusarczyk S., Lechniak D., Vazirigohar M., Varadyova Z., Koz?owska M. and Cie?lak A., 2021. Chemical and phytochemical composition, in vitro ruminal fermentation, methane production, and nutrient degradability of fresh and ensiled Paulownia hybrid leaves. Animal Feed Science and Technology, 279, pp. 115038. http://doi.org/10.1016/j.anifeedsci.2021.115038

Jibril, J.A., Gazali, Y.M., Dantani, M., Alamin, H. and Zannah, B.B., 2020. Performance of Balami Rams Fed Graded Levels of Mistletoe Leaves (Viscum album) and Sorghum Stover in Semi-Arid Zone of Borno State, Nigeria. Niger. Nigerian Journal of Animal Science and Technology, 3, pp. 25- 285.

Lagrange S.P., MacAdam J.W., Villalba J.J., 2021. The use of temperate tannin containing forage legumes to improve sustainability in Forage-Livestock Production. Agronomy, 11, pp. 2264. https://doi.org/10.3390/agronomy11112264

Lázaro-González A., Hódar, J.A., and Zamora, R., 2018. Mistletoe Versus Host Pine: Does Increased Parasite Load Alter the Host Chemical Profile? Journal of Chemical Ecology. 45. pp. 95-105. https://doi.org/10.1007/s10886-018-1039-9

Makkar, H.P., 2003a. Quantification of Tannins in Tree and Shrub Foliage. A Laboratory Manual. Kluwer Academic Pulishers. Dordrecht, The Netherlands.

Makkar, H.P.S., 2003b. Effects and fate of tannins in ruminant animals, adaptation to tannins, and strategies to overcome detrimental effects of feeding tannin-rich feeds. Small Ruminant Research, 49 (3), pp. 241-256. https://doi.org/10.1016/S0921-4488(03)00142-1

McSweeney, C.S., Palmer, B., McNeill, D.M., and Krause, D.O. 2001. Microbial interactions with tannins: nutritional consequences for ruminants. Animal Feed Science and Technology, 91, pp. 83-93. http://doi.org/10.1016/S0377-8401(01)00232-2

Mekuriaw S., Tsunekawa A., Ichinohe T., Tegegne F., Haregeweyn N., Nobuyuki K., Tassew A., Mekuriaw Y., Walie M., Tsubo M. and Okuro T., 2020. Mitigating the anti-nutritional effect of polyphenols on in vitro digestibility and fermentation characteristics of browse species in north western Ethiopia. Tropical Animal Health and Production. 52, pp. 1287–1298. https://doi.org/10.1007/s11250-019-02126-3

Menci, R., Coppa, M., Torrent, A., Natalello, A., Valenti, B., Luciano, G., Priolo, A., and Niderkorn, V., 2021. Effects of two tannin extracts at different doses in interaction with a green or dry forage substrate on in vitro rumen fermentation and biohydrogenation. Animal Feed Science and Technology, 278, pp. 114977. https://doi.org/10.1016/j.anifeedsci.2021.114977.

Monteiro, G. F., Boanares, D., Novais, S., França, M. G., Antonini, Y., Barbosa, M., Oki Y., and Fernandes G. W., 2022. Imbalance of water potential and photosynthetic efficiency in the parasitic relationship between Struthanthus flexicaulis and Baccharis dracunculifolia. Folia Geobotanica, 57 (1), pp 71-82. https://doi.org/10.1007/s12224-022-09410-5

Mosley, J.C., Frost, R.A., Roeder, B.L., Kottet R.W., 2017. Targeted Sheep Grazing to Suppress Sulfur Cinquefoil (Potentilla recta) on Northwestern Montana Rangeland, Rangeland Ecology & Management, 70 (5), pp. 560-568. http://dx.doi.org/10.1016/j.rama.2017.03.002.7

Pell, A.N. and Schofield, P., 1993. Computerized Monitoring of Gas Production to Measure Forage Digestion in Vitro. Journal of Dairy Science, 76, pp. 1063-1073, http://dx.doi.org/10.3168/jds.S0022-0302(93)77435-4

Pernitsky, K.Y., Mason, Q.D., Cinel, B. and Friedman, C.M.R., 2011. Discovery and partial purification of an antibiotic from lodgepole pine dwarf mistletoe (Arceuthobium americanum) active against Gram-positive organisms including Methicillin-resistant Staphylococcus aureus (MRSA). Journal of Medicinal Plants Research, 5 (9), pp. 1722-1727.

PKB (PlantwisePlus Knowledge Bank)., 2021a. Arceuthobium americanum (lodgepole pine dwarf mistletoe). Technical Factsheet. https://doi.org/10.1079/pwkb.species.6824

PKB (PlantwisePlus Knowledge Bank)., 2021b. Arceuthobium oxycedri (juniper dwarf mistletoe). Technical Factsheet. https://doi.org/10.1079/pwkb.species.6851

Porter, L.J., Hrstich, L.N. and Chan, B.G., 1986. The conversion of procyanidins and prodelphinidins to cyaniding and delphinidin. Phytochemistry 25, pp. 223-230.

Queijeiro-Bolaños, M.E., Cano-Santana, Z. and García-Guzmán, G., 2014. Incidence, severity, and aggregation patterns of two sympatric dwarf mistletoe species (Arceuthobium spp.) in Central Mexico. European Journal of Forest Research, 133, pp. 297–306. https://doi.org/10.1007/s10342-013-0762-6

Queijeiro-Bolaños M.E and Cano-Santana Z., 2018. Dwarf mistletoes as a relevant component in temperate forest: an integral view. Forestry Research and Engineering: International Journal. 2 (1), pp. 31?33. https://doi.org/10.15406/freij.2017.02.00023

Ramantsi, R., Mnisi, C.M. and Ravhuhali, K.E., 2019. Chemical composition and in vitro dry matter degradability of mistletoe (Viscum verrucosum (Harv.)) on Vachellia nilotica (L.) in North West Province of South Africa. Tropical Agriculture, 96, pp. 53-60. https://doi.org/10.37234/TA96012019/0000960106

Sáenz-Romero, C., Mendoza-Maya, E., Gómez-Pineda, E., Blanco-García A., Endara-Agramont, A.R., Lindig-Cisneros, R., López-Upton, J., Trejo-Ramírez, O., Wehenkel, C., Cibrián-Tovar, D., Flores-López, C., Plascencia-González, A. and Vargas-Hernández, J.J., 2020. Recent evidence of Mexican temperate forest decline and the need for ex situ conservation, assisted migration, and translocation of species ensembles as adaptive management to face projected climatic change impacts in a megadiverse country. Canadian Journal of Forest Research, 50 (9), pp. 843-854. https://doi.org/10.1139/cjfr-2019-0329.

SAS., 2006. SAS Institute. SAS User´s guide: Statistics. Ver 9.0 Cary NC, USA.

SEMARNAT., 2022. Secretaría del Medio Ambiente y Recursos Naturales. https://www.gob.mx/semarnat. (Accessed 07 November 2022).

Shah, S. S., Rehman, Y. U., Iqbal, A., Rahman, Z. U., Zhou, B., Peng, M., and Li, Z., 2017. Phytochemical screening and antimicrobial activities of stem, leaves and fruit extracts of Viscum album L. Journal of Pure Applied Microbiology, 11 (3), pp. 1337-1349. https://doi.org/10.22207/JPAM.11.3.14

Sisay, A., Negesse, T. and Nurfeta, A., 2018. Short chain fatty acid production, organic matter digestibility and metabolisable energy content of indigenous browses from Ethiopian rift valley. IOSR Journal of Agriculture and Veterinary Science, 11 (1), pp. 61-68.

SMN., 2022. Servicio Meteorológico Nacional. En: https://smn.conagua.gob.mx/es/climatologia/temperaturas-y-lluvias/resumenes-mensuales-de-temperaturas-y-lluvias. (Accessed 07 November 2022).

Sotero-Garcia AI., Gheno-Heredia YA., Martínez- Campos AR. And Arteaga-Reyes T., 2016. Plantas medicinales usadas para las afecciones respiratorias en Loma Alta, Nevado de Toluca, México. Acta Botanica Mexicana 114: pp. 51-68. https://doi.org/10.21829/abm114.2016.1102

Sotero-García, A.I., Arteaga-Reyes, T.T., Martínez-Campos, A.R., Galicia, L., 2018. Efecto de las podas sobre Arceuthobium spp. en bosques densos y semidensos de Pinus hartwegii (Lindl.) Madera y Bosques, 24 (2), pp. e2421582. https://doi.org/10.21829/myb.2018.2421582

Stewart W. C., Whitney T. R., Scholljegerdes E. J., Naumann H. D., Cherry N. M, Muir J. P., Lambert B. D., Walker J. W., Adams R. P., Welch K. D., Gardner D. R., Estell R. E., 2015. Effects of Juniperus species and stage of maturity on nutritional, in vitro digestibility, and plant secondary compound characteristics, Journal of Animal Science, Volume 93, Issue 8, August, Pages 4034–4047. https://doi.org/10.2527/jas2015-9274

Theodorou, M.K., Williams, B.A., Dhanoa, M.S. and McAllan, A.B. and France J., 1994. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant’s feeds, Animal Feed Science and Technology, 48, pp. 185-197, https://doi.org/10.1016/0377-8401(94)90171-6

Van Soest, P.J., Robertson, J.B. and Lewis, B.A., 1991. Methods for dietary fibre, neutral detergent fibre and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74, pp. 3583-3597, https://doi.org/10.3168/jds.S0022-0302(91)78551-2

Vázquez-Carrillo M. F., Montelongo-Pérez H. D., González-Ronquillo M., Castillo-Gallegos E., and Castelán-Ortega O. A., 2020. Effects of Three Herbs on Methane Emissions from Beef Cattle. Animals, 10 (9), pp. 1671. https://doi.org/10.3390/ani10091671

Zaidi, M., Ahsan, H. and Crow, S., 2006. Pharmacological Screening of Arceuthobium oxycedri (Dwarf Mistletoe) of Juniper Forest of Pakistan. OnLine Journal of Biological Sciences. https://doi.org/10.3844/ojbsci.2006.67.70

Zhang, Y., MacAdam, J. W., Villalba, J. J., and Dai, X., 2021. In vitro digestibility of mountain-grown irrigated perennial legume, grass and forb forages is influenced by elevated non-fibrous carbohydrates and plant secondary compounds. Journal of the science of food and agriculture, 101 (1), pp. 334–340. https://doi.org/10.1002/jsfa.10648




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v26i3.47656

DOI: http://dx.doi.org/10.56369/tsaes.4765



Copyright (c) 2023 Maria Mitsi Nalleli Becerril-Gil, Agustín Olmedo-Juárez, Angel Rolando Endara-Agramont, Julieta Gertrudis Estrada-Flores

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.