CHITOSAN IMPROVES MORPHO-PHYSIOLOGICAL, ROOTING ATTRIBUTES AND PROFITABILITY OF TWO COCOA (Theobroma cacao L.) VARIETIES DURING VEGETATIVE PROPAGATION

Juan José Reyes-Pérez, Luis Tarquino Llerena-Ramos, Luis Guillermo Hernández-Montiel, Victor Hugo Reynel-Chila, Wilmer Tezara, Tomás Rivas-García

Abstract


Background: The sexual propagation of Cocoa (Theobroma cacao L.) has some limitations to preserve some desirable agronomic characteristics in successive generations. Objective: The present research evaluates the effect of a chitosan based-formulation (Quitomax®) on morpho-physiological, rooting attributes and benefit-cost ratio of two cocoa varieties during vegetative propagation. Methodology: The experimental design was completely randomized with a factorial arrangement (A × B), where A represented the two clones and B the three concentrations of chitosan based formulation used (0, 100, 500 and 1000 mg L-1), with three repetitions. per treatment. The survival (%), the stem diameter (mm), the number of leaves, the number and length (cm) of roots, the biomass (g), the gas exchange (A, gs, Ci, E), and an economic analysis of the two cocoa plant varieties were evaluated at 120 days after starting the trial. Results: The clone CCN-51 treated with 500 mg L-1 had significantly the highest results on survival (80%), stem diameter (6.83 mm), number of leaves per plant (8.2), number and length of roots (6.21 and 35.74 cm), aerial and root biomass (4.07 g and 1.64 g) parameters. In gas exchange, the highest values of Water use efficiency (WUE) were observed at 500 mg L-1 in CCN-51 (5.36 mmol mol-1) and 1000 mg L-1 in INIAP-EETP-801 (7.62 mmol µmol-1). In both clones, higher profitability was obtained when applying the chitosan dose of 500 mg L-1, reaching profitability of 40.65 and 50.00% for clones INIAP-EETP-801 and CCN-51, respectively. Implications: The cocoa clone CCN-51 showed plants that exhibited greater development of both the aerial part and the root part of the cocoa seedlings than INIP-EETP-801 coca clones. Conclusion: The chitosan based formulation at 500 mg L-1 is a promissory alternative to improve the evaluated parameters after 120 days of cocoa vegetative propagation.

Keywords


asexually propagation; biostimulants; Quitomax®; Cocoa; stem cuttings

Full Text:

PDF

References


Almeida, N.M., de Almeida, A.A.F., Santos, N. de A., do Nascimento, J.L., de Carvalho-Neto, C.H., Priminho-Pirovani, C., Ahnert, D. and Baligar, V.C., 2022. Scion-rootstock interaction and tolerance to cadmium toxicity in juvenile Theobroma cacao plants. Scientia Horticulturae, 300, pp. 111086. https://doi.org/111086. 10.1016/j.scienta.2022.111086

Bartlett, M.S., 1937. Properties of sufficiency and statistical tests. Proceedings of the Royal Society of London. Series A-Mathematical and Physical Sciences, 160(901), pp. 268-282. https://doi.org/10.1098/rspa.1937.0109

Chakraborty, M., Hasanuzzaman, M., Rahman, M., Khan, M. A. R., Bhowmik, P., Mahmud, N. U., Tanver, M. and Islam, T., 2020. Mechanism of plant growth promotion and disease suppression by chitosan biopolymer. Agriculture, 10(12), pp. 624. https://doi.org/10.3390/agriculture10120624

Chouhan, D. and Mandal, P., 2021. Applications of chitosan and chitosan based metallic nanoparticles in agrosciences-A review. International Journal of Biological Macromolecules, 166, pp. 1554-1569. https://doi.org/10.1016/j.ijbiomac.2020.11.035

Drobek, M., Fr?c, M. and Cybulska, J., 2019. Plant biostimulants: Importance of the quality and yield of horticultural crops and the improvement of plant tolerance to abiotic stress—A review. Agronomy, 9(6), pp. 335. https://doi.org/10.3390/agronomy9060335

Garate-Navarro, M.A., do Bomfim-Costa, L.C. and da Costa-Silva, D., 2017. Pro-embrionary somatic structure of three cacao genotypes (Theobroma cacao L.) using staminodes. International Annals of Science, 2(1), pp. 28-32. https://doi.org/10.21467/ias.2.1.28-32

Garcia, C., Marelli, J.P. Motamayor, J.C. and Villela, C., 2018. Somatic Embryogenesis in Theobroma cacao L. Methods in Molecular Biology, 1815, pp. 227–245. https://doi.org/10.1007/978-1-4939-8594-4_15/COVER

González-Ceballos, D.C., Mejía-Londono, H.A. Ramírez-Jiménez, J.A. Monsalve-García, D.A. Hernández-Arredondo, J.D. and Córdoba-Gaona, O. de J., 2021. Intercambio gaseoso de nuevos clones de Cacao establecidos en un sistema agroforestal en Antioquia, Colombia. Revista Fitotecnia Mexicana, 44(4), pp. 635. https://doi.org/10.35196/rfm.2021.4.635

González-Estrada, R.R., Blancas-Benitez, F.J., Hernández-Béjar, F.J., Rivas-García, T., Moreno-Hernández, C., Aguirre-Güitrón, L., Ramos-Bell, S. and Gutierrez-Martinez, P., 2023. Chitosan: Postharvest Ecofriendly Nanotechnology, Control of Decay, and Quality in Tropical and Subtropical Fruits. In: U. Shanker, C.M. Hussain and M. Rani, eds. Handbook of Green and Sustainable Nanotechnology: Fundamentals, Developments and Applications. Cham: Springer International Publishing. pp. 73-90. https://doi.org/10.1007/978-3-031-16101-8_24

Hernandez, C.E. and Granados, L., 2021. Quality differentiation of cocoa beans: implications for geographical indications. Journal of the Science Food and Agriculture, 101(10), pp. 3993–4002. https://doi.org/10.1002/jsfa.11077

Hidangmayum, A., Dwivedi, P., Katiyar, D. and Hemantaranjan, A., 2019. Application of chitosan on plant responses with special reference to abiotic stress. Physiology and Molecular Biology of Plants, 25, pp. 313-326. https://doi.org/10.1007/s12298-018-0633-1

INAMHI (Instituto Nacional de Metereología e Hidrología), 2021. Anuario meteorológico del Cantón Mocache: Estación Experimental Tropical Pichilingue. pp. 12.

Jogaiah, S., Satapute, P., De Britto, S., Konappa, N. and Udayashankar, A.C., 2020. Exogenous priming of chitosan induces upregulation of phytohormones and resistance against cucumber powdery mildew disease is correlated with localized biosynthesis of defense enzymes. International Journal of Biological Macromolecules, 162, pp. 1825-1838. https://doi.org/10.1016/j.ijbiomac.2020.08.124

Junior, E.E.E., Gusua, C.R., Tchapda, T.D. and Andre, O.N.P., 2017. Vegetative propagation of selected clones of cocoa (Theobroma cacao L.) by stem cuttings. Journal of Horticulture and Forestry, 9(9), pp. 80-90. https://doi.org/10.5897/jhf2017.0502

Kou, S.G., Peters, L.M. and Mucalo, M.R., 2021. Chitosan: A review of sources and preparation methods. International Journal of Biological Macromolecules, 169, pp. 85-94. https://doi.org/10.1016/j.ijbiomac.2020.12.005

Laliberté, B. and End, M., 2015. Supplying New Cocoa Planting Material to Farmers: A Review of Propagation Methodologies. Rome, Italy: Bioversity International.

Leiva-Rojas, E.I., Gutiérrez-Brito, E.E., Pardo-Macea, C.J. and Ramírez-Pisco, R., 2019. Vegetative and reproductive behavior of cocoa (Theobroma cacao L.) due to pruning. Revista Fitotecnia Mexicana, 42(2): pp. 137–146. https://doi.org/10.35196/rfm.2019.2.137-146

León-Bravo, V. and Jaramillo-Villacrés, M., 2021. Sustainability of Chocolate Production in Ecuador: Drivers, Barriers, and Local Factors. Latin American Business Review, 22(4), pp. 323-357. https://doi.org/10.1080/10978526.2021.1920837

Massey, F.J., 1951. The Kolmogorov-Smirnov Test for Goodness of Fit. Journal of the American Statistical Association, 46(253), pp. 68–78. https://doi.org/10.1080/01621459.1951.10500769

Nair, K.P., 2021. Cocoa (Theobroma cacao L.). Tree Crops: Harvesting Cash from the Word´s Important Cash Crops, 2021, pp. 153–213. https://doi.org/10.1007/978-3-030-62140-7_5

Paul, M.T.T., Cécile, A.E., Pierre, O.E. and Thaddée, B., 2017. Effects of chitosan and snail shell powder on cocoa (Theobroma cacao L.) growth and resistance against black pod disease caused by Phytophthora megakarya. African Journal of Plant Science, 11(8), pp. 331–340. https://doi.org/10.5897/ajps2016.1487

Peña, D.G., Costales, D. and Falcón, A.B., 2014. Influencia de un polímero de quitosana en el crecimiento y la actividad de enzimas defensivas en tomate (Solanum lycopersicum L.). Cultivos Tropicales, 35(1), pp. 35–42.

Predan, G.M.I., Laz?r, D.A. and Lungu, I.I., 2019. Cocoa Industry—From Plant Cultivation to Cocoa Drinks Production. Caffeinated Cocoa Based Beverages. In: A.M. Grumezescu and A.M. Holban, eds. The Science of Beverages. Woodhead Publishing: Elsevier. pp. 489–507. https://doi.org/10.1016/B978-0-12-815864-7.00015-5

Reyes-Pérez, J.J., Llerena-Ramos, L.T., Ramos-Remache, R.A., Ramírez-Arrebato, M.Á., Falcón-Rodríguez, A.B., Pincay-Ganchozo, R.A. and Rivas-García, T., 2021. Efecto del quitosano en la propagación vegetativa de cacao (Theobroma cacao L.) por esquejes. Terra Latinoamericana, 39, pp. 1-9. https://doi.org/10.28940/terra.v39i0.1008

Reyes-Perez, J. J., Llerena-Ramos, L. T., Reinel-Chila, V.H., Torres-Rodriguez, J.A., Farouk, S., Hernandez-Montiel, L.G. and Tezara, W., 2022. Effect of Pectimorf on the rooting ability, and morpho-physiological trials of national cocoa (Theobroma cacao L.) under different substrates. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 50(3), pp. 12847-12847. https://doi.org/10.15835/nbha50312847

Reyes Pérez, J.J., Rivero-Herrada, M., García-Bustamante, E.L., Beltran-Morales, F.A., and Ruiz-Espinoza, F.H., 2020. Aplicación de quitosano incrementa la emergencia, crecimiento y rendimiento del cultivo de tomate (Solanum lycopersicum L.) en condiciones de invernadero. Biotecnia, 22(3), pp. 156–163. https://doi.org/10.18633/biotecnia.v22i3.1338

Rivas-García, T., González-Gómez, L.G., Boicet-Fabré, T., Jiménez-Arteaga, M.C., Falcón-Rodríguez, A.B. and Terrero-Soler, J.C., 2021. Agronomic response of two tomato varieties (Solanum lycopersicum L.) to the application of the biostimulant whit chitosan. Terra Latinoamericana, 39, pp. 1-9. https://doi.org/10.28940/terra.v39i0.796

Shahrajabian, M.H., Chaski, C., Polyzos, N., Tzortzakis, N. and Petropoulos, S.A., 2021. Sustainable agriculture systems in vegetable production using chitin and chitosan as plant biostimulants. Biomolecules, 11(6), pp. 819. https://doi.org/10.3390/biom11060819

Solis Bonilla, J.L., Vanderlei Lopes, U., Zamarripa Colmenero, A., Martinez Valencia, B.B., Avendaño Arrazate, C.H., Chia Wong, J.A. and Peres Gramacho, K., 2022. Path analyses define criteria that allow to reduce costs in a breeding population of cacao (Theobroma cacao L.). Tree Genetics & Genomes, 18(3), pp. 25. https://doi.org/10.1007/s11295-022-01554-x/tables/8

Tezara-Fernández, W.A., Valencia-Caicedo, E.E., Reynel-Chila, V.H., Bolaños-Ortega, M.J. and Blanco-Flores, H.A., 2020. Actividad fotosintética y su relación con el rendimiento de diez clones de cacao nacional. Revista Espamciencia, 11(1): pp. 19–27. https://doi.org/10.51260/revista_espamciencia.v11i1.202

Vásquez-Zamora, L.M., Rengifo-Del Aguila, S., Guerrero-Abad, J.C., Vallejos-Torres, G., Imán-Correa, S.A. Torres Flores, E., Mesén-Sequeira, F. and Corazon-Guivin, M.A., 2022. Propagation of Theobroma cacao by Rooted Cuttings in Mini-Tunnels. Advances in Agriculture, 2022, pp. 1-8. https://doi.org/10.1155/2022/1196381

Wainaina, P., Minang, P.A., Duguma, L. and Muthee, K., 2021. A review of the trade-offs across different cocoa production systems in Ghana. Sustainability, 13(19), pp. 10945. https://doi.org/10.3390/SU131910945




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v26i3.47619

DOI: http://dx.doi.org/10.56369/tsaes.4761



Copyright (c) 2023 Wilmer Tezara, Victor Hugo Reynel-Chila, Luis Guillermo Hernández-Montiel, Luis Tarquino Llerena-Ramos, Juan José Reyes-Pérez, Tomas Rivas Garcia

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.