CHITOSAN IMPROVES MORPHO-PHYSIOLOGICAL, ROOTING ATTRIBUTES AND PROFITABILITY OF TWO COCOA (Theobroma cacao L.) VARIETIES DURING VEGETATIVE PROPAGATION
Abstract
Keywords
Full Text:
PDFReferences
Almeida, N.M., de Almeida, A.A.F., Santos, N. de A., do Nascimento, J.L., de Carvalho-Neto, C.H., Priminho-Pirovani, C., Ahnert, D. and Baligar, V.C., 2022. Scion-rootstock interaction and tolerance to cadmium toxicity in juvenile Theobroma cacao plants. Scientia Horticulturae, 300, pp. 111086. https://doi.org/111086. 10.1016/j.scienta.2022.111086
Bartlett, M.S., 1937. Properties of sufficiency and statistical tests. Proceedings of the Royal Society of London. Series A-Mathematical and Physical Sciences, 160(901), pp. 268-282. https://doi.org/10.1098/rspa.1937.0109
Chakraborty, M., Hasanuzzaman, M., Rahman, M., Khan, M. A. R., Bhowmik, P., Mahmud, N. U., Tanver, M. and Islam, T., 2020. Mechanism of plant growth promotion and disease suppression by chitosan biopolymer. Agriculture, 10(12), pp. 624. https://doi.org/10.3390/agriculture10120624
Chouhan, D. and Mandal, P., 2021. Applications of chitosan and chitosan based metallic nanoparticles in agrosciences-A review. International Journal of Biological Macromolecules, 166, pp. 1554-1569. https://doi.org/10.1016/j.ijbiomac.2020.11.035
Drobek, M., Fr?c, M. and Cybulska, J., 2019. Plant biostimulants: Importance of the quality and yield of horticultural crops and the improvement of plant tolerance to abiotic stress—A review. Agronomy, 9(6), pp. 335. https://doi.org/10.3390/agronomy9060335
Garate-Navarro, M.A., do Bomfim-Costa, L.C. and da Costa-Silva, D., 2017. Pro-embrionary somatic structure of three cacao genotypes (Theobroma cacao L.) using staminodes. International Annals of Science, 2(1), pp. 28-32. https://doi.org/10.21467/ias.2.1.28-32
Garcia, C., Marelli, J.P. Motamayor, J.C. and Villela, C., 2018. Somatic Embryogenesis in Theobroma cacao L. Methods in Molecular Biology, 1815, pp. 227–245. https://doi.org/10.1007/978-1-4939-8594-4_15/COVER
González-Ceballos, D.C., Mejía-Londono, H.A. Ramírez-Jiménez, J.A. Monsalve-García, D.A. Hernández-Arredondo, J.D. and Córdoba-Gaona, O. de J., 2021. Intercambio gaseoso de nuevos clones de Cacao establecidos en un sistema agroforestal en Antioquia, Colombia. Revista Fitotecnia Mexicana, 44(4), pp. 635. https://doi.org/10.35196/rfm.2021.4.635
González-Estrada, R.R., Blancas-Benitez, F.J., Hernández-Béjar, F.J., Rivas-García, T., Moreno-Hernández, C., Aguirre-Güitrón, L., Ramos-Bell, S. and Gutierrez-Martinez, P., 2023. Chitosan: Postharvest Ecofriendly Nanotechnology, Control of Decay, and Quality in Tropical and Subtropical Fruits. In: U. Shanker, C.M. Hussain and M. Rani, eds. Handbook of Green and Sustainable Nanotechnology: Fundamentals, Developments and Applications. Cham: Springer International Publishing. pp. 73-90. https://doi.org/10.1007/978-3-031-16101-8_24
Hernandez, C.E. and Granados, L., 2021. Quality differentiation of cocoa beans: implications for geographical indications. Journal of the Science Food and Agriculture, 101(10), pp. 3993–4002. https://doi.org/10.1002/jsfa.11077
Hidangmayum, A., Dwivedi, P., Katiyar, D. and Hemantaranjan, A., 2019. Application of chitosan on plant responses with special reference to abiotic stress. Physiology and Molecular Biology of Plants, 25, pp. 313-326. https://doi.org/10.1007/s12298-018-0633-1
INAMHI (Instituto Nacional de Metereología e Hidrología), 2021. Anuario meteorológico del Cantón Mocache: Estación Experimental Tropical Pichilingue. pp. 12.
Jogaiah, S., Satapute, P., De Britto, S., Konappa, N. and Udayashankar, A.C., 2020. Exogenous priming of chitosan induces upregulation of phytohormones and resistance against cucumber powdery mildew disease is correlated with localized biosynthesis of defense enzymes. International Journal of Biological Macromolecules, 162, pp. 1825-1838. https://doi.org/10.1016/j.ijbiomac.2020.08.124
Junior, E.E.E., Gusua, C.R., Tchapda, T.D. and Andre, O.N.P., 2017. Vegetative propagation of selected clones of cocoa (Theobroma cacao L.) by stem cuttings. Journal of Horticulture and Forestry, 9(9), pp. 80-90. https://doi.org/10.5897/jhf2017.0502
Kou, S.G., Peters, L.M. and Mucalo, M.R., 2021. Chitosan: A review of sources and preparation methods. International Journal of Biological Macromolecules, 169, pp. 85-94. https://doi.org/10.1016/j.ijbiomac.2020.12.005
Laliberté, B. and End, M., 2015. Supplying New Cocoa Planting Material to Farmers: A Review of Propagation Methodologies. Rome, Italy: Bioversity International.
Leiva-Rojas, E.I., Gutiérrez-Brito, E.E., Pardo-Macea, C.J. and Ramírez-Pisco, R., 2019. Vegetative and reproductive behavior of cocoa (Theobroma cacao L.) due to pruning. Revista Fitotecnia Mexicana, 42(2): pp. 137–146. https://doi.org/10.35196/rfm.2019.2.137-146
León-Bravo, V. and Jaramillo-Villacrés, M., 2021. Sustainability of Chocolate Production in Ecuador: Drivers, Barriers, and Local Factors. Latin American Business Review, 22(4), pp. 323-357. https://doi.org/10.1080/10978526.2021.1920837
Massey, F.J., 1951. The Kolmogorov-Smirnov Test for Goodness of Fit. Journal of the American Statistical Association, 46(253), pp. 68–78. https://doi.org/10.1080/01621459.1951.10500769
Nair, K.P., 2021. Cocoa (Theobroma cacao L.). Tree Crops: Harvesting Cash from the Word´s Important Cash Crops, 2021, pp. 153–213. https://doi.org/10.1007/978-3-030-62140-7_5
Paul, M.T.T., Cécile, A.E., Pierre, O.E. and Thaddée, B., 2017. Effects of chitosan and snail shell powder on cocoa (Theobroma cacao L.) growth and resistance against black pod disease caused by Phytophthora megakarya. African Journal of Plant Science, 11(8), pp. 331–340. https://doi.org/10.5897/ajps2016.1487
Peña, D.G., Costales, D. and Falcón, A.B., 2014. Influencia de un polímero de quitosana en el crecimiento y la actividad de enzimas defensivas en tomate (Solanum lycopersicum L.). Cultivos Tropicales, 35(1), pp. 35–42.
Predan, G.M.I., Laz?r, D.A. and Lungu, I.I., 2019. Cocoa Industry—From Plant Cultivation to Cocoa Drinks Production. Caffeinated Cocoa Based Beverages. In: A.M. Grumezescu and A.M. Holban, eds. The Science of Beverages. Woodhead Publishing: Elsevier. pp. 489–507. https://doi.org/10.1016/B978-0-12-815864-7.00015-5
Reyes-Pérez, J.J., Llerena-Ramos, L.T., Ramos-Remache, R.A., Ramírez-Arrebato, M.Á., Falcón-Rodríguez, A.B., Pincay-Ganchozo, R.A. and Rivas-García, T., 2021. Efecto del quitosano en la propagación vegetativa de cacao (Theobroma cacao L.) por esquejes. Terra Latinoamericana, 39, pp. 1-9. https://doi.org/10.28940/terra.v39i0.1008
Reyes-Perez, J. J., Llerena-Ramos, L. T., Reinel-Chila, V.H., Torres-Rodriguez, J.A., Farouk, S., Hernandez-Montiel, L.G. and Tezara, W., 2022. Effect of Pectimorf on the rooting ability, and morpho-physiological trials of national cocoa (Theobroma cacao L.) under different substrates. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 50(3), pp. 12847-12847. https://doi.org/10.15835/nbha50312847
Reyes Pérez, J.J., Rivero-Herrada, M., García-Bustamante, E.L., Beltran-Morales, F.A., and Ruiz-Espinoza, F.H., 2020. Aplicación de quitosano incrementa la emergencia, crecimiento y rendimiento del cultivo de tomate (Solanum lycopersicum L.) en condiciones de invernadero. Biotecnia, 22(3), pp. 156–163. https://doi.org/10.18633/biotecnia.v22i3.1338
Rivas-García, T., González-Gómez, L.G., Boicet-Fabré, T., Jiménez-Arteaga, M.C., Falcón-Rodríguez, A.B. and Terrero-Soler, J.C., 2021. Agronomic response of two tomato varieties (Solanum lycopersicum L.) to the application of the biostimulant whit chitosan. Terra Latinoamericana, 39, pp. 1-9. https://doi.org/10.28940/terra.v39i0.796
Shahrajabian, M.H., Chaski, C., Polyzos, N., Tzortzakis, N. and Petropoulos, S.A., 2021. Sustainable agriculture systems in vegetable production using chitin and chitosan as plant biostimulants. Biomolecules, 11(6), pp. 819. https://doi.org/10.3390/biom11060819
Solis Bonilla, J.L., Vanderlei Lopes, U., Zamarripa Colmenero, A., Martinez Valencia, B.B., Avendaño Arrazate, C.H., Chia Wong, J.A. and Peres Gramacho, K., 2022. Path analyses define criteria that allow to reduce costs in a breeding population of cacao (Theobroma cacao L.). Tree Genetics & Genomes, 18(3), pp. 25. https://doi.org/10.1007/s11295-022-01554-x/tables/8
Tezara-Fernández, W.A., Valencia-Caicedo, E.E., Reynel-Chila, V.H., Bolaños-Ortega, M.J. and Blanco-Flores, H.A., 2020. Actividad fotosintética y su relación con el rendimiento de diez clones de cacao nacional. Revista Espamciencia, 11(1): pp. 19–27. https://doi.org/10.51260/revista_espamciencia.v11i1.202
Vásquez-Zamora, L.M., Rengifo-Del Aguila, S., Guerrero-Abad, J.C., Vallejos-Torres, G., Imán-Correa, S.A. Torres Flores, E., Mesén-Sequeira, F. and Corazon-Guivin, M.A., 2022. Propagation of Theobroma cacao by Rooted Cuttings in Mini-Tunnels. Advances in Agriculture, 2022, pp. 1-8. https://doi.org/10.1155/2022/1196381
Wainaina, P., Minang, P.A., Duguma, L. and Muthee, K., 2021. A review of the trade-offs across different cocoa production systems in Ghana. Sustainability, 13(19), pp. 10945. https://doi.org/10.3390/SU131910945
URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v26i3.47619
DOI: http://dx.doi.org/10.56369/tsaes.4761
Copyright (c) 2023 Wilmer Tezara, Victor Hugo Reynel-Chila, Luis Guillermo Hernández-Montiel, Luis Tarquino Llerena-Ramos, Juan José Reyes-Pérez, Tomas Rivas Garcia
This work is licensed under a Creative Commons Attribution 4.0 International License.