Juan José Reyes-Pérez, Luis Tarquino Llerena-Ramos, Luis Guillermo Hernández-Montiel, Victor Hugo Reynel-Chila, Wilmer Tezara, Tomás Rivas-García


Background: The sexual propagation of Cocoa (Theobroma cacao L.) has some limitations to preserve some desirable agronomic characteristics in successive generations. Objective: The present research evaluates the effect of a chitosan based-formulation (Quitomax®) on morpho-physiological, rooting attributes and benefit-cost ratio of two cocoa varieties during vegetative propagation. Methodology: The experimental design was completely randomized with a factorial arrangement (A × B), where A represented the two clones and B the three concentrations of chitosan based formulation used (0, 100, 500 and 1000 mg L-1), with three repetitions. per treatment. The survival (%), the stem diameter (mm), the number of leaves, the number and length (cm) of roots, the biomass (g), the gas exchange (A, gs, Ci, E), and an economic analysis of the two cocoa plant varieties were evaluated at 120 days after starting the trial. Results: The clone CCN-51 treated with 500 mg L-1 had significantly the highest results on survival (80%), stem diameter (6.83 mm), number of leaves per plant (8.2), number and length of roots (6.21 and 35.74 cm), aerial and root biomass (4.07 g and 1.64 g) parameters. In gas exchange, the highest values of Water use efficiency (WUE) were observed at 500 mg L-1 in CCN-51 (5.36 mmol mol-1) and 1000 mg L-1 in INIAP-EETP-801 (7.62 mmol µmol-1). In both clones, higher profitability was obtained when applying the chitosan dose of 500 mg L-1, reaching profitability of 40.65 and 50.00% for clones INIAP-EETP-801 and CCN-51, respectively. Implications: The cocoa clone CCN-51 showed plants that exhibited greater development of both the aerial part and the root part of the cocoa seedlings than INIP-EETP-801 coca clones. Conclusion: The chitosan based formulation at 500 mg L-1 is a promissory alternative to improve the evaluated parameters after 120 days of cocoa vegetative propagation.


asexually propagation; biostimulants; Quitomax®; Cocoa; stem cuttings

Full Text:



Almeida, N.M., de Almeida, A.A.F., Santos, N. de A., do Nascimento, J.L., de Carvalho-Neto, C.H., Priminho-Pirovani, C., Ahnert, D. and Baligar, V.C., 2022. Scion-rootstock interaction and tolerance to cadmium toxicity in juvenile Theobroma cacao plants. Scientia Horticulturae, 300, pp. 111086. 10.1016/j.scienta.2022.111086

Bartlett, M.S., 1937. Properties of sufficiency and statistical tests. Proceedings of the Royal Society of London. Series A-Mathematical and Physical Sciences, 160(901), pp. 268-282.

Chakraborty, M., Hasanuzzaman, M., Rahman, M., Khan, M. A. R., Bhowmik, P., Mahmud, N. U., Tanver, M. and Islam, T., 2020. Mechanism of plant growth promotion and disease suppression by chitosan biopolymer. Agriculture, 10(12), pp. 624.

Chouhan, D. and Mandal, P., 2021. Applications of chitosan and chitosan based metallic nanoparticles in agrosciences-A review. International Journal of Biological Macromolecules, 166, pp. 1554-1569.

Drobek, M., Fr?c, M. and Cybulska, J., 2019. Plant biostimulants: Importance of the quality and yield of horticultural crops and the improvement of plant tolerance to abiotic stress—A review. Agronomy, 9(6), pp. 335.

Garate-Navarro, M.A., do Bomfim-Costa, L.C. and da Costa-Silva, D., 2017. Pro-embrionary somatic structure of three cacao genotypes (Theobroma cacao L.) using staminodes. International Annals of Science, 2(1), pp. 28-32.

Garcia, C., Marelli, J.P. Motamayor, J.C. and Villela, C., 2018. Somatic Embryogenesis in Theobroma cacao L. Methods in Molecular Biology, 1815, pp. 227–245.

González-Ceballos, D.C., Mejía-Londono, H.A. Ramírez-Jiménez, J.A. Monsalve-García, D.A. Hernández-Arredondo, J.D. and Córdoba-Gaona, O. de J., 2021. Intercambio gaseoso de nuevos clones de Cacao establecidos en un sistema agroforestal en Antioquia, Colombia. Revista Fitotecnia Mexicana, 44(4), pp. 635.

González-Estrada, R.R., Blancas-Benitez, F.J., Hernández-Béjar, F.J., Rivas-García, T., Moreno-Hernández, C., Aguirre-Güitrón, L., Ramos-Bell, S. and Gutierrez-Martinez, P., 2023. Chitosan: Postharvest Ecofriendly Nanotechnology, Control of Decay, and Quality in Tropical and Subtropical Fruits. In: U. Shanker, C.M. Hussain and M. Rani, eds. Handbook of Green and Sustainable Nanotechnology: Fundamentals, Developments and Applications. Cham: Springer International Publishing. pp. 73-90.

Hernandez, C.E. and Granados, L., 2021. Quality differentiation of cocoa beans: implications for geographical indications. Journal of the Science Food and Agriculture, 101(10), pp. 3993–4002.

Hidangmayum, A., Dwivedi, P., Katiyar, D. and Hemantaranjan, A., 2019. Application of chitosan on plant responses with special reference to abiotic stress. Physiology and Molecular Biology of Plants, 25, pp. 313-326.

INAMHI (Instituto Nacional de Metereología e Hidrología), 2021. Anuario meteorológico del Cantón Mocache: Estación Experimental Tropical Pichilingue. pp. 12.

Jogaiah, S., Satapute, P., De Britto, S., Konappa, N. and Udayashankar, A.C., 2020. Exogenous priming of chitosan induces upregulation of phytohormones and resistance against cucumber powdery mildew disease is correlated with localized biosynthesis of defense enzymes. International Journal of Biological Macromolecules, 162, pp. 1825-1838.

Junior, E.E.E., Gusua, C.R., Tchapda, T.D. and Andre, O.N.P., 2017. Vegetative propagation of selected clones of cocoa (Theobroma cacao L.) by stem cuttings. Journal of Horticulture and Forestry, 9(9), pp. 80-90.

Kou, S.G., Peters, L.M. and Mucalo, M.R., 2021. Chitosan: A review of sources and preparation methods. International Journal of Biological Macromolecules, 169, pp. 85-94.

Laliberté, B. and End, M., 2015. Supplying New Cocoa Planting Material to Farmers: A Review of Propagation Methodologies. Rome, Italy: Bioversity International.

Leiva-Rojas, E.I., Gutiérrez-Brito, E.E., Pardo-Macea, C.J. and Ramírez-Pisco, R., 2019. Vegetative and reproductive behavior of cocoa (Theobroma cacao L.) due to pruning. Revista Fitotecnia Mexicana, 42(2): pp. 137–146.

León-Bravo, V. and Jaramillo-Villacrés, M., 2021. Sustainability of Chocolate Production in Ecuador: Drivers, Barriers, and Local Factors. Latin American Business Review, 22(4), pp. 323-357.

Massey, F.J., 1951. The Kolmogorov-Smirnov Test for Goodness of Fit. Journal of the American Statistical Association, 46(253), pp. 68–78.

Nair, K.P., 2021. Cocoa (Theobroma cacao L.). Tree Crops: Harvesting Cash from the Word´s Important Cash Crops, 2021, pp. 153–213.

Paul, M.T.T., Cécile, A.E., Pierre, O.E. and Thaddée, B., 2017. Effects of chitosan and snail shell powder on cocoa (Theobroma cacao L.) growth and resistance against black pod disease caused by Phytophthora megakarya. African Journal of Plant Science, 11(8), pp. 331–340.

Peña, D.G., Costales, D. and Falcón, A.B., 2014. Influencia de un polímero de quitosana en el crecimiento y la actividad de enzimas defensivas en tomate (Solanum lycopersicum L.). Cultivos Tropicales, 35(1), pp. 35–42.

Predan, G.M.I., Laz?r, D.A. and Lungu, I.I., 2019. Cocoa Industry—From Plant Cultivation to Cocoa Drinks Production. Caffeinated Cocoa Based Beverages. In: A.M. Grumezescu and A.M. Holban, eds. The Science of Beverages. Woodhead Publishing: Elsevier. pp. 489–507.

Reyes-Pérez, J.J., Llerena-Ramos, L.T., Ramos-Remache, R.A., Ramírez-Arrebato, M.Á., Falcón-Rodríguez, A.B., Pincay-Ganchozo, R.A. and Rivas-García, T., 2021. Efecto del quitosano en la propagación vegetativa de cacao (Theobroma cacao L.) por esquejes. Terra Latinoamericana, 39, pp. 1-9.

Reyes-Perez, J. J., Llerena-Ramos, L. T., Reinel-Chila, V.H., Torres-Rodriguez, J.A., Farouk, S., Hernandez-Montiel, L.G. and Tezara, W., 2022. Effect of Pectimorf on the rooting ability, and morpho-physiological trials of national cocoa (Theobroma cacao L.) under different substrates. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 50(3), pp. 12847-12847.

Reyes Pérez, J.J., Rivero-Herrada, M., García-Bustamante, E.L., Beltran-Morales, F.A., and Ruiz-Espinoza, F.H., 2020. Aplicación de quitosano incrementa la emergencia, crecimiento y rendimiento del cultivo de tomate (Solanum lycopersicum L.) en condiciones de invernadero. Biotecnia, 22(3), pp. 156–163.

Rivas-García, T., González-Gómez, L.G., Boicet-Fabré, T., Jiménez-Arteaga, M.C., Falcón-Rodríguez, A.B. and Terrero-Soler, J.C., 2021. Agronomic response of two tomato varieties (Solanum lycopersicum L.) to the application of the biostimulant whit chitosan. Terra Latinoamericana, 39, pp. 1-9.

Shahrajabian, M.H., Chaski, C., Polyzos, N., Tzortzakis, N. and Petropoulos, S.A., 2021. Sustainable agriculture systems in vegetable production using chitin and chitosan as plant biostimulants. Biomolecules, 11(6), pp. 819.

Solis Bonilla, J.L., Vanderlei Lopes, U., Zamarripa Colmenero, A., Martinez Valencia, B.B., Avendaño Arrazate, C.H., Chia Wong, J.A. and Peres Gramacho, K., 2022. Path analyses define criteria that allow to reduce costs in a breeding population of cacao (Theobroma cacao L.). Tree Genetics & Genomes, 18(3), pp. 25.

Tezara-Fernández, W.A., Valencia-Caicedo, E.E., Reynel-Chila, V.H., Bolaños-Ortega, M.J. and Blanco-Flores, H.A., 2020. Actividad fotosintética y su relación con el rendimiento de diez clones de cacao nacional. Revista Espamciencia, 11(1): pp. 19–27.

Vásquez-Zamora, L.M., Rengifo-Del Aguila, S., Guerrero-Abad, J.C., Vallejos-Torres, G., Imán-Correa, S.A. Torres Flores, E., Mesén-Sequeira, F. and Corazon-Guivin, M.A., 2022. Propagation of Theobroma cacao by Rooted Cuttings in Mini-Tunnels. Advances in Agriculture, 2022, pp. 1-8.

Wainaina, P., Minang, P.A., Duguma, L. and Muthee, K., 2021. A review of the trade-offs across different cocoa production systems in Ghana. Sustainability, 13(19), pp. 10945.



Copyright (c) 2023 Wilmer Tezara, Victor Hugo Reynel-Chila, Luis Guillermo Hernández-Montiel, Luis Tarquino Llerena-Ramos, Juan José Reyes-Pérez, Tomas Rivas Garcia

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.