OVEREXPRESSION OF WUSCHEL IMPROVES THE INDUCTION OF EMBRYOGENIC CALLUS IN SCALPS OF MUSA ACUMINATA L. AAA, CV. “GRAND NAIN”

Ana Ly Arroyo Herrera, Angela Kú González, Rosa María Escobedo Gracia-Medrano, Suemy Terezita Echeverria Echeverria, Miguel Angel Herrera Alamillo, Luis Joel Figueroa Yañez, Enrique Castaño, Luis Carlos Rodríguez Zapata

Abstract


Background: During the last few years the home box transcription factor WUSCHEL (WUS) has been shown to cause dedifferentiation when expressed on somatic cells followed by a production of new stem cells that can lead to somatic embryogenesis or organogenesis. WUS has been shown to promote the transition from a vegetative to an embryogenic state when overexpressed. Objective/Hypothesis. The genetic in vitro transformation of meristematic tissue of Musa acuminata L. AAA, cv. “Grand Nain” was carried out using a heterologous gene WUSCHEL from Arabidopsis thaliana, via vacuum infiltration with Agrobacterium tumefaciens, to establish and ascertain if its expression modifies the progression of the explants to the embryogenesis process and or reduces the time needed for in vitro embryogenic induction phase. Methodology: Explants of proliferating shoot meristems, named “scalps”, of Musa acuminata L. AAA, cv. “Grand Nain” was transformed with WUS gene under the control of promoter GAL4, inducible by 17b-estradiol. The effect of steroid 17b-estradiol (b-Est) and homobrassinolide (HomoBra) on the in vitro somatic embryogenesis induction phase of non-transformed banana scalps was investigated. Results: The successful transformation of the explants was confirmed by PCR, for the transferred neomycin phosphotransferase II (NPTII) and the WUS gene. In addition, the expression of the red fluorescent protein (RFP) for the corresponding transferred reporter gene was verified by fluorescence microscopy in proliferated transformed tissues. Besides, the transformed tissue response to the induction of embryogenesis with either b-Est and/or HomoBra, inducers of the transgene were investigated. Implications: The improvement of the process of somatic embryogenesis in this way, generates a more effective and productive study model in a short time. Conclusions: WUS can promote the meristematic tissue-to-embryonic transition, and eventually somatic embryo formation, suggesting that the homeodomain protein can play a critical role during embryogenesis.

Keywords


A. tumefaciens; Musa acuminata; Estradiol derivatives; Genetic transformation; Homeobox; Somatic embryogenesis; WUSCHEL.

Full Text:

PDF

References


Acereto-Escoffié, P. O. M., Chi-Manzanero, B.H., Echeverría-Echeverría, S., Grijalva, R., Kay A.J., González-Estrada, T., Castaño, E. and Rodríguez-Zapata, L.C., 2005. Agrobacterium mediated transformation of Musa acuminata cv “Grand Nain” scalps by vacuum infiltration. Scientia Horticulture, 105, pp. 359-371. http://doi.org/10.1016/j.scienta.2005.01.028

Arroyo-Herrera, A., Ku-González, A., Canche-Moo, R., Quiroz-Figueroa, F.R., Loyola-Vargas, V., Rodríguez-Zapata, L.C., Burgeff- D’Hondt, C., Suarez-Solís, V.M. and Castaño, E., 2008. Expression of WUSCHEL in Coffea canephora causes ectopic morphogenesis. Plant Cell, Tissue and Organ Culture, 94(2), pp. 171-180. http://doi.org/10.1007/s11240-008-9401-1

Azpeitia, A., Chan J. L., Saenz, L. and Oropeza, C., 2003. Effect of 22(S),23(S) homobrassinolide on somatic embryogenesis in plumule explants of Cocos nucifera (L.) cultured in vitro. Journal of Horticultural Science and Biotechnology, 78(5), pp. 591-596. http://doi.org/10.1080/14620316.2003.11511669

Boutilier, K., Offringa, R., Sharma, V.K., Kieft H., Ouellet, T., Zhan,g L., Hattor,i J., Liu, C.M., van Lammeren, A.A., Miki B.L., Custers J.B. and van Lookeren Campagne M.M., 2002. Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. The Plant Cell, 14(8), pp. 1737-49. http://doi.org/10.1105/tpc.001941.

Chen, B., Mass, L., Figueiredo, D. and Boutilier K., 2022. BABY BOOM regulates early embryo and endosperm development. Plant Biology, 119(25), p. e2201761119. https://doi.org/10.1073/pnas.2201761119

Clouse, S.D., 2002. Arabidopsis Mutants Reveal Multiple Roles for Sterols in Plant Development. The Plant Cell, 14, pp. 1995-2000. http://doi.org/10.1105/tpc.140930.

Costa, L.D., Vaccari, I., Mandolini, M. and Martinelli, A., 2009. Elaboration of a reliable strategy based on Real-Time PCR to characterize genetically modi?ed plantlets and to evaluate the ef?ciency of a marker gene removal in grape (Vitis spp.). Journal Agricultural Food Chemistry, 57, pp. 2668–2677. http://doi.org/10.1021/jf802740m

Côte, F.X., Domergue, R., Monmarson, S., Schwendiman, J., Teisson, C. and Escalant, J.V., 1996. Embryogenic cell suspensions from the male flower of Musa AAA cv. Grand nain. Physiologia Plantarum, 97, pp. 285-290. http://doi.org/10.1034/j.1399-3054.1996.970211.x

Cronauer-Mitra, S.S. and Krikorian, A.D., 1988. Plant regeneration via somatic embryogenesis in the seeded diploid banana Musa ornata Roxb. Plant Cell Reports, 7, pp. 23-25. http://doi.org/10.1007/BF00272970

Dhed’a, D., F. Dumortier, B., Panis, D., Vuylsteke and De Langhe, E.A.L., 1991. Plant regeneration in cell suspension cultures of the cooking banana cv “Bluggoe” (Musa spp. ABB group). Fruits, 46, pp. 125-135. https://www.pubhort.org/fruits/

Dodeman, V. L., Ducreux, G. and Kreis M., 1997. Review article: Zygotic embryogenesis versus somatic embryogenesis, Journal of Experimental Botany, 48(8), pp. 1493-1509, http://doi.org/10.1093/jxb/48.8.1493.

Dohi, K., Nishikiori, M., Tamai A., Ishikawa, M., Meshi, T. and Mori, M., 2006. Inducible virus-mediated expression of a foreign protein in suspension-cultured plant cells. Archives of Virology, 151, pp. 1075–1084. http://doi.org/10.1007/s00705-005-0705-8

Dolzblasz, A., Nardmann, J., Clerici, E., Causier, B., Graff, E., Chen, J., Davies, B., Werr, W., Laux, T., 2016. Stem cell regulation by Arabidopsis WOX genes. Molecular Plant, 9(7), pp. 1028-1039. http://doi.org/10.1016/j.molp.2016.04.007

El Ouakfaoui, S., Schenell, J., Abdeen, A., Colville, A., Labbé, H., Han, S., Baum, B., Laberge, S., and Miki, B., 2010. Control of somatic embryogenesis and embryo development by AP2 trancription factors. Plant Molecular Biology, 74, pp. 313-326. http://doi.org/10.1007/s11103-010-9674-8

Escalant, J.V., Teisson, C. and Côte, F., 1994. Amplified somatic embryogenesis from male flowers of triploid banana and plantain cultivars (Musa spp.). In vitro Plant Cellular and Development Biology, 30, pp. 181-186. http://doi.org/10.1007/BF02823029

Fridman, Y. and Salvadi-Goldstein S., 2013. Brassinosteroids. In growth control: How, when and where. Plant Science, 209, pp, 23-31. http://doi.org/10.1016/j.plantsci.2013.04.002.

Galarza-Suárez, L., 2019. Tierra, trabajo y tóxicos: sobre la producción de un territorio bananero en la costa sur del Ecuador. Estudios atacameños, (63), pp. 341-364. http://dx.doi.org/10.22199/issn.0718-1043-2019-0034

Gallie, D.R., Lucas, W.J. and Walbot, V., 1989. Visualizing mRNA expression in plant protoplasts: factors in?uencing ef?cient mRNA uptake and translation. The Plant Cell, 1, pp. 303–311. http://doi.org/10.1105/tpc.1.3.301

Gallois, J.L., Woodward, C., Reddy, G.V. and Sablowski, R., 2002. Combined SHOOT MERISTEMLESS and WUSCHEL trigger ectopic organogenesis in Arabidopsis. Development, 129(13), pp. 3207-17. http://doi.org/10.1242/dev.129.13.3207.

Ganapathi T.R., Suprasanna, P., Bapat, V.A., Kulkarni V.M. and Rao, P.S., 1999. Somatic embryogenesis and plant regeneration from male ?ower buds in banana. Current Science, 76, pp. 1228–1231. https://www.jstor.org/stable/24101947

Grapin, A., Ortíz, J.L., Lesco, T., Ferrière , N. and Côte, F.X., 2000. Recovery and regeneration of embryogenic cultures from female ?owers of False Horn Plantain. Plant Cell Tissue Organ Culture, 61, pp. 237–244. http://doi.org/10.1023/A:1006423304033

Jafari, N., Othman, R. Yasmin, Tan, B. Chin, and Khalid, N., 2015. Morphohistological and molecular profiles during the developmental stages of somatic embryogenesis of Musa acuminata cv. ‘Berangan’ (AAA). Acta physiologiae plantarum, 37(3), pp. 1796-1796. http://doi.org/10.1007/s11738-015-1796-9

Jang, J.C., Fujioka, S., Tasaka, M., Seto, H., Takatsuto, S., Ishii, A., Aida, M., Yoshida, S. and Sheen. J., 2000. A critical role of sterols in embryonic patterning and meristem programming revealed by the fackel mutants of Arabidopsis thaliana. Genes & Development, 14(12), pp. 1485-97. http://doi.org/10.1101/gad.14.12.1485

Jha, P., Ochatt, S.J. and Kumar, V., 2020. WUSCHEL: a master regulator in plant growth signaling. Plant Cell Reports, 39, pp. 431–444. http://doi.org/10.1007/s00299-020-02511-5.

Karami, O., Aghavaisi, B. and Mahmoudi Pour, A., 2009. Molecular aspects of somatic-to-embryogenic transition in plants. Journal Chemical Biology, 2, pp. 177–190. http://doi.org/10.1007/s12154-009-0028-4.

Klaus, F.X., Mayer, H. S., Haecker, A., Lenhard, M., Jorgenes, G. and Laux, T., 1998. Role of WUSCHEL in regulation Stem Cell Fate in the Arabidopsis Shoot Meristem. Cell, 95, pp. 805-815. http://doi.org/10.1016/S0092-8674(00)81703-1

Klimaszewska, K., Pelletier, G., Overton, C., 2010. Hormonally regulated overexpression of Arabidopsis WUS and conifer LEC1 (CHAP3A) in transgenic white spruce: implications for somatic embryo development and somatic seedling growth. Plant Cell Reports, 29, pp. 723-734. http://doi.org/10.1007/s00299-010-0859-z

Lara-Lopes, F., Galvan-Ampudia, C. and Benoit L., 2021. WUSCHEL in the shoot apical meristem: old player, new tricks. Journal of Experimental Botany, 72(5), pp. 1527–1535, http://doi.org/10.1093/jxb/eraa572.

Laux, T., Klaus, F.X., Mayer, J.B. and Gerd J., 1996. The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development, 122, pp. 87-96. http://doi.org/10.1242/dev.122.1.87

Mayer, K.F., Schoofs, H., Haecker, A., Lenhard, M., Jurgens, G. and Laux, T., 1998. Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell, 95, pp. 805-815. http://doi.org/10.1016/S0092-8674(00)81703-1

Miyazawa, Y., Nakajima, N., Abe, T., Sakai, A., Fujioka, S., Kawano, S., Kuroiwa, T. and Yoshida S., 2003. Activation of cell proliferation by brassinolide application in tobacco BY-2 cells: effects of brassinolide on cell multiplication, cell-cycle-related gene expression, and organellar DNA contents. Journal Experimental of Botany, 54(393), pp. 2669-78. http://doi.org/10.1093/jxb/erg312

Murashige, T. and Skoog, F., 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15, pp. 473-497. http://doi.org/10.1111/j.1399-3054.1962.tb08052.x

Nandhakumar, N., Kumar, K., Sudhakar, D. and Soorianathasundram, K., 2018. Plant regeneration, developmental pattern and genetic fidelity of somatic embryogenesis derived Musa spp. Journal of Genetic Engineering and Biotechnology, 16(2), pp. 587-598. https://doi.org/10.1016/j.jgeb.2018.10.001.

Neelakandan, A.K. and Wang, K., 2012. Recent progress in the understanding of tissue culture induced genome level changes in plants and potential applications. Plant Cell Reports, 31, pp. 597–620. http://doi.org/10.1007/s00299-011-1202-z

Nolan T. M., Vukasinovic, N., Liu, D., Russinova, E. and Yin, Y., 2020. Brassinosteoids: multidimensional regulators of plant growth, development and stress responses. The Plant Cell, 32(2), pp. 295-318. http://doi.org/10.1105/tpc.19.00335

Noriko, K., Hiroshi, N., Atsushi, M., Yutaka, S. and Makoto, M., 2003. Isolation and characterization of a rice WUSCHEL-type homeobox gene that is speci?cally expressed in the central cells of a quiescent center in the root apical meristem. Plant Journal, 35, pp. 429–441. http://doi.org/10.1046/j.1365-313X.2003.01816.x

Novak, F.J., Arza, R., VanDuren, M., PereaDallos, M., Conger, B.V. and Tang, X., 1989. Somatic embryogenesis and plant regeneration in suspension culture of dessert (AA and AAA) and cooking (ABB) bananas (Musa spp). Nature Biotechnology, 7, pp. 154–159. http://doi.org/10.1038/nbt0289-154

Okuzaki, A., Konagaya, Ki., Nanasato, Y., Tsuda, M. and Tabei Y., 2011. Estrogen-inducible GFP expression patterns in rice (Oryza sativa L.). Plant Cell Reports, 30, pp. 529–538. http://doi.org/10.1007/s00299-010-0963-0

Pérez-Hernández, J.B., and Rosell-García, P., 2008. In?orescence proliferation for somatic embryogenesis induction and suspension-derived plant regeneration from banana (Musa AAA, cv. ‘Dwarf Cavendish’) male ?owers. Plant Cell Reports, 27, pp. 965–971. http://doi.org/10.1007/s00299-008-0509-x

Ponsamuel, J., Samson, N.P., Ganeshan, P.S., Sathyaprakash, V. and Abraham G.C., 1996. Somatic embryogenesis and plant regeneration from the immature cotyledonary tissues of cultivated tea (Camellia sinensis (L). O. Kuntze). Plant Cell Reports, 16, pp. 210–214. http://doi.org/10.1007/BF01890869

Schoofs, H., Panis, B., Strosse, H., Mayo-Mosqueda, A., López Torres, J., Roux, N., Dolezel J. y Swennen, R. 1999. Cuellos de botella en la regeneración y mantenimiento de las suspensiones celulares morfogénicas de banano y la regeneración de las plantas vía embriogénesis somática a partir de ellas. INFOMUSA, 8(2), pp. 3-6. www.musalit.org/seeMore.php?id=13989

Shoofs, Hilde., 1997. The Origin of Embryogenic cells in Musa. Dissertations of Agriculture, Ktholieke Universiteit Leuven. Pp. 25-31. http://lib.ugent.be/catalog/rug01:000402461

Shivani, A., Sharma, P., Kaur, V., Kaur, N., Pandey, N., and Tiwari, S., 2017. Genome-wide analysis of transcription factors during somatic embryogenesis in banana (Musa spp.) cv. Grand Naine. PLOS ONE, 12(8), p. e0182242. http://doi.org/10.1371/journal.pone.0182242.

Sipen, P., and Davey, M. R., (2012). Effects of N(6)-benzylaminopurine and Indole Acetic Acid on In Vitro Shoot Multiplication, Nodule-like Meristem Proliferation and Plant Regeneration of Malaysian Bananas (Musa spp.). Tropical Life Sciences Research, 23(2), pp. 67–80. http://www.tlsr.usm.my/tlsr23022012/23022012_07.pdf

Solís-Ramos, L.Y., González-Estrada, T., Nahuath-Dzib, S., Rodríguez-Zapata L.C. and Castaño, E., 2009. Overexpression of WUSCHEL in C. chinense causes ectopic morphogenesis. Plant Cell Tissue Organ Culture, 96, pp. 279–287. http://doi.org/10.1007/s11240-008-9485-7.

Sreekala, C., Wu, L., Gu, K., Wang, D., Tian, D. and Yin, Z., 2005. Excision of a selectable marker in transgenic rice (Oryza sativa L.) using a chemically regulated Cre/loxP system. Plant Cell Reports, 24, pp. 86–94. http://doi.org/10.1007/s00299-004-0909-5

Strosse, H., Domergue, R., Pains, B., Escalant, J.V. and Côte, F., 2003. Banana and plantain embryogenic cell suspensions. INIBAP Technical Guideline 8. In: Vézina A, Picq C (Eds). International Network for the Improvement of Banana and Plantain, Montpellier. Pp. 1-36.

Strosse, H., Schoofs, H., Panis, B., Andre, E., Reyniers, K. and Swennen, R., 2006. Development of embryogenic cell suspensions from shoot meristematic tissue in bananas and plantains (Musa spp.). Plant Science, 170, pp. 104–112. http://doi.org/10.1016/j.plantsci.2005.08.007

Weiste, C., Pedrotti. L., Selvanayagam, J., Muralidhara, P., Fröschel, C., Novák, O., Ljung, K., Johannes, Hanson, J., and Dröge-Lase, W., 2017. The Arabidopsis bZIP11 transcription factor links low-energy signaling to auxin-mediated control of primary root growth. PLoS Genetics, 13(2), p. e1006607. http://doi.org/10.1371/journal.pgen.1006607.

Winkelmann, T., 2016. Somatic versus zyotic embryogenes: learning from seed. In: Germana, M., Lambardi, M., eds. In vitro embryogenesis in higher plants. Methods in Molecular Biology, vol 1359. Human Press, New York, NY. http://doi.org/10.1007/978-1-4939-3061-6_2.

Xu, C.X., Panis, B., Strosse, H., Li, H.P., Xiao, H.G., Fan, H.Z. and Swennen, R., 2005. Establishment of embryogenic cell suspensions and plant regeneration of the dessert banana ‘Williams’ (Musa AAA group). Journal Horticultural Science Biotechnology, 80, pp. 523–528. http://doi.org/10.1080/14620316.2005.11511972

Yang, X, and Zhang, X., 2010. Regulation of somatic embryogenesis in higher plants. Critical Review Plant Sciences, 29, pp. 36–57. http://doi.org/10.1080/07352680903436291

Youssef, M., James, A., Mayo-Mosqueda, A., Ku-Cauich, J.R., Grijalva-Arango, R. and Escobedo-GM, R.M., 2010. Influence of genotype and age of explant source on the capacity for somatic embryogenesis of two Cavendish banana cultivars (Musa acuminata Colla, AAA). African Journal of Biotechnology, 9(15), pp. 2216-2223. http://doi.org/10.5897/AJB10.1807

Zhang, Y., Li, H., Ouyang, B., Lu, Y. and Ye, Z., 2006. Chemical-induced auto expression of selectable markers in elite tomato plants transformed with a gene conferring resistance to lepidopteran insects. Biotechnology Letters, 28, pp. 1247–1253. http://doi.org/10.1007/s10529-006-9081-z

Zuo, J., Niu, Q.W. and Chua, N.H., 2000. An estrogen receptor-based trans activator XVE mediates highly inducible gene expression in transgenic plants. Plant Journal, 24(2):265–273. http://doi.org/10.1046/j.1365-313x.2000.00868.x

Zuo, J., Niu, Q.W., Frugis, G., Chua, N.H., 2002. The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant Journal, 30(3), pp. 349–359. http://doi.org/10.1046/j.1365-313X.2002.01289.x

Zuo, J., Niu, Q.W., Moller, S.G., Chua, N.H., 2001. Chemical-regulated, site-speci?c DNA excision in transgenic plants. Nature Biotechnology, 19, pp. 157–161. http://doi.org/10.1038/84428




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v27i1.47516

DOI: http://dx.doi.org/10.56369/tsaes.4751



Copyright (c) 2023 Miguel Angel Herrera Alamillo, ANA LY ARROYO HERRERA, ANGELA KÚ GONZÁLEZ, ROSA ESCOBEDO.GRACIA.MEDRANO, SUEMY TEREZITA ECHEVERRIA ECHEVERRIA, LUIS FIGUEROA YAÑEZ, ENRIQUE CASTAÑO, LUIS CARLOS RODRÍGUEZ ZAPATA

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.