Fátima del R. Yam-Herrera, Esau Ruiz Sánchez, Sergio López-Vázquez, Juan Díaz-Mayo, Ismael Tucuch-Haas, Luis Latournerie-Moreno, Ángel Herrera-Gorocica


Background. The use of biosolids in agriculture allows to supply essential nutrients for the plant development. Objective. To evaluate the effect of supplying swine biosolids on the physio-agronomic characteristics and incidence of pests in X'catik pepper. Methodology. The experiment was carried out under greenhouse conditions and set in a randomized block experimental design with four replicates. Three different levels of biosolids were evaluated (500, 750 and 1000 g plant-1) and the control (no supply of biosolid). Results. Plants treated with 750 g de biosólido had the highest net carbon assimilation rate (AN) and the lowest intracellular carbon (Ci), likewise, there was a trend of higher values for the yield components in this treatment. The population density of B. tabaci and the damage by Poliphagotarsonemus latus was similar among treatments. Implications. The use of swine biosolid in agriculture represent a feasible alternative to enhance the plant physiological condition and potentially the yield in horticultural crops. Conclusion. The supply of 750 g plant-1 of swine biosolid improved the physiological parameters in the X'catik pepper plants, had no effect on pest damage, but showed a strong tendency to increase yield.


Organic fertilizer; Bemisia tabaci; Polyphagotarsonemus latus; Chili production.

Full Text:



Ali, M., Ahmed, T., Abu-Dieyeh, M. and Al-Ghouti, M.A., 2021. Investigating the quality and efficiency of biosolid produced in qatar as a fertilizer in tomato production. Agronomy, 11 (12), pp.25-52. https://doi.org/10.3390/agronomy11122552

Allee, L.L. and Davis, P.M., 1996. Effect of manure on maize tolerance to western corn rootworm (Coleoptera: Chrysomelidae). Journal of economic entomology, 89 (6), pp. 1608-1620. https://doi.org/10.1093/jee/89.6.1608

Alyokhin, A., Mota?Sanchez, D., Baker, M., Snyder, W.E., Menasha, S., Whalon, M. and Moarsi W.F., 2014. The Red Queen in a potato field: integrated pest management versus chemical dependency in Colorado potato beetle control. Pest Management Science, 71 (3), pp. 343-356. https://doi.org/10.1002/ps.3826

Alyokhin, A., Porter, G., Groden, E. and Drummond, F., 2005. Colorado potato beetle response to soil amendments: a case in support of the mineral balance hypothesis? Agriculture, Ecosystems & Environment, 109 (3-4), pp. 234-244. https://doi.org/10.1016/j.agee.2005.03.005

Andrade, M.C., Da, Silva, A.A., Neiva, I.P., Oliveira, I.R.C., De Castro, E.M., Francis, D.M. and Maluf, W.R., 2017. Inheritance of type IV glandular trichome density and its association with whitefly resistance from Solanum galapagense accession LA1401. Euphytica, 213 (2), pp. 1-12. https://doi.org/10.1007/s10681-016-1792-1

Atiyeh, R.M., Arancon, N., Edwards, C.A. and Metzger, J.D., 2000. Influence of earthworm-processed pig manure on the growth and yield of greenhouse tomatoes. Bioresource Technology, 75 (3), pp. 175-180. https://doi.org/10.1016/S0960-8524(00)00064-X

Balakrishnan, N., Baskaran, R.K., and Mahadevan, N.R. 2007. Impact of manures and fertilizers on sucking pests of cotton. Annals of Plant Protection Sciences, 15 (1), pp. 235-236.

Banfield-Zanin, J.A., Rossiter, J.T., Wright, D.J., Leather, S.R. and Staley, J.T., 2012. Predator mortality depends on whether its prey feeds on organic or conventionally fertilised plants. Biological control, 63 (1), pp. 56-61. https://doi.org/10.1016/j.biocontrol.2012.05.008

Boeckler, G.A., Gershenzon, J., and Unsicker, S.B., 2011. Phenolic glycosides of the Salicaceae and their role as anti-herbivore defenses. Phytochemistry, 72 (13), pp. 1497-1509. https://doi.org/10.1016/j.phytochem.2011.01.038

Boiteau, G., Lynch, D.H. and Martin, R.C., 2008. Influence of fertilization on the Colorado potato beetle, Leptinotarsa decemlineata, in organic potato production. Environmental Entomology, 37 (2), pp. 575-585. https://doi.org/10.1093/ee/37.2.575

Brito, A.N., Peña, Y.J. and de la Vega Báez, D., 2015. Efecto agronómico sobre el tomate del biosólido resultante de una planta de tratamiento anaeróbico de residuales pecuario. Centro Agrícola, 42 (4), pp. 53-60.

Brown, J.K., 2010. Phylogenetic biology of the Bemisia tabaci sibling species group. Bemisia: bionomics and management of a global pest, Springer, Dordrecht, pp. 31-67. https://doi.org/10.1007/978-90-481-2460-2_2.

Chang, R., Guo, Q., Pandey, P., Li, Y., Chen, Q. and Sun, Y., 2021. Pretreatment by composting increased the utilization proportion of pig manure biogas digestate and improved the seedling substrate quality. Waste Management, 129, pp. 47-53. https://doi.org/10.1016/j.wasman.2021.05.010

Chang, R.X., Michel Jr, F.C., Gan, J.J., Wang, Q., Wang, Z.Z. and Li, Y.M., 2017. Effect of single and combined herbicides in compost on growth of sensitive crops: green bean, cucumber, and tomato. Compost Science & Utilization, 25 (sup1), pp. S23-S30. https://doi.org/10.1080/1065657X.2017.1385430

Chatterjee, R., Choudhuri, P., Laskar, N. and Pundibari, C.B., 2013. Influence of nutrient management practices for minimizing whitefly (Bemisia tabaci Genn.) population in tomato (Lycopersicon esculentum Mill.). Int J Sci Environ Technol, 2 (5), pp. 956-962.

Chow, H.Y. and Pan, M., 2020. Fertilization value of biosolids on nutrient accumulation and environmental risks to agricultural plants. Water, Air, & Soil Pollution, 231 (12), pp. 1-13. https://doi.org/10.1007/s11270-020-04946-8

Di Rienzo, J.A., Casanoves, F., Balzarini, M.G., González, L., Tablada, M. and Robledo, C.W., 2020. InfoStat, version 2018. Centro de Transferencia InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. URL http://www.infostat.com.Ar

Duarte, A.D.F., Andreazza, F., Nava, D.E. and Da Cunha, U.S., 2021. Polyphagotarsonemus latus (Trombidiformes: Tarsonemidae) on Laurus nobilis (Polycarpicae: Lauraceae): Report of infestation and damage. Systematic and Applied Acarology, 26 (8), pp. 1614-1618. https://doi.org/10.11158/saa.26.8.14

Eigenbrode, S.D. and Pimentel, D., 1988. Effects of manure and chemical fertilizers on insect pest populations on collards. Agriculture, Ecosystems & Environment, 20 (2), pp. 109-125. https://doi.org/10.1016/0167-8809(88)90151-X

Gamboa-Angulo, J., Ruiz-Sánchez, E., Alvarado-López, C., Gutiérrez-Miceli, F., Ruíz-Valdiviezo, V.M., Medina-Dzul, Kati., 2020. Efecto de biofertilizantes microbianos en las características agronómicas de la planta y calidad del fruto del chile xcat´ik (Capsicum annuum L.). Terra Latinoamericana, 38 (4), pp. 817-826. https://doi.org/10.28940/terra.v38i4.716

Garruña-Hernandez, R., Orellana, R., Larque-Saavedra, A. and Canto, A., 2014. Understanding the physiological responses of a tropical crop (Capsicum chinense Jacq.) at high temperature. PLoS one, 9 (11), pp. e111402. https://doi.org/10.1371/journal.pone.0111402

Gou, J.Y., Suo, S.Z., Shao, K.Z., Zhao, Q., Yao, D., Li, H.P. and Rensing, C., 2020. Biofertilizers with beneficial rhizobacteria improved plant growth and yield in chili Capsicum annuum L. World Journal of Microbiology and Biotechnology, 36 (6), pp. 1-12. https://doi.org/10.1007/s11274-020-02863-w

Hasnain, M., Chen, J., Ahmed, N., Memon, S., Wang, L., Wang, Y. and Wang, P., 2020. The effects of fertilizer type and application time on soil properties, plant traits, yield and quality of tomato. Sustainability, 12 (21), pp. 90-65. https://doi.org/10.3390/su12219065

Herrera-Gorocica, A.M., Ruiz-Sánchez, E., Ballina-Gómez, H.S., Reyes-Solís, G. and Sánchez-Lázaro, A., 2022. Response of Bemisia tabaci Genn to the association tomato? aromatic plant. Agrociencia. 56 (4), pp. 830-853. https://doi.org/10.47163/agrociencia.v56i4.2809

Horowitz, A.R., Ghanim, M., Roditakis, E., Nauen, R. and Ishaaya, I., 2020. Insecticide resistance and its management in Bemisia tabaci species. Journal of Pest Science, 93, pp. 893-910. https://doi.org/10.1007/s10340-020-01210-0

Islam, M.N., Hasanuzzaman, A.T.M., Zhang, Z.F., Zhang, Y. and Liu, T.X., 2017. High level of nitrogen makes tomato plants releasing less volatiles and attracting more Bemisia tabaci (Hemiptera: Aleyrodidae). Frontiers in plant science, 8, pp. 466. https://doi.org/10.3389/fpls.2017.00466

Jaiswal, V., Gahlaut, V., Kumar, N. and Ramchiary, N., 2021. Genetics, genomics and breeding of chili pepper Capsicum frutescens L. and other Capsicum species. Advances in Plant Breeding Strategies: Vegetable Crops. Springer, Cham, 9: Fruits and Young Shoot, pp. 59-86. https://doi.org/10.1007/978-3-030-66961-4_2

Jiao, X., Xie, W., Zeng, Y., Wang, C., Liu, B., Wang, S. and Zhang, Y., 2018. Lack of correlation between host choice and feeding efficiency for the B and Q putative species of Bemisia tabaci on four pepper genotypes. Journal of pest science, 91 (1), pp. 133-143. https://doi.org/10.1007/s10340-017-0906-4

Jiménez-Martínez, E., Izaguirre, R.M. and Mario, M.C., 2013. Plaguicidas botánicos y químicos para el control del ácaro blanco (Polyphagotarsonemus latus Bank) (ACARINA: TARSONEMIDAE) en chiltoma (Capsicum annuum L.), Tisma, Masaya. La Calera, 13 (20), pp. 9-15. https://doi.org/10.5377/calera.v13i20.1619

Jin, V.L., Potter, K.N., Johnson, M.V.V., Harmel, D. and Arnold, J.G., 2015. Surface-applied biosolids enhance soil organic carbon and nitrogen stocks but have contrasting effects on soil physical quality. Applied and Environmental Soil Science, 2015, pp. 1-10. http://dx.doi.org/10.1155/2015/715916

Kajimura, T., Widiarta, I.N., Nagai, K., Fujisaki, K. and Nakasuji, F., 1995. Effect of organic rice farming on planthoppers 4. Reproduction of the white backed planthopper, Sogatella furcifera Horváth (Homoptera: Delphacidae). Population Ecology, 37, pp. 219-224. https://doi.org/10.1007/BF02515823

Krishnaveni, M., Ravi, M., Allwin, L. and Sabarinathan, K.G. 2019. Effect of organic amendments on the incidence of major pests of ash gourd, Benincasa hispida Thunb. Journal of Pharmacognosy and Phytochemistry, 8 (6), pp. 538-542.

López-Castilla, L., Garruña-Hernández, R., Castillo-Aguilar, C., Martínez-Hernández, A., Ortiz-García, M. and Andueza-Noh, R.H., 2019. Structure and genetic diversity of nine important landraces of Capsicum species cultivated in the Yucatan Peninsula, Mexico. Agronomy, 9 (7), pp. 376. https://doi.org/10.3390/agronomy9070376

López, M.D., Jordán, M.J. and Pascual-Villalobos, M.J. 2008. Toxic compounds in essential oils of coriander, caraway and basil active against stored rice pests. Journal of Stored Products Research, 44 (3), pp. 273-278. https://doi.org/10.1016/j.jspr.2008.02.005

Martínez-Martínez, V., Gomez-Gil, J., Machado, M.L. and Pinto, F.A., 2018. Leaf and canopy reflectance spectrometry applied to the estimation of angular leaf spot disease severity of common bean crops. PLoS One, 13 (4), pp. 1-18. https://doi.org/10.1371/journal.pone.0196072

Misal, S., Warghane, A. and Patil, G., 2022. Chilli leaf curl disease: an Indian scenario. Indian Phytopathology, 7 (5), pp. 627–637. https://doi.org/10.1007/s42360-022-00531-7

Mohamed, B., Mounia, K., Aziz, A., Ahmed, H., Rachid, B. and Lotfi, A., 2018. Sewage sludge used as organic manure in Moroccan sunflower culture: Effects on certain soil properties, growth and yield components. Science of the Total Environment, 627, pp. 681-688. https://doi.org/10.1016/j.scitotenv.2018.01.258

Morales, H., Perfecto, I. and Ferguson, B., 2001. Traditional fertilization and its effect on corn insect populations in the Guatemalan highlands. Agriculture, Ecosystems & Environment, 84 (2), pp. 145-155. https://doi.org/10.1016/S0167-8809(00)00200-0

Pahalvi, H.N., Rafiya, L., Rashid, S., Nisar, B., and Kamili, A.N., 2021. Chemical Fertilizers and Their Impact on Soil Health. In: Dar, G.H., Bhat, R.A., Mehmood, M.A., Hakeem, K.R. (eds) Microbiota and Biofertilizers, Springer, Cham. 2, pp. 1-20. https://doi.org/10.1007/978-3-030-61010-4_1

Pan, M., Yau, P.C., Lee, K.C., Zhang, H., Lee, V., Lai, C.Y. and Fan, H.J., 2021. Nutrient Accumulation and Environmental Risks of Biosolids and Different Fertilizers on Horticultural Plants. Water, Air, & Soil Pollution, 232 (12), pp. 1-16. https://doi.org/10.1007/s11270-021-05424-5

Pantoja, K.F., Rocha, K.C., Melo, A.M., Marubayashi, J.M., Baldin, E.L., Bentivenha, J.P. and Krause-Sakate, R., 2018. Identification of Capsicum accessions tolerant to Tomato severe rugose virus and resistant to Bemisia tabaci Middle East-Asia Minor 1 (MEAM1). Tropical Plant Pathology, 43 (2), pp. 138-145. https://doi.org/10.1007/s40858-018-0212-6

Peñuela, M., Arias, L.L., Viáfara-Vega, R., Rivera Franco, N. and Cárdenas, H., 2021. Morphological and molecular description of three commercial Capsicum varieties: a look at the correlation of traits and genetic distancing. Genetic Resources and Crop Evolution, 68 (1), pp. 261-277. https://doi.org/10.1007/s10722-020-00983-8

Poornima, R., Suganya, K. and Sebastian, S.P., 2022. Biosolids towards Back–To–Earth alternative concept (BEA) for environmental sustainability: a review. Environmental Science and Pollution Research, 29 (3), pp. 3246-3287. https://doi.org/10.1007/s11356-021-16639-8

Potisek-Talavera, M.D.C., Figueroa-Viramontes, U., González-Cervantes, G., Jasso-Ibarra, R. and Orona-Castillo, I., 2010. Soil applied biosolids and its effect on soil organic matter and nutrient content. Terra Latinoamericana, 28 (4), pp. 327-333.

Ramírez-Builes, V.H., 2007. Los sistemas agroforestales en el trópico y la fertilidad del suelo. Artículo Publicado en la Revista: Investigaciones de Unisarc. 5 (2) pp. 11-21.

Ravi, M., Dhandapani, N., Sathiah, N. and Murugan, M., 2006. Influence of organic manures and fertilizers on the incidence of sucking pests of sunflower, Helianthus annuus L. Annals of Plant Protection Sciences, 14 (1), pp. 41-44.

Rowen, E., Tooker, J.F. and Blubaugh, C.K., 2019. Managing fertility with animal waste to promote arthropod pest suppression. Biological Control, 134, pp. 130-140. https://doi.org/10.1016/j.biocontrol.2019.04.012

Ruíz, J.L.P., Peña, Y.J., Carrera, J.S. and Santana, I.A.R., 2021. Use of biosolid as a fertilizer in the tomato culture. Universidad & Ciencia, 10 (2), pp. 1-12.

Rusli, L.S., Abdullah, R., Yaacob, J.S. and Osman, N., 2022. Organic amendments effects on nutrient uptake, secondary metabolites, and antioxidant properties of Melastoma malabathricum L. Plants, 11 (2) pp. 153. https://doi.org/10.3390/plants11020153

Saranraj, P. and Stella, D., 2012. Vermicomposting and its importance in improvement of soil nutrients and agricultural crops. Novus Natural Science Research, 1 (1), pp. 14-23.

Singh, R.P. and Agrawal, M., 2008. Potential benefits and risks of land application of sewage sludge. Waste management, 28 (2), pp. 347-358. https://doi.org/10.1016/j.wasman.2006.12.010

Stafford, D.B., Tariq, M., Wright, D.J., Rossiter, J.T., Kazana, E., Leather, S.R. and Staley, J.T., 2012. Opposing effects of organic and conventional fertilizers on the performance of a generalist and a specialist aphid species. Agricultural and Forest Entomology, 14 (3), pp. 270-275. https://doi.org/10.1111/j.1461-9563.2011.00565.x

Stavridou, E., Giannakis, I., Karamichali, I., Kamou, N.N., Lagiotis, G., Madesis, P. and Lagopodi, A.L., 2021. Biosolid-Amended Soil Enhances Defense Responses in Tomato Based on Metagenomic Profile and Expression of Pathogenesis-Related Genes. Plants, 10 (12), pp. 2789. https://doi.org/10.3390/plants10122789

Tzortzakis, N., Saridakis, C. and Chrysargyris, A., 2020. Treated wastewater and fertigation applied for greenhouse tomato cultivation grown in municipal solid waste compost and soil mixtures. Sustainability, 12 (10), pp. 4287. https://doi.org/10.3390/su12104287

Utria-Borges, E., Cabrera-Rodríguez, J.A., Reynaldo-Escobar, I.M., Morales-Guevara, D., Fernández, A.M. and Toledo Toledo, E., 2008. Utilización agraria de los biosólidos y su influencia en el crecimiento de plántulas de tomate (Lycopersicon esculentum Mill). Revista Chapingo. Serie Horticultura, 14 (1), pp. 33-39.

URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v27i1.47494

DOI: http://dx.doi.org/10.56369/tsaes.4749

Copyright (c) 2023 Fátima del R. Yam-Herrera, Esau Ruiz Sánchez, Sergio López-Vázquez, Juan Díaz-Mayo, Ismael Tucuch-Haas, Luis Latournerie-Moreno, Ángel Herrera-Gorocica

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.