EVALUATING THE CORRELATION OF PLOIDY LEVEL, LEAF SIZE, STOMATA CHARACTERISTICS AND TUBER WEIGHT IN Dioscorea spp. POPULATIONS FROM JALISCO, MÉXICO

José Juvencio Castañeda-Nava, Fernando Santacruz-Ruvalcaba, Rodrigo Barba-González, José de Jesús Sánchez González, Lino De la Cruz Larios

Abstract


Background. “Camote de cerro” (Dioscorea spp.) is a plant of great importance in West rural areas of Mexico as food source and alternative medicine. Dioscorea is an important crop around the world for its carbohydrate contribution to diets. Yams are polyploid plants, and species with modifications at ploidy level also present changes in leaf size and stomata characteristics. These variations can favor resistance to adverse conditions. Objective. In the present study, evaluation and correlation of ploidy levels, leaf size, stomata characteristics and tuber weight were carried out for Dioscorea remotiflora Kunth and Dioscorea sparsiflora Hemsley in accessions obtained from 11 localities in México. Methodology. Chromosome counting was carried out in root meristems. Measuring and counting stomata were carried out. Productivity rate (PR) was calculated dividing harvested tuber weight over seed tuber weight, for each experimental unit. Leaves width and length were measured. Results. Show that variation is higher among different localities than among specimens from the same locality. Significant differences were observed for, ploidy levels (P), stomata dimensions and number of chloroplasts in stomata. Differences in chloroplast numbers present in occlusive cells were also significant for different species. Implications. Ploidy level showed a relation with chloroplasts numbers in stomata and stomata width. Leaf size presented a relation with stomata dimensions, and leaf width showed a relation with tuber weight. Conclusions. These observations allowed us to determine that there are variation among populations; stomata width and chloroplast number in a population can help to determine ploidy levels, and leaf width is a response variable that allows to predict tuber weight.

Keywords


yam; Dioscoreaceae; polyploids; geophyte; population variation.

Full Text:

PDF

References


Abdoli M., Moieni A. and Badi H.N, 2013. Morphological, physiological, cytological and phytochemical studies in diploid and colchicine-induced tetraploid plants of Echinacea purpurea (L). Acta Physiologiae Plantarum, 35, pp. 2075–2083. https://doi.org/10.1007/s11738-013-1242-9

Abraham K.A., 1998. Occurrence of hexaploid males in Dioscorea alata L. Euphytica, 99, pp. 5-7. https://doi.org/10.1007/s10681-009-9960-1

Aighewi B., Maroya N., Asiedu R., Aihebhoria D., Balogun M. and Mignounad D., 2020. Seed yam production from whole tubers versus minisetts. Journal of Crop Improvement, 34, pp. 858-874. https://doi.org/10.1080/15427528.2020.1779157

Arsenault W. and Christie B., 2004. Effect of whole seed tuber and pre-plant storage conditions on yield and tuber size distribution of Russet Burbank. American Journal of Potato Research, 81, pp. 371-376. https://doi.org/10.1007/BF02870197

Asiedu R. and Sartie A., 2010. Crops that feed the world 1. Yams. Food Security, 2, pp. 305–315. https://doi.org/10.1007/s12571-010-0085-0

Bradshaw J.E., 2010. Root and Tuber Crops: Handbook of Plant Breeding 7. Springer Science-Business Media, New York, USA. https://doi.org/10.1007/978-0-387-92765-

Bragdo M., 1962. Breeding of polyploid spinach. Euphytica,11, pp. 143-148. https://doi.org/10.1007/BF00033786

Catalano, C., Abbate, L., Motisi, A., Crucitti, D., Cangelosi, V., Pisciotta, A., Di Lorenzo, R., Carimi, F., Carra, A., 2021. Autotetraploid emergence via somatic embryogenesis in Vitis vinífera induces marked morphological changes in shoots, mature leaves, and stomata. Cells, 10, 1336. https://doi.org/10.3390/cells10061336

Contreras-Pacheco M.L., Santacruz-Ruvalcaba F., García-Fajardo J.A., Sánchez J.J., Ruíz M., Estarrón-Espinosa M. and Castro-Castro A., 2013. Diosgenin quantification, characterization and chemical composition in a tuber collection of Dioscorea spp. in the state of Jalisco, Mexico. International Journal of Food Science and Technology, 48, pp. 2111–2118. https://doi.org/10.1111/ijfs.12193

Cronin H. and Draelos Z., 2010. Top 10 botanical ingredients in 2010 anti-aging creams. Journal of Cosmetic Dermatology, 9, pp. 218-225. https://doi.org/10.1111/j.1473-2165.2010.00516.x

De Groot G.A., Zuidema P.A., De Groot H., and During H. J. 2012. Variation in ploidy level and phenology can result in large and unexpected differences in demography and climatic sensitivity between closely related ferns. American Journal of Botany, 99(8), 1375–1387. http://www.jstor.org/stable/23251519

FAOSTAT., 2018. Datos estadísticos. http://www.fao.org/faostat/es/#data/QC. (Accessed august 20, 2020)

Franks P. and Beerling D., 2009. Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time. Proceedings of the National Academy of Sciences, 106, pp. 10343-10347. https://doi.org/10.1073/pnas.0904209106

Girma G., Gedil M. and Spillane C., 2017. Morphological, SSR and ploidy analysis of water yam (Dioscorea alata L.) accessions for utilization of aerial tubers as planting materials. Genetic Resources and Crop Evolution, 64, pp. 291–305. https://doi.org/10.1007/s10722-015-0351-2

Hegarty M. and Hiscock S., 2008. Genomic clues to the evolutionary success of review polyploid plants. Current Biology, 18, pp. 435-444. https://doi.org/10.1016/j.cub.2008.03.043

Heping H., Shanlin G., Lanlan C. and Xiaoke J., 2008. In vitro induction and identification of autotetraploids of Dioscorea zingiberensis. In Vitro Cellular and Developmental Biology-Plant, 44, pp. 448-455. https://doi.org/10.1007/s11627-008-9177-3

Huang H.P., Gao S.L., Chen L.L. and Wei K.H., 2010. In vitro tetraploid induction and generation of tetraploids from mixoploids in Dioscorea zingiberensis. Pharmacognosy Magazine, 6, pp. 51-56. https://doi.org/10.4103/0973-1296.59966

Iseki K. and Matsumoto R., 2019. Effect of seed sett size on sprouting, shoot growth, and tuber yield of white guinea yam (Dioscorea rotundata). Plant Production Science, 23, pp. 75-80. https://doi.org/10.1080/1343943X.2019.1667835

Janaki E. and Singh S., 1962. Induced tetraploidy in Dioscorea deltoidea Wall. Proceedings of the Indian Academy of Sciences Section B, 56, pp. 329-331. https://doi.org/10.1007/BF03051975

Janicka K., Jastrzebska I. and Petelska A.D., 2016. The equilibria of diosgenin–phosphatidylcholine and diosgenin–cholesterol in monolayers at the air/water interface. Journal of Membrane Biololgy, 249, pp. 585–590. https://doi.org/10.1007/s00232-016-9914-1

Jiang Q., Gao W., Li X., Man S., Shi Y., Yang Y., Huang L. and Liu C., 2014. Comparative susceptibilities to alkali-treatment of A-, B- and C-type starches of Dioscorea zingiberensis, Dioscorea persimilis and Dioscorea oppositae. Food Hydrocolloids, 39, pp. 286-294. https://doi.org/10.1016/j.foodhyd.2014.01.012

Jones R.W., Cortez-Madrigal H., García-Ruíz I. and O'Brien C.W., 2011. Species of Xystus Schönherr (Coleoptera: Curculionidae:Baridinae) are Seed Predators of Wild Yams (Dioscoreaceae) in Central Mexico. The Coleopterists Bulletin, 65, pp. 86-87. https://doi.org/10.1649/0010-065X-65.1.86

Krishnaswami R. and Andal R., 1977. Stomatal chloroplast number in diploids and polyploids of Gossypium. Proceedings of the Indian Academy of Sciences Section B, 87, pp. 109-112. . https://doi.org/10.1007/BF03046960

Lawson T., 2009. Guard cell photosynthesis and stomatal function. New Phytologist, 181, pp. 13-34. https://doi.org/10.1111/j.1469-8137.2008.02685.x

Li H., Huang W., Wen Y., Gong G., Zhao Q. and Yu G., 2010. Anti-thrombotic activity and chemical characterization of steroidal saponins from Dioscorea zingiberensis C.H. Wright. Fitoterapia, 81, pp. 1147-115. https://doi.org/10.1016/j.fitote.2010.07.016

Lichtenthaler H.K., Buschmann C., Doll M., Fietz H., Bach T., Kozel U., Meier D. and Rahmsdorf U., 1981. Photosynthetic activity, chloroplast ultrastructure, and leaf characteristics of high-light and low-light plants and of sun and shade leaves. Photosynthesis Research, 2, pp. 115-141. https://doi.org/10.1007/BF00028752

Liu W., Zheng Y., Song S., Huo B., Li D. and Wang J., 2018. In vitro induction of allohexaploid and resulting phenotypic variation in Populus. Plant Cell Tissue and Organ Culture, 134, pp. 183-192. https://doi.org/10.1007/s11240-018-1411-z

Lu C., Nan K. and Jiao M., 2009. Inhibition of cellular proliferation and induction of apoptosis in human esophageal carcinoma cell lines by extracts of Dioscorea bulbifera L and Chinese Angélica. Journal of Nanjing Medical University, 23, pp. 398-402. https://doi.org/10.1016/S1007-4376(09)60089-7

Martin F.W., 1969. The species of Dioscorea containing sapogenin. Economic Botany, 23, pp. 373-379.

Martin F.W. and Ortiz S., 1963. Chromosome numbers and behavior in some species of Dioscorea. Cytologia, 28, pp. 96-101. https://doi.org/10.1508/cytologia.28.96

Mc Vaugh R., 1989. Bromeliaceae to Dioscoreaceae. Flora Novo-Galiciana. The University of Michigan Herbarium, 15, pp. 355–388.

Moetamedipoor, S. A., Jowkar, A., Saharkhiz, M. J., Hassani, H. S., 2022. Hexaploidy induction improves morphological, physiological and phytochemical characteristics of mojito mint (Mentha × villosa). Scientia Horticulturae, 295, 110810. https://doi.org/10.1016/j.scienta.2021.110810

Morse S. and McNamara N., 2020. Pesticide residues in seed yams produced using the adaptive yam minisett technique. Journal of Crop Improvement, 34, pp. 644-653. https://doi.org/10.1080/15427528.2020.1755922

Mostul B. and Cházaro B.M., 1996. Camote de cerro: An edible caudiciform Dioscorea from México. Cactus and Succulents Journal, 68, pp. 6–8.

Park S.W., Jeon J.H., Kim H.S., Hong S.J., Aswath C. and Joung H., 2009. The effect of size and quality of potato microtubers on quality of seed potatoes in the cultivar ‘Superior’. Scientia Horticulturae, 120, pp. 127- 129. https://doi.org/10.1016/j.scienta.2008.09.004

Raju J. and Mehta R., 2009. Cancer chemopreventive and therapeutic effects of diosgenin, a food saponin. Nutrition and Cancer, 61, pp. 27–35. https://doi.org/10.1080/01635580802357352

Ramachandran K., 1968. Cytological studies in Dioscoreaceae. Cytologia, 33, pp. 401-410. https://doi.org/10.1508/cytologia.33.401

Ramírez-Amezcua Y., Téllez O. and Werner Steinmann V., 2012. A new and noteworthy species of Dioscorea (Dioscoreaceae) from Michoacán, México. Botanical Sciences, 90, pp. 381-384. https://doi.org/10.17129/botsci.470

Rounghani A., Mehdi Min S., Reza H. M, Moradi P., Abdossi V., 2021. Cytogenetic and micro-morphological studies on several accessions of some Lepidium L. Species in Iran. Iranian Journal of Science and Technology. Transaction A. Science, 45, pp. 417–426. https://doi.org/10.1007/s40995-020-01035-7

Schwartz A. and Zeiger E., 1984. Metabolic energy for stomatal opening: roles of photophosphorylation and oxidative phosphorylation. Planta, 161, pp. 129-136. https://doi.org/10.1007/BF00395472

Selmecki A.M., Maruvka Y.E,. Richmond P.A., Guillet M., Shoresh N., Sorenson A.L., De S., Kishony R., Michor F., Dowell R. and Pellman D., 2015. Polyploidy can drive rapid adaptation in yeast. Nature, 519, pp. 349-352. https://doi.org/10.1038/nature14187

Serapiglia M.J., Gouker F.E., Hart J.F., Unda F., Mansfield S.D., Stipanovic A.J. and Smart L.B., 2014. Ploidy level affects important biomass traits of novel shrub willow (Salix) hybrids. Bioenergy Research, 8, pp. 259-269. https://doi.org/10.1007/s12155-014-9521-x

Simmonds N., 1948. Genetical and cytological studies of Musa x. stomatal size and plant vigour in relation to polyploidy. Journal of Genetics, 49, pp. 57-68. https://doi.org/10.1007/BF02986383

Van Laere K., Franca S.C., Vansteenkiste H., Van Huylenbroeck J., Steppe K. and Van Labeke M.C., 2011. Influence of ploidy level on morphology, growth and drought susceptibility in Spathiphyllum wallisii. Acta Physiologiae Plantarum, 33, pp. 1149-1156. https://doi.org/10.1007/s11738-010-0643-2

Wendel J., 2000. Genome evolution in polyploids. Plant Molecular Biology, 42, pp. 225-249. https://doi.org/10.1023/a:1006392424384

Xiong Y.C., Li F.M. and Zhang T., 2006. Performance of wheat crops with different chromosome ploidy: root-sourced signals, drought tolerance, and yield performance. Planta, 224, pp. 710–718. https://doi.org/10.1007/s00425-006-0252-x

Xu L., Najeeb U., Naeem M.S., Daud M.K., Cao J.S., Gong H.J., Shen W.Q. and Zhou W.J., 2010. Induction of tetraploidy in Juncus effussus by colchicine. Biologia Plantarum, 54, pp. 659-663. https://doi.org/10.1007/s10535-010-0117-9

Yoshizumi T., Breuer C., Matsui M. and Sugimoto-Shirasu K., 2008. Plant cell growth signalling and its link to ploidy. In: Bögre L, Beemster G. (eds.) Plant Growth Signaling. Plant Cell Monographs, vol. 10. Springer, Berlin, Heidelberg. pp. 107-125.




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v26i2.47208

DOI: http://dx.doi.org/10.56369/tsaes.4720



Copyright (c) 2023 José Juvencio Castañeda-Nava, Fernando Santacruz-Ruvalcaba, Rodrigo Barba-González, José de Jesús Sánchez González, Lino De la Cruz Larios

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.