José Alejandro Ruiz Chután, Julio Ernesto Berdúo-Sandoval, Anna Maňourová, Maria Kalousová, Carlos Enrique Villanueva-González, Eloy Fernández, Jana Žiarovská, Amílcar Sánchez-Pérez, Bohdan Lojka


Background. For the Guatemalan culture, the avocado (Persea americana Mill) represents more than a crop, since it has religious, mythical, economical, and medicinal significance typical of the center of domestication of the species. Although there is speculation about the wide variability of wild avocado germplasm, there are no studies describing avocado populations. Objective. To explore wild germplasm based on agro-morphological characteristics using the standardized descriptors for avocado (Persea spp.). Methodology. The distribution of characteristics of 189 avocado trees across eight populations was evaluated using cross-tabulation and Chi-square testing. In order to properly handle qualitative and quantitative data, it was employed the factor analysis of mixed data (FAMD) and hierarchical clustering on principal components (HCPC) to analyze the relationship and variation of features within and between populations. Results. The samples showed various morphological characteristics that indicate the presence of Mexican, Guatemalan, and West Indian avocado races in Guatemala. The FAMD revealed that the fruit shape, skin color and flesh texture, and anise odor in the leaves are ideal traits for distinguishing between individual trees. At the population level, the HCPC showed considerable variance amongst the studied trees but no distinct geographic groups of the samples. Implications. Although not all wild avocados grown in Guatemala are of the highest quality, several trees of extraordinary excellence are strewn over the republic's highlands. Thus, due to the danger posed by the introduction of commercial varieties, it is advisable preserving the germplasm. Conclusion. The clustering methods revealed that the 189 avocado trees could be regrouped into three main clusters. The morphological descriptors proved to be useful for grouping trees according to known races and can therefore be used in the characterization of cultivars and wild trees whose ancestry is unknown.


Persea americana; diversity; phenotypic variation; factorial analysis of mixed data; wild germplasm; conservation

Full Text:



Abraham, J.D., Abraham, J. and Takrama, J.F., 2018. Morphological characteristics of avocado (Persea americana Mill.) in Ghana. African Journal of Plant Science, 12, pp. 88–97.

Acosta-Díaz, E., Almeyda-León, I.H. and Hernández-Torres, I., 2013. Evaluación de aguacates criollos en Nuevo León, México: región norte. Revista Mexicana de Ciencias Agrícolas, 4, pp. 531–542.

Acosta-Díaz, E., Álvarez-Ojeda, M.G., Rodríguez-Guerra, R. and Almeyda-León, I.H., 2020. Variabilidad morfológica y genética del germoplasma de aguacate criollo en Nuevo León, México. Biotecnología y Sustentabilidad, 5, pp. 91–108. Retrieved November 13, 2022.

Alberti, M.F., Brogio, B. do A., Silva, S. da R., Cantuarias-Avilés, T. and Fassio, C., 2018. Avances en la propagación del aguacate. Revista Brasileira de Fruticultura, 40, pp. 1–18.

Alcaraz, M.L. and Hormaza, J.I., 2011. Influence of physical distance between cultivars on yield, outcrossing rate and selective fruit drop in avocado (Persea americana, Lauraceae). Annals of Applied Biology, 158, pp. 354–361.

Ayala-Silva, T. and Ledesma, N. 2014. Avocado history, biodiversity and production. Sustainable Horticultural Systems, 2, pp. 157–205.

Azurdia, C., Williams, K., Williams, D., Van Damme, V., Jarvis, A. and Castaño, S., 2011. Guatemalan atlas of crop wild relatives. Retrieved October 01, 2022.

Barrett, D.M., Beaulieu, J.C. and Shewfelt, R., 2010. Color, flavor, texture, and nutritional quality of fresh-cut fruits and vegetables: Desirable levels, instrumental and sensory measurement, and the effects of processing. Critical Reviews in Food Science and Nutrition, 50, pp. 369–389.

Bergh, B., 1992. The origin, nature, and genetic improvement of the avocado. California Avocado Society, 76, pp. 61–75. Retrieved November 02, 2022.

Bost, J.B., Smith, N.J. and Crane, J., 2013. History, distribution and uses. In B. Schaffer, B. Wolstenholme, and A. W. Whiley (Eds.), The avocado: Botany, production and uses (2nd ed., pp. 10–30). CAB International.

Bullock, E.L., Nolte, C., Segovia, A.R. and Woodcock, C.E., 2020. Ongoing forest disturbance in Guatemala’s protected areas. Remote Sensing in Ecology and Conservation, 6, pp. 141–152.

Cañas-Gutiérrez, G.P., Sepulveda-Ortega, S., López-Hernández, F., Navas-Arboleda, A.A. and Cortés, A.J., 2022. Inheritance of yield components and morphological traits in avocado cv. Hass from “Criollo” “Elite Trees” via half-sib seedling rootstocks. Frontiers in Plant Science, 13, pp. 843099

Chen, H., Ashworth, V.E.T.M., Xu, S. and Clegg, M.T., 2007. Quantitative genetic analysis of growth rate in avocado. Journal of the American Society for Horticultural Science, 132, pp. 691–696.

Ehleringer, J., Björkman, O. and Mooney, H.A., 1976. Leaf pubescence: effects on absorptance and photosynthesis in a desert shrub. Science, 192, pp. 376–377.

Espinosa-Alonso, L.G., Paredes-López, O., Valdez-Morales, M. and Oomah, B.D., 2017. Avocado oil characteristics of Mexican creole genotypes. European Journal of Lipid Science and Technology, 119, pp. 1600406.

Galindo-Tovar, M. and Arzate-Fernández, A., 2010. Consideraciones sobre el origen y primera dispersión del aguacate Lauraceae. Cuadernos de Biodiversidad, 33, pp. 11–15. Retrieved November 03, 2022.

Galindo-Tovar, M.E., Lee-Espinoza, H.E., Murgía-González, J., Leyva-Ovalle, O.R. and Landero-Torres, I., 2013. Domesticacio?n y distribucio?n geogra?fica de Persea americana Mill. en la e?poca precolombina. Revista de Geografía Agrícola, 50–51, pp. 65–70. Retrieved October 03, 2022.

Galindo-Tovar, M.E., Ogata-Aguilar, N. and Arzate-Fernández, A., 2008. Some aspects of avocado (Persea americana Mill.) diversity and domestication in Mesoamerica. Genetic Resources and Crop Evolution, 55, pp. 441–450.

Gross-German, E. and Viruel, M.A., 2013. Molecular characterization of avocado germplasm with a new set of SSR and EST-SSR markers: Genetic diversity, population structure, and identification of race-specific markers in a group of cultivated genotypes. Tree Genetics and Genomes, 9, pp. 539–555.

Grüter, R., Trachsel, T., Laube, P. and Jaisli, I., 2022. Expected global suitability of coffee, cashew and avocado due to climate change. PLoS ONE, 17, pp. e0261976.

Guzmán, L.F., Machida-Hirano, R., Borrayo, E., Cortés-Cruz, M., Espíndola-Barquera, M. del C. and Heredia García, E., 2017. Genetic structure and selection of a core collection for long term conservation of avocado in Mexico. Frontiers in Plant Science, 8, pp. 1–10.

Henao-Rojas, J.C., Lopez, J.H., Osorio, N.W. and Ramírez-Gil, J.G., 2019. Fruit quality in Hass avocado and its relationships with different growing areas under tropical zones. Revista Ceres, 66, pp. 341–350.

Hidalgo, R., 2003. Variabilidad genética y caracterización de especies vegetales. In T. L. Franco and R. Hidalgo (Eds.), Análisis estadístico de datos de caracterización morfológica de recursos fitogenéticos (pp. 2-27). Instituto Internacional de Recursos Fitogenéticos (IPGRI).

Husson, F., Josse, J. and Pages, J., 2010. Principal component methods - hierarchical clustering - partitional clustering: why would we need to choose for visualizing data? Applied Mathematics Department, pp. 1–17. Retrieved October 03, 2022.

IPGRI., 1995. Descriptor for avocado (Persea spp.). Institute for Plant Genetic Resources. Retrieved October 03, 2022.

Janick, J., 2005. The origins of fruits, fruit growing, and fruit breeding. Plant Breeding Reviews, pp. 255–321.

Juma, I., Nyomora, A., Hovmalm, H.P., Fatih, M., Geleta, M., Carlsson, A.S. and Ortiz, R.O., 2020. Characterization of Tanzanian avocado using morphological traits. Diversity, 12, pp. 64.

Kassambara, A. and Mundt, F., 2020. factoextra: Extract and visualize the results of multivariate data analyses. R package version 1.0.7,

Kenkel, N.C., 2006. On selecting an appropriate multivariate analysis. Canadian Journal of Plant Science, 86, pp. 663–676.

Konrad, W., Burkhardt, J., Ebner, M. and Roth-Nebelsick, A., 2015. Leaf pubescence as a possibility to increase water use efficiency by promoting condensation. Ecohydrology, 8, pp. 480–492.

Landon, A.J., 2009. Domestication and significance of Persea americana, the avocado, in Mesoamerica. Nebraska Anthropologist, 24, pp. 62–79. Retrieved October 02, 2022.

Lê, S., Josse, J. and Husson, F., 2008. FactoMineR: An R package for multivariate analysis. Journal of Statistical Software, 25, pp. 1-18.

Ledesma, N. and Carter, D., 2020. The avocados: Guatemalan food. Acta Horticulturae, 1299, pp. 169–172.

Letunic, I. and Bork, P., 2019. Interactive Tree of Life (iTOL) v4: Recent updates and new developments. Nucleic Acids Research, 47, pp. 256–259.

López-Galé, Y., Murcia-Riaño, N., Romero-Barrera, Y. and Martínez, M.F., 2022. Morphological characterization of seed-donor Creole avocado trees from three areas in Colombia. Revista Chapingo Serie Horticultura, 28, pp. 93–108.

López-Guzmán, G., Medina-Torres, R., Guillén-Andrade, H., Ramírez-Guerrero, L.G., Juárez-López, P. and Ruelas-Hernández, P., 2015. Caracterización morfológica en genotipos nativos de aguacate (Persea americana Mill.) de clima tropical en Nayarit, México. Revista Mexicana de Ciencias Agrícolas, 11, pp. 2157–2163.

Lopez-Lalinde, L. and Maierhofer, C., 2021. Creating a culture of shared responsibility for climate action in Guatemala through education. In F.M. Reimers (Ed.), Education and climate change: The role of universities (pp. 85–112). Springer International Publishing.

Mokria, M., Gebrekirstos, A., Said, H., Hadgu, K., Hagazi, N., Dubale, W. and Bräuning, A., 2022. Fruit weight and yield estimation models for five avocado cultivars in Ethiopia. Environmental Research Communications, 4, pp. 075013.

Morineau, A., 1984. Note sur la caractérisation statistique d'une classe et les valeurs tests. Bulletin Technique du Centre de Statistique et d'Informatique Appliqués 2, pp. 20-27.

Nkansah, G.O., Ofosu-Budu, K.G. and Ayarna, A.W., 2013. Genetic diversity among local and introduced avocado germplasm based on morpho-agronomic traits. International Journal of Plant Breeding and Genetics, 7, pp. 76–91.

Pages, J., 2004. Analyse factorielle de données mixtes. Revue de Statistique Appliquée, 52, pp. 93–111. Retrieved October 20, 2022.

Patil, I., 2021. Visualizations with statistical details: The “ggstatsplot” approach. Journal of Open Source Software, 6, pp. 3167.

Pereira, M.E.C., Tieman, D.M., Sargent, S.A., Klee, H.J. and Huber, D.J., 2013. Volatile profiles of ripening West Indian and Guatemalan-West Indian avocado cultivars as affected by aqueous 1-methylcyclopropene. Postharvest Biology and Technology, 80, pp. 37–46.

Pino, J.A., Marbot, R. and Martí, M.P., 2006. Leaf oil of Persea americana Mill. var. drymifolia cv. Duke grown in Cuba. Journal of Essential Oil Research, 18, pp. 440–442.

Popenoe, W., 1935. Origin of the cultivated races of avocados. California Avocado Association Yearbook, 20, pp. 184–194. Retrieved October 15, 2022.

Popenoe, W., 1974. Manual of tropical and subtropical fruits. Hafner Press: New York, NY, USA.

R Core Team., 2022. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

Ranjitha, V., Chaitanya, H., Ravi, C., Shivakumar, B. and Naveen, N., 2021. Morphological characterization of avocado (Persea americana Mill.) accessions explored from hill zone taluks of Chikkamagaluru district, Karnataka state. Journal of Pharmacognosy and Phytochemistry, 10, pp. 310–318. Retrieved October 15, 2022.

Renner, S.S., 1999. Circumscription and phylogeny of the Laurales: evidence from molecular and morphological data. American Journal of Botany, 86, pp. 1301–1315. Retrieved October 11, 2022.

Renner, S.S., 2004. Variation in diversity among Laurales, early cretaceous to present. Biologiske Skrifter, 55, pp. 441–458. Retrieved September 10, 2022.

Rincón-Hernández, C.A., Sánchez-Pérez, J.D.L.L. and Espinosa-García, F.J., 2011. Caracterizacio?n qui?mica foliar de los a?rboles de aguacate criollo (Persea americana var. drymifolia) en los bancos de germoplasma de Michoaca?n, Me?xico. Revista Mexicana de Biodiversidad, 82, pp. 395–412.

Ruiz-Chután, J.A., Berdúo-Sandoval, J.E., Kalousová, M., Fernández, E., Žiarovská, J., Sánchéz-Pérez, A. and Lojka, B., 2022. SSRs markers reveal high genetic diversity and limited differentiation among populations of native Guatemalan avocado. Journal of Microbiology, Biotechnology and Food Sciences, 12, pp. e6134.

Ruiz-Chután, J.A., Berdúo-Sandoval, J.E., Kalousova, M., Lojka, B., Fernández, E., Žiarovská, J., and Sánchez-Pérez, A., 2020. Diversidad genética de materiales nativos de aguacate guatemalteco a través del marcador molecular AFLP. Ciencia, Tecnología y Salud, 7, pp. 155–169.

Schloerke, B., Cook, D., Larmarange, J., Briatte, F., Marbach, M., Thoen, E., Elberg, A. and Crowley, J., 2021. Ggally: Extension to ‘ggplot2’ R package version 2.1.2.

Shewfelt, R.L., 2000. Fruit and vegetable quality. In R.L. Shewfelt and B. Bruckner (Eds.), Fruit and vegetable quality: an integrated view; (pp. 160–173). CRC Press.

Smith, C., 1966. Archeological evidence for selection in avocado. Economic Botany, 20, pp. 169–175.

Storey, W., Bergh, B. and Zentmyer, G., 1986. The origin, indigenous range and dissemination of the avocado. California Avocado Society, 70, pp. 127–133. Retrieved September 10, 2022.

Subirana, I., Sanz, H. and Vila, J., 2014. Building bivariate tables: The compareGroups package for R. Journal of Statistical Software, 57, pp. 1–16.



Copyright (c) 2023 José Alejandro Ruiz Chután

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.