INTEGRAL USE OF HENEQUEN (Agave fourcroydes): APPLICATIONS AND TRENDS–A REVIEW

Daniel Trujillo-Ramírez, Ma. Guadalupe Bustos-Vázquez, Alejandro Martínez-Velasco, Rodolfo Torres-de los Santos

Abstract


Background. The Conventional use of henequen (Agave fourcroydes), has mainly focused on the use of the leaves for the production of fiber. However, there are other components such as the stem (“pineapple”), the spines, and the by-product of fiber generation (leaf juice) in which we should pay attention to. Objective. To provide a systematic analysis of the biotechnological overview from those investigations where the potential of each of the structural components of A. fourcroydes is being studied. Methodology. A systematic review of the literature was carried out, based on the PRISMA protocol (Preferred Reporting Items for Systematic reviews and Meta-Analyses), search for information was carried out in the most prominent databases (Redalyc, SciELO, Scopus, Elsevier, EBSCO, and Google Academic, using A. fourcroydes as the main keyword, using inclusion and later exclusion criteria according to the literature found, in the period from 1990 to 2022, which allowed a broader perspective on this crop and its biotechnological importance. Main findings. In the bibliographic review more information was found on the applications of the plant in an integral way, so that bioactive compounds such as fructans, flavonoids, and sterols can be obtained from the henequen stem, which can be incorporated into animal and human diets, while ethanol has been obtained from the juice of the leaves and the development of that of new materials using the fiber in a native and modified way to obtain fiber-reinforced mortars for its sustainable application in the construction industry. On the other hand, contributions were found on promising alternatives for the use of crops such as modified fibers, and combined with other compounds (composites) for the mechanical reinforcement of new materials. Implications. The literature consulted allows us to report that henequen (A. fourcroydes) is not only cultivated in the Yucatan Peninsula, but also in other regions such as the State of Tamaulipas, Mexico, where its use and commercial exploitation has not well documented. Conclusion. The bibliographical review allows us to deduce that the obtaining of new henequen compounds would revalue their integral use and use in different industries.

Keywords


Fiber; health ingredients; structural components; composites materials; and fructans.

Full Text:

PDF

References


Abreu, E., González, G., Ortiz, R., Rodríguez, P., Domech, R. and Garriga, M., 2007. Evaluación de vitroplantas de henequén (Agave fourcroydes Lem) durante la fase de aclimatización. Cultivos Tropicales, 28(1), pp. 5-11. Available at: https://www.redalyc.org/articulo.oa?id=193215858001

Adhikari, P. A. and Kim, W. K., 2017. Overview of prebiotics and probiotics: focus on performance, gut health and immunity–A review. Annals of Animal Science, 17(4), pp. 949-966. https://doi.org/10.1515/aoas-2016-0092

Akil, H., Omar, M. F., Mazuki, A. M., Safiee, S. Z. A. M., Ishak, Z. M. and Bakar, A. A., 2011. Kenaf fiber reinforced composites: A review. Materials & Design, 32(8-9), pp. 4107-4121. https://doi.org/10.1016/j.matdes.2011.04.008

André, A., 2006. Natural fibres: An alternative to glass fibres. Fibres for strengthening of timber structures. Research report, Sweden, Lulea University of Technology. Available at: http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-22621

Arbelaiz, A., Fernandez, B., Ramos, J. A., Retegi, A., Llano-Ponte, R. and Mondragon, I., 2005. Mechanical properties of short flax fibre bundle/polypropylene composites: Influence of matrix/fibre modification, fibre content, water uptake and recycling. Composites Science and Technology, 65(10), pp. 1582-1592. https://doi.org/10.1016/j.compscitech.2005.01.008

Bai, Q. and Bai, Y., 2014. 12-Fatigue and Fracture. In: Bai, Q., Bai, Y. (Eds.), Subsea Pipeline Design, Analysis, and Installation. Elsevier Inc., U.S.A, pp. 283-318. https://doi.org/10.1016/B978-0-12-386888-6.00012-2

Bekele, A. E., Lemu, H. G. and Jiru, M. G., 2022. Experimental study of physical, chemical and mechanical properties of enset and sisal fibers. Polymer Testing, 106, pp. 107453. https://doi.org/10.1016/j.polymertesting.2021.107453

Cáceres-Farfán, M., Lappe, P., Larqué-Saavedra, A., Magdub-Méndez, A. and Barahona-Pérez, L. 2008. Ethanol production from henequen (Agave fourcroydes Lem.) juice and molasses by a mixture of two yeasts. Bioresource Technology, 99(18), pp. 9036-9039. https://doi.org/10.1016/j.biortech.2008.04.063

Canché-Escamilla, G., Guin-Aguillón, L., Duarte-Aranda, S. and Barahona-Pérez, F., 2022. Characterization of bio-oil and biochar obtained by pyrolysis at high temperatures from the lignocellulosic biomass of the henequen plant. Journal of Material Cycles and Waste Management, 24, pp. 751–762. https://doi.org/10.1007/s10163-022-01361-5

Cao, Y., Sakamoto, S. and Goda, K., 2007. Effects of heat and alkali treatments on mechanical properties of kenaf fibres. 16th international Conference on Composite Materials. Kyoto, Japan. (pp. 1-4). Available at: https://iccm-central.org/Proceedings/ICCM16proceedings/contents/pdf/MonG/MoGM1-02ge_caoy223305p.pdf

Castillo-Lara, J. F. and Flores-Johnson, E. A., 2020. La fibra de henequén (Agave fourcroydes) como una opción para materiales compuestos amigables con el medio ambiente. Herbario CICY Centro de Investigación Científica de Yucatán, A.C, pp. 99-105. Available at: http://www.cicy.mx/sitios/desde_herbario/

Castillo-Lara, J. F., Flores-Johnson, E. A., Valadez-Gonzalez, A., Herrera-Franco, P. J., Carrillo, J. G., Gonzalez-Chi, P. I. and Li, Q. M., 2020. Mechanical Properties of Natural Fiber Reinforced Foamed Concrete. Materials, 13, pp. 3060-3078. https://doi.org/10.3390/ma13143060

Cazaurang Martínez, M.N., Peraza, S.R., Cruz, C.A., 1990. Dissolving grade pulps from hennequen fibers. Cellulose Chemistry and Technology. 24(5), 629-638. Available at: http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=5214310

Cazaurang-Martínez, M. N., Herrera-Franco, P. J., González-Chi, P. I. and Aguilar-Vega, M., 1991. Physical and mechanical properties of henequen fibers. Journal of Applied Polymer Science, 43(4), pp. 749-756. https://doi.org/10.1002/app.1991.070430412

Corzo, N., Alonso, J. L., Azpiroz, F., Calvo, M. A., Cirici, M., Leis, R., Lombó, F., Mateos-Aparicio, I., Plou, F. J., Ruas-Madiedo, P., Rúperez, P., Redondo-Cuenca, A., Sanz, M. L. and Clemente, A., 2015. Prebióticos; concepto, propiedades y efectos beneficiosos. Nutrición Hospitalaria, 31(1), pp. 99-118. http://dx.doi.org/10.3305/nh.2015.31.sup1.8715

Culebras, M., Barrett, A., Pishnamazi, M., Walker, G. M. and Collins, M. N., 2021. Wood-derived hydrogels as a platform for drug-release systems. ACS Sustainable Chemistry & Engineering, 9(6), pp. 2515-2522. https://doi.org/10.1021/acssuschemeng.0c08022

Eastmond, A., Herrera, J. L. and Robert, M. L., 2000. La biotecnología aplicada al Henequén: Alternativas para el futuro. Centro de Investigaciones Científica de Yucatán. México. Available at: http://hdl.handle.net/10625/30788

Espinosa-Andrews, H., Urias-Silvas, J. E. and Morales-Hernández, N., 2021. The role of agave fructans in health and food applications: A review. Trends in Food Science & Technology, 114, pp. 585-598. https://doi.org/10.1016/j.tifs.2021.06.022

Ferreira, T. A., Guevara-Lara, A., Paez-Hernandez, M. E., Mondragon A. C. and Rodriguez, J. A., 2021. Micro flow injection analysis of leucomalachite green in fish muscle using modified henequen fibers as microfluidic channels. RSC Advances, 11, pp. 35375-35382. https://doi.org/10.1039/D1RA06301D

Ferreira, T. A., Ibarra, I. S., Silva, M. L. S., Miranda, J. M. and Rodriguez, J. A., 2020. Use of modified henequen fibers for the analysis of malachite green and leuco-malachite green in fish muscle by d-SPE followed by capillary electrophoresis. Microchemical Journal, 157, pp. 104941. https://doi.org/10.1016/j.microc.2020.104941

Flores-Johnson, E. A., Company-Rodríguez, B. A., Koh-Dzul, J. F. and Carrillo, J. G., 2020. Shaking table test of U-shaped walls made of fiber-reinforced foamed concrete. Materials, 13(11), pp. 2534. https://doi.org/10.3390/ma13112534

Flores-Johnson, E. A., Yan, Y. Z., Carrillo, J. G., González-Chi, P. I., Herrera-Franco, P. I. and Li, Q. M., 2018. Mechanical Characterization of foamed concrete reinforced with natural fibre. Materials Research Proceedings, 7, pp. 1-6. http://dx.doi.org/10.21741/9781945291838-1

Franco-Urquiza, E. A., Saleme-Osornio, R. S. and Ramírez-Aguilar, R., 2021. Mechanical Properties of Hybrid Carbonized Plant Fibers Reinforced Bio-Based Epoxy Laminates. Polymers, 13(19), pp. 3435. https://doi/10.3390/polym13193435

Frazão, C., Barros, J., Toledo Filho, R., Ferreira, S. and Gonçalves, D., 2018. Development of sandwich panels combining sisal fiber-cement composites and fiber-reinforced lightweight concrete. Cement and Concrete Composites, 86, pp. 206-223. https://doi.org/10.1016/j.cemconcomp.2017.11.008

Fujiyama, R., Darwish, F. and Pereira, M. V., 2014. Mechanical characterization of sisal reinforced cement mortar. Theoretical and Applied Mechanics Letters, 4(6), pp. 061002. https://doi.org/10.1063/2.1406102

García Curbelo, Y., López, M. G. and Bocourt, R., 2010. Identificación de fructanos en Agave fourcroydes (henequén) como fuente de aditivo en la producción animal en Cuba. Revista Cubana de Ciencia Agrícola, 44(1), pp. 55-57. Available at: http://www.redalyc.org/articulo.oa?id=193014943012

García, Y., López, M. G., Bocourt, R., Rodríguez, Z., Urias-Silvas, J. and Herrera, M., 2012. Fermentación in vitro del extracto de Agave fourcroydes (henequén) por bacterias ácidolácticas. Revista Cubana de Ciencia Agrícola, 46, pp. 203-209. Available at: https://www.redalyc.org/articulo.oa?id=193024447015

García-Albornoz, M., 2006. Determinación y caracterización de fructanos provenientes del henequén (Agave fourcroydes). Tesis de Maestría en Ciencia y Tecnología de las Plantas. Centro de Investigaciones Científicas de Yucatán. Mérida. Yucatán. México. Available at: https://cicy.repositorioinstitucional.mx/jspui/handle/1003/616

García-Curbelo, Y., Bocourt, R., Savón, L. L., García-Vieyra, M. I. and López, M. G., 2015a. Prebiotic effect of Agave fourcroydes fructans: an animal model. Food & Function, 6(9), pp. 3177-3182. https://doi.org/10.1039/C5FO00653H

García-Curbelo, Y., López, G. M. and Bocourt, R., 2009. Fructans in Agave fourcroydes, potentialities for its utilization in animal feeding. Cuban Journal of Agricultural Science, 43(2), pp. 169-171. Available at: https://www.redalyc.org/articulo.oa?id=193015425013

García-Curbelo, Y., López, M. G., Bocourt, R., Collado, E., Albelo, N. and Nuñez, O., 2015b. Structural characterization of fructans from Agave fourcroydes (Lem.) with potential as prebiotic. Cuban Journal of Agricultural Science, 49(1), pp. 1–6. Available at: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2079-34802015000100013

García-Marín, P. C., 1998. Origen, variación y tendencias evolutivas del henequén (Agave fourcroydes Lem.). Botanical Sciences, (62), pp. 109-128. https://doi.org/10.17129/botsci.1555

García-Marín, P. C., Larqué Saavedra, A., Eguiarte, L. and Zizumbo-Villareal, D., 2007. En lo ancestral hay futuro: del tequila, los mezcales y otros agaves. Revista de la Universidad de Yucatán, No. 245-246. Available at:

García-Suárez, M. D. and Serrano H., 2012. Agave fourcroydes (Lem.) y sus nuevas perspectivas. TecnoAgro, 78. https://tecnoagro.com.mx/no.-78/agave-fourcroydes-lem-y-sus-nuevas-perspectivas Access date: May 15, 2022.

Geethika, V. N. and Rao, V. D. P., 2017. Study of tensile strength of Agave americana fibre reinforced hybrid composites. Materials Today: Proceedings, 4(8), pp. 7760-7769. https://doi.org/10.1016/j.matpr.2017.07.111

González, G., Alemán, S. and Infante, D., 2003. Asexual genetic variability in Agave fourcroydes Lem II: selection among individuals in clonally propagated population. Plant Science, 165(3), pp. 595-601. https://doi.org/10.1016/S0168-9452(03)00227-9

González-Díaz, R. L., Rodríguez-Gómez, F. and Cortés-Romero, C., 2020. Exohidrolasas fructosílicas y su importancia en el metabolismo de fructanos en Agave tequilana Weber var. azul. Revista Colombiana de Química, 49(3), pp. 3-12. https://doi.org/10.15446/rcq.v49n3.84882

Gurunathan, T., Mohanty, S. and Nayak, S. K., 2015. A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Composites Part A: Applied Science and Manufacturing, 77, pp. 1-25. https://doi.org/10.1016/j.compositesa.2015.06.007

Han, S. O. and Jung, Y. M., 2008. Characterization of henequen natural fiber by using two-dimensional correlation spectroscopy. Journal of Molecular Structure, 883, pp. 142-148. https://doi.org/10.1016/j.molstruc.2007.12.027

Han, S. O., Cho, D., Park W. H. and Drzal, L. T., 2006. Henequen/poly(butylene succinate) biocomposites: electron beam irradiation effects on henequen fiber and the interfacial properties of biocomposites, Composite Interfaces, 13(2-3), pp. 231-247. https://doi.org/10.1163/156855406775997123

Herrera-Franco, P. and Valadez-Gonzalez, A., 2005. A study of the mechanical properties of short natural-fiber reinforced composites. Composites Part B: Engineering, 36(8), pp. 597-608. https://doi.org/10.1016/j.compositesb.2005.04.001

Herrera-Franco, P. J. and Valadez-Gonzalez, A., 2004. Mechanical properties of continuous natural fibre-reinforced polymer composites. Composites Part A: Applied Science and Manufacturing, 35(3), pp. 339-345. https://doi.org/10.1016/j.compositesa.2003.09.012

Hintze, K., Tapia, J. I., Alvarado-Gómez, E. and Encinas, E., 2021. Natural henequen fibers functionalized with a magnetic fatty acid mixture. Materials Letters, 291, pp. 129580. https://doi.org/10.1016/j.matlet.2021.129580

Infante, D., González, G., Peraza-Echeverr??a, L. and Keb-Llanes, M., 2003. Asexual genetic variability in Agave fourcroydes. Plant Science, 164(2), pp. 223-230. https://doi.org/10.1016/S0168-9452(02)00404-1

Iser, M., Martinez, Y., Ni, H., Jiang, H., Valdivié Navarro, M., Wu, X., Al-Dhabi, N. A., Rosales, M., Duraipandiyan, V. and Fang, J., 2016. The effects of Agave fourcroydes powder as a dietary supplement on growth performance, gut morphology, concentration of IgG, and hematology parameters in broiler rabbits. BioMed Research International, 2016, pp. 3414319. https://doi.org/10.1155/2016/3414319

Iser, M., Valdivié, M., Figueredo, L., Nuñez, E., Más, D. and Martínez, Y., 2020. Metabolitos secundarios, indicadores de calidad y características organolépticas de la harina de tallos de Agave fourcroydes (Henequén). Cuban Journal of Agricultural Science, 54(1), pp. 25-34. Available at: http://scielo.sld.cu/pdf/cjas/v54n1/2079-3480-cjas-54-01-25.pdf

Isobe, N., Komamiya, T., Kimura, S., Kim, U. J. and Wada, M., 2018. Cellulose hydrogel with tunable shape and mechanical properties: From rigid cylinder to soft scaffold. International Journal of Biological Macromolecules, 117, pp. 625-631. https://doi.org/10.1016/j.ijbiomac.2018.05.071

John, M. J. and Anandjiwala, R. D., 2008. Recent developments in chemical modification and characterization of natural fiber?reinforced composites. Polymer Composites, 29(2), pp. 187-207. https://doi.org/10.1002/pc.20461

Kharbanda, S., Bhadury, T., Gupta, G., Fuloria, D., Pati, P. R., Mishra, V. K. and Sharma, A., 2021. Polymer composites for thermal applications – A review. Materials Today: Proceedings, 47(11), pp. 2839-2845. https://doi.org/10.1016/j.matpr.2021.03.609

Khushbu, Warkar, S.G. and Kumar, A., 2019. Synthesis and assessment of carboxymethyl tamarind kernek gum based novel superabsorbent hydrogels for agricultural applications. Polymer, 182, pp. 121823. https://doi.org/10.1016/j.polymer.2019.121823

Kim, J. and Cho, D., 2022. Effects of Alkali-Treatment and Feeding Route of Henequen Fiber on the Heat Deflection Temperature, Mechanical, and Impact Properties of Novel Henequen Fiber/Polyamide 6 Composites. Journal of Composites Science, 6(3), pp. 89-101. https://doi.org/10.3390/jcs6030089

Koneru, A., Dharmalingam, K. and Anandalakshmi, R., 2020. Cellulose based nanocomposite hydrogel films consisting of sodium carboxymethylcellulose–grapefruit seed extract nanoparticles for potential wound healing applications. International Journal of Biological Macromolecules, 148, pp. 833-842. https://doi.org/10.1016/j.ijbiomac.2020.01.018

Larqué-Saavedra, F. A., Magdub-Méndez, M. A. and Cáceres-Farfán, M. R., 2004. Proceso para la fabricación de bebida alcohólica a partir del henequén (Agave fourcroydes). México: Patente de Invención, 219235: Available at: https://cicy.repositorioinstitucional.mx/jspui/bitstream/1003/830/1/CICY_RegistroPatente_231037.pdf

Le, H. H., Mredha, M. T. I., Na, J. Y., Seon, J. K. and Jeon, I., 2020. Thin-film hydrogels with superior stiffness, strength, and stretchability. Extreme Mechanics Letters, 37, pp. 100720. https://doi.org/10.1016/j.eml.2020.100720.

Lee, H. S., Cho, D. and Han, S. O., 2008. Effect of natural fiber surface treatments on the interfacial and mechanical properties of henequen/polypropylene biocomposites. Macromolecular Research, 16(5), pp. 411-417. https://doi.org/10.1007/BF03218538

Li, W., Cao, J., Yang, J., Wang, Z. and Yang, Y., 2021. Production and characterization of lignocellulosic fractions from sisal waste. Industrial Crops and Products, 160, pp. 113109. https://doi.org/10.1016/j.indcrop.2020.113109

Li, Y. and Shen, Y. O., 2015. The use of sisal and henequen fibres as reinforcements in composites. In Biofiber Reinforcements in Composite Materials, Woodhead Publishing. pp. 165–210. https://doi.org/10.1533/9781782421276.2.165

Liu, Y., Wang, Z., Fan, Z. and Gu, J., 2020. Study on properties of sisal fiber modified foamed concrete. In IOP Conference Series: Materials Science and Engineering, 744(1), pp. 012042. IOP Publishing. https://doi.org/10.1088/1757-899X/744/1/012042

Lopez, M. G., Mancilla-Margalli, N. A. and Mendoza-Díaz, G., 2003. Molecular structures of fructans from Agave tequilana Weber var. azul. Journal of Agricultural and Food Chemistry, 51(27), pp. 7835-7840. https://doi.org/10.1021/jf030383v

Martínez?Torres, J., Barahona?Pérez, F., Lappe?Oliveras, P., García?Marín, P. C., Magdub?Méndez, A., Vergara?Yoisura, S. and LarquÉ?Saavedra, A., 2011. Ethanol production from two varieties of henequen (Agave fourcroydes Lem). GCB Bioenergy, 3(1), pp. 37-42. https://doi.org/10.1111/j.1757-1707.2010.01081.x

May-Pat, A., Valadez-Gonzalez, A. and Herrera-Franco, P. J., 2013. Effect of fiber surface treatments on the essential work of fracture of HDPE-continuous henequen fiber-reinforced composites. Polymer Testing, 32(6), pp. 1114-1122. https://doi.org/10.1016/j.polymertesting.2013.06.006

Mohanty, S., Nayak, S. K., Verma, S. K. and Tripathy, S. S., 2004. Effect of MAPP as a coupling agent on the performance of jute–PP composites. Journal of reinforced plastics and composites, 23(6), pp. 625-637. https://doi.org/10.1177/0731684404032868

Monteiro, S. N., Calado, V., Margem, F. M. and Rodriguez, R. J., 2012. Thermogravimetric stability behavior of less common lignocellulosic fibers-a review. Journal of Materials Research and Technology, 1(3), pp. 189-199. https://doi.org/10.1016/S2238-7854(12)70032-7

Morán-Velázquez, D. C., Monribot-Villanueva, J. L., Bourdon, M., Tang, J. Z., López-Rosas, I., Maceda-López, L. F., Villalpando-Aguilar, J. L., Rodríguez-López, L., Gauthier, A., Trejo, L., Azadi, P., Vilaplana, F., Guerrero-Analco, J.A. and Alatorre-Cobos, F., 2020. Unravelling Chemical Composition of Agave Spines: News from Agave fourcroydes Lem. Plants, 9(12), pp. 1642. https://doi.org/10.3390/plants9121642.

Muñoz, E. J., Prieto-García, F., Méndez, J. P., Sandoval, O. A. A. and Laguna, R. R., 2016. Caracterización fisicoquímica de cuatro especies de agaves con potencialidad en la obtención de pulpa de celulosa para elaboración de papel. Dyna, 83(197), pp. 232-242. http://dx.doi.org/10.15446/dyna.v83n197.52243

Page, M. J., Moher, D., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., et al., 2021. PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews. British Medical Journal, 372. https://doi.org/10.1136/bmj.n160

Qin, X., Yang, X., Huang, X., Huang, X., Peng, X., Liu, M., Chen, T. and Yi, K., 2021. The complete chloroplast genome of Agave fourcroydes. Mitochondrial DNA. Part B, Resources, 6(8), pp. 2326–2327. https://doi.org/10.1080/23802359.2021.1950065

Qu, J., Liang, Y., Shi, M., Guo, B., Gao, Y. and Yin, Z., 2019. Biocompatible conductive hydrogels based on dextran and aniline trimer as electro-responsive drug delivery system for localized drug release. International Journal of Biological Macromolecules, 140, pp. 255-264. https://doi.org/10.1016/j.ijbiomac.2019.08.120

Queiroz, B. G., Ciol, H., Inada, N. M. and Frollini, E., 2021. Hydrogel from all in all lignocellulosic sisal fibers macromolecular components. International Journal of Biological Macromolecules, 181, pp. 978-989. https://doi.org/10.1016/j.ijbiomac.2021.04.088

Rahman, M. M., 2009. UV-cured henequen fibers as polymeric matrix reinforcement: Studies of physico-mechanical and degradable properties. Materials & Design, 30(6), pp. 2191-2197. https://doi.org/10.1016/j.matdes.2008.08.022

Rahman, R. and Putra, S. Z. F. S., 2019. Tensile properties of natural and synthetic fiber-reinforced polymer composites. In: M. Jawaid, M. Thariq, and N. Saba. (Eds.), Mechanical and Physical Testing of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites. Woodhead Publishing Series in Composites Science and Engineering, Netherlands, Elsevier Ltd, pp. 81-102. https://doi.org/10.1016/B978-0-08-102292-4.00005-9

Ramesh, M., Palanikumar, K. and Reddy, K. H., 2013. Mechanical property evaluation of sisal jute-glass fiber reinforced polyester composites. Composites, 48, pp. 1–9. https://doi.org/10.1016/j.compositesb.2012.12.004

Rashidzadeh, B., Shokri, E., Mahdavinia, G. R., Moradi, R., Mohamadi-Aghdam, S. and Abdi, S., 2020. Preparation and characterization of antibacterial magnetic-/pH-sensitive alginate/Ag/Fe3O4 hydrogel beads for controlled drug release. International Journal of Biological Macromolecules, 154, pp. 134-141. https://doi.org/10.1016/j.ijbiomac.2020.03.028

Rendón-Salcido, L. A., García-Marín, P. C., Barahona-Pérez, L. F., Pimienta-Barrios, E., Magdub-Méndez, A. and Larqué-Saavedra, A., 2009. Sugars and alcoholic byproducts from henequen (Agave fourcroydes) as influenced by plant age and climate. Revista Fitotecnia Mexicana, 32(1), pp. 39-44. Available at: http://www.scielo.org.mx/pdf/rfm/v32n1/v32n1a5.pdf

Rendón-Salcido, L. A., Magdub-Méndez, A., Hernández-Terrones, L. and Larqué-Saavedra, A., 2007. El jarabe de henequén (Agave fourcroydes Lem.). Revista Fitotecnia Mexicana, 30(4), pp. 463-467. https://doi.org/10.35196/rfm.2007.4.463

Rondón, A., del Valle, A., Milián, G., Arteaga, F., Rodríguez, M., Valdivia, A. and Martínez, M., 2019. Obtención de un biopreparado simbiótico (mezcla de pulpa de Agave fourcroydes Lem. y PROBIOLACTIL®) para su aplicación en terneros. Revista Agrisost, 25(2), pp. 1-9. Available at: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2079-34802020000300345&lng=es&tlng=es

Rong, M. Z., Zhang, M. Q., Liu, Y., Yang, G. C. and Zeng, H. M., 2001. The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites. Composites Science and Technology, 61(10), pp. 1437-1447. https://doi.org/10.1016/S0266-3538(01)00046-X

Sanchez-Olivares, G., Rabe, S., Perez-Chavez, R., Calderas, F. and Schartel, B., 2019. Industrial-waste agave fibres in flame-retarded thermoplastic starch biocomposites. Composites Part B: Engineering, 177, 107370, pp. 1-15. https://doi.org/10.1016/j.compositesb.2019.107370

Saruchi, Kumar, V., Mittal, H. and Alhassan, S. M., 2019. Biodegradable hydrogels of tragacanth gum polysaccharide to improve water retention capacity of soil and environment-friendly controlled release of agrochemicals. International Journal of Biological Macromolecules, 132, pp. 1252-1261. https://doi.org/10.1016/j.ijbiomac.2019.04.023

Serra-Parareda, F., Vilaseca, F., Aguado, R., Espinach, F. X., Tarrés, Q. and Delgado-Aguilar, M., 2021. Effective Young’s Modulus Estimation of Natural Fibers through Micromechanical Models: The Case of Henequen Fibers Reinforced-PP Composites. Polymers, 13(22) pp. 3947. https://doi.org/10.3390/polym13223947

Shanmugasundaram, N., Rajendran, I. and Ramkumar, T., 2018. Characterization of untreated and alkali treated new cellulosic fiber from an Areca palm leaf stalk as potential reinforcement in polymer composites. Carbohydrate Polymers, 195, pp. 566-575. https://doi.org/10.1016/j.carbpol.2018.04.127

Shehzad, H., Ahmed, E., Sharif, A., Din, M. I., Farooqi, Z. H., Nawaz, I., ... and Iftikhar, M., 2020. Amino-carbamate moiety grafted calcium alginate hydrogel beads for effective biosorption of Ag (I) from aqueous solution: Economically-competitive recovery. International Journal of Biological Macromolecules, 144, pp. 362-372. https://doi.org/10.1016/j.ijbiomac

SIAP. Servicio de Información Agroalimentaria y Pesquera., 2020. Secretaría de Agricultura y Desarrollo Rural (SADER). Available at: http://infosiap.siap.gob.mx/gobmx/datosAbiertos.php (accessed 15 june 2022).

Tarrés, Q., Vilaseca, F., Herrera-Franco, P. J., Espinach, F. X., Delgado-Aguilar, M. and Mutjé, P., 2019. Interface and micromechanical characterization of tensile strength of bio-based composites from polypropylene and henequen strands. Industrial Crops and Products, 132, pp. 319-326. https://doi.org/10.1016/j.indcrop.2019.02.010

Telrandhe, U. B., Kurmi, R., Uplanchiwar, V., Mansoori, M. H., Raj, V. J. and Jain, K., 2012. Nutraceuticals-A phenomenal resource in modern medicine. International Journal of Universal Pharmacy and Life Sciences, 2(1), pp. 179-195.

Thygesen, A., Madsen, B., Bjerre, A. B. and Lilholt, H., 2011. Cellulosic fibers: effect of processing on fiber bundle strength. Journal of Natural Fibers, 8(3), pp. 161-175. https://doi.org/10.1080/15440478.2011.602236

Torres, M., Rentería-Rodríguez, A. V. and Franco-Urquiza, E. A., 2022a. In Situ FBG Monitoring of a Henequen-Epoxy Biocomposite: From Manufacturing to Performance. Chemistry, 4(2), pp. 380-392. https://doi.org/10.3390/chemistry4020028

Torres, M., Rentería-Rodriguez, V., Alcantara, P. I. and Franco-Urquiza, E., 2022b. Mechanical properties and fracture behaviour of agave fibers bio-based epoxy laminates reinforced with zinc oxide. Journal of Industrial Textiles, 51(4_suppl), pp. 5847S-5868S. https://doi.org/10.1177/1528083720965689

Trejo-Torres, J. C., Gann, G. D. and Christenhusz, M. J., 2018. The Yucatan Peninsula is the place of origin of sisal (Agave sisalana, Asparagaceae): historical accounts, phytogeography and current populations. Botanical Sciences, 96(2), pp. 366-379. https://doi.org.10.17129/botsci.1928

Valadez-Gonzalez, A., Cervantes-Uc, J. M., Olayo, R. J. I. P. and Herrera-Franco, P. J., 1999. Effect of fiber surface treatment on the fiber–matrix bond strength of natural fiber reinforced composites. Composites Part B: Engineering, 30(3), pp. 309-320. https://doi.org/10.1016/S1359-8368(98)00054-7

Valdivia, A. L., Fontanills, Y. R., Álvarez, L. M. H., Rabelo, J. J., Hernández, Y. P. and Tundidor, Y. P., 2018. Propiedades fitoquímicas y antibacterianas de los extractos de las hojas de Agave fourcroydes Lem. (henequén). Revista Cubana de Plantas Medicinales, 23(2), Available at: http://www.revplantasmedicinales.sld.cu/index.php/pla/article/view/452/302

Velásquez Restrepo, S. M., Pelaéz Arroyave, G. J. and Giraldo Vásquez, D. H., 2016. Uso de fibras vegetales en materiales compuestos de matriz polimérica: una revisión con miras a su aplicación en el diseño de nuevos productos. Informador Técnico, 80(1), pp. 77–86. https://doi.org/10.23850/22565035.324

Vieira, M. C., Heinze, T., Antonio-Cruz, R. and Mendoza-Martinez, A. M., 2002. Cellulose derivatives from cellulosic material isolated from Agave lechuguilla and fourcroydes. Cellulose, 9(2), pp. 203-212. https://doi.org/10.1023/A:1020158128506

Vilaseca, F., Méndez, J. A., López, J. P., Vallejos, M. E., Barberà, L., Pèlach, M. A., Turon, X. and Mutjé, P., 2008. Recovered and recycled Kraft fibers as reinforcement of PP composites. Chemical Engineering Journal, 138(1-3), pp. 586-595. https://doi.org/10.1016/j.cej.2007.07.066

Villegas-Silva, P. A., Toledano-Thompson, T., Canto-Canché, B. B., Larqué-Saavedra, A. and Barahona-Pérez, L. F., 2014. Hydrolysis of Agave fourcroydes Lemaire (henequen) leaf juice and fermentation with Kluyveromyces marxianus for ethanol production. BMC Biotechnology, 14(1), pp. 1-10. https://doi.org/10.1186/1472-6750-14-14

Xiao, Z., Li, M. and Zhou, J., 2012. Surface instability of a swollen cylinder hydrogel. Acta Mechanica Solida Sinica, 25(5), pp. 550-556. https://doi.org/10.1016/S0894-9166(12)60049-4

Yasin, P., Ramana, M. V., Vamshi, C. K. and Pradeep, K., 2019. A study of continuous Henequen/Epoxy composites. Materials Today: Proceedings, 18, pp. 3798-3811. https://doi.org/10.1016/j.matpr.2019.07.318

Zheng, Y., Huang, K., You, X., Huang, B., Wu, J. and Gu, Z., 2017. Hybrid hydrogels with high strenght and biocompatibility for bone regeneration. International Journal of Biological Macromolecules, 104, pp. 1143-1149. https://doi.org/10.1016/j.ijbiomac.2017.07.017

Zimmermann, M., Hernández Álvarez, H., Fernández Souza, L., Venegas de la Torre, J. and Pantoja Díaz, L., 2020. Collaborative Archaeology, Relational Memory, and Stakeholder Action at Three Henequen Haciendas in Yucatan, Mexico. Heritage, 3(3), pp. 649-670. https://doi.org/10.3390/heritage3030037




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v26i2.46192

DOI: http://dx.doi.org/10.56369/tsaes.4619



Copyright (c) 2023 Daniel Trujillo-Ramírez, Ma. Guadalupe Bustos-Vázquez, Alejandro Martínez-Velasco, Rodolfo Torres-de los Santos

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.