EVALUATION OF THE STATE OF AGROBIODIVERSITY IN THE AGRIFOOD SYSTEM OF MEXICO

Laura Escárraga Torres, Jesús Axayacatl Cuevas Sánchez, Julio Baca del Moral, María de Lourdes Maldonado Méndez, Nicole Sibelet

Abstract


Background. Agrobiodiversity is one of the main pillars of agriculture in Mexico, so its conservation is a priority for the sustainability and resilience of the agri-food system. Objective. To analyze the agrobiodiversity's state in the Mexican agricultural, food and genetic resources system. Methodology. Methodologically, the Agrobiodiversity Index was implemented, ten indicators and 16 variables were measured, which included species diversity, varietal diversity, underutilized species, and landscape complexity in the agrifood system. Results. The State of Agrobiodiversity Index for Mexico was moderate (56.2/100), the score for the food system was high (66.6/100), the agricultural system presented high scores (63.1/100) and the conservation system gave low scores (38.4). /100). Implications. The conservation system has focused on commercial plant species, leaving a gap in the conservation and sustainable use of wild and non-commercial species. In the agricultural and conservation system, it is urgent to create platforms with more specific biological information (intraspecific levels, varieties, races, cultivars). With these platforms, a more precise estimate of the country's agrobiodiversity will be possible. Conclusion Although the country has a high diversity of animal and plant species that serve as a source of food, these options are underutilized in the food system.

Keywords


agricultural biodiversity; genetic resources conservation; healthy diets; sustainable agriculture; varietal biodiversity.

Full Text:

PDF

References


Afshin, A., Sur, P.J., Fay, K.A., Cornaby, L., Ferrara, G., Salama, J.S., Mullany, E.C., Abate, K.H., Abbafati, C., Abebe, Z., Afarideh, M., Aggarwal, A., Agrawal, S., Akinyemiju, T., Alahdab, F., Bacha, U., Bachman, V.F., Badali, H., Badawi, A., Bensenor, I.M., Bernabe, E., Biadgilign, S.K.K., Biryukov, S.H., Cahill, L.E., Carrero, J.J., Cercy, K.M., Dandona, L., Dandona, R., Dang, A.K., Degefa, M.G., Zaki, M.E.S., Esteghamati, A., Esteghamati, S., Fanzo, J., Farinha, C.S. e S., Farvid, M.S., Farzadfar, F., Feigin, V.L., Fernandes, J.C., Flor, L.S., Foigt, N.A., Forouzanfar, M.H., Ganji, M., Geleijnse, J.M., Gillum, R.F., Goulart, A.C., Grosso, G., Guessous, I., Hamidi, S., Hankey, G.J., Harikrishnan, S., Hassen, H.Y., Hay, S.I., Hoang, C.L., Horino, M., Ikeda, N., Islami, F., Jackson, M.D., James, S.L., Johansson, L., Jonas, J.B., Kasaeian, A., Khader, Y.S., Khalil, I.A., Khang, Y.-H., Kimokoti, R.W., Kokubo, Y., Kumar, G.A., Lallukka, T., Lopez, A.D., Lorkowski, S., Lotufo, P.A., Lozano, R., Malekzadeh, R., März, W., Meier, T., Melaku, Y.A., Mendoza, W., Mensink, G.B.M., Micha, R., Miller, T.R., Mirarefin, M., Mohan, V., Mokdad, A.H., Mozaffarian, D., Nagel, G., Naghavi, M., Nguyen, C.T., Nixon, M.R., Ong, K.L., Pereira, D.M., Poustchi, H., Qorbani, M., Rai, R.K., Razo-García, C., Rehm, C.D., Rivera, J.A., Rodríguez-Ramírez, S., Roshandel, G., Roth, G.A., Sanabria, J., Sánchez-Pimienta, T.G., Sartorius, B., Schmidhuber, J., Schutte, A.E., Sepanlou, S.G., Shin, M.-J., Sorensen, R.J.D., Springmann, M., Szponar, L., Thorne-Lyman, A.L., Thrift, A.G., Touvier, M., Tran, B.X., Tyrovolas, S., Ukwaja, K.N., Ullah, I., Uthman, O.A., Vaezghasemi, M., Vasankari, T.J., Vollset, S.E., Vos, T., Vu, G.T., Vu, L.G., Weiderpass, E., Werdecker, A., Wijeratne, T., Willett, W.C., Wu, J.H., Xu, G., Yonemoto, N., Yu, C. and Murray, C.J.L., 2019. Health effects of dietary risks in 195 countries, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017 (supplementary appendix). The Lancet, [online] 393(10184), pp. 1958-1972. https://doi.org/10.1016/S0140-6736(19)30041-8.

Akhalkatsi, M., Otte, A., Togonidze, N., Bragvadze, T., Asanidze, Z., Arabuli, G., Chikhelidze, N. and Mazanishvili, L., 2017. Agrobiodiversity and genetic erosion of crop varieties and plant resources in the Central Great Caucasus. Annals of Agrarian Science, [online] 15(1), pp.11–16. https://doi.org/10.1016/j.aasci.2016.12.002.

Anderzén, J., Guzmán Luna, A., Luna-González, D.V., Merrill, S.C., Caswell, M., Méndez, V.E., Hernández Jonapá, R. and Mier y Terán Giménez Cacho, M., 2020. Effects of on-farm diversification strategies on smallholder coffee farmer food security and income sufficiency in Chiapas, Mexico. Journal of Rural Studies, [online] 77, pp. 33-46. https://doi.org/10.1016/j.jrurstud.2020.04.001.

Bangermex, 2022. Sistema de Información de Bancos de Germoplasma Mexicano. [online] Available at: http://162.243.160.96:8080/Sbd-Germoplasma/bancos.

Bioversity International, 2018. The Agrobiodiversity Index: Methodology Report v.1.0. [online] Rome, Italy: Bioversity International. Available at: https://www.bioversityinternational.org/fileadmin/user_upload/AA_Publications/Methodology_Index_1.pdf.

Boggia, A., Massei, G., Pace, E., Rocchi, L., Paolotti, L. and Attard, M., 2018. Spatial multicriteria analysis for sustainability assessment: A new model for decision making. Land Use Policy, [online] 71, pp. 281-292. https://doi.org/10.1016/j.landusepol.2017.11.036.

CIAT, 2018. A global database for the distributions of crop wild relatives. Version 1.12. [online] Available at: https://doi.org/10.15468/jyrthk. [Accessed 16 March 2022].

CIAT, 2022. Useful Plants Indicator | CIAT. [online] Available at: https://ciat.cgiar.org/usefulplants-indicator/ [Accessed 10 March 2022].

CICY, 2020. Banco de germoplasma. [online] Available at: http://www2.cicy.mx/sitios/germoplasma#:~:text=Banco%20de%20semillas.&text=Esta%20es%20la%20forma%20m%C3%A1s,pueden%20almacenar%20a%20bajas%20temperaturas.

CONABIO, 2013. Proyecto global de maíces nativos (bases de datos). [online] Biodiversidad Mexicana. Available at: https://www.biodiversidad.gob.mx/diversidad/proyectoMaices [Accessed 16 March 2022].

Contreras, A., Cortes-Cruz, M., Costich, D., Rico-Arce, M., Brehm, J. and Maxted, N., 2018. A Crop Wild Relative Inventory for Mexico. Crop Science, 58, p.1292. https://doi.org/10.2135/cropsci2017.07.0452.

Cotler, H., Corona, J.A. and Galeana-Pizaña, J.M., 2020. Soil erosion and food deficiency in Mexico: a first approach. Investigaciones geográficas, [online] (101). https://doi.org/10.14350/rig.59976.

Doebley, J.F., Gaut, B.S. and Smith, B.D., 2006. The molecular genetics of crop domestication. Cell, 127(7), pp. 1309-1321. https://doi.org/10.1016/j.cell.2006.12.006.

DOF, 2019. Acuerdo por el que se emiten los Lineamientos de Operación del Programa Sembrando Vida. [online] Available at: https://dof.gob.mx/nota_detalle.php?codigo=5548785&fecha=24/01/2019.

ESA, 2021. Land Cover CCI. Land Cover Map 2020. [online] Available at: http://maps.elie.ucl.ac.be/CCI/viewer/index.php.

FAO, 2019a. El sistema alimentario en México. Oportunidades para campo mexicano en la Agenda 2030 de d}Desarrollo Sostenible. [online] Available at: http://www.fao.org/3/CA2910ES/ca2910es.pdf.

FAO, 2019b. The State of the World’s Biodiversity for Food and Agriculture. [online] Rome, Italy: FAO. p.530. Available at: http://www.fao.org/3/CA3129EN/CA3129EN.pdf.

FAO, 2021. Food Security Indicators. [online] Available at: https://www.fao.org/faostat/en/#data/FS [Accessed 15 March 2022].

FAO, 2022a. Domestic Animal Diversity Information System (DAD-IS). [online] Available at: https://www.fao.org/dad-is/en/ [Accessed 15 March 2022].

FAO, 2022b. Food Balance Sheet. [online] Available at: https://www.fao.org/faostat/en/#data/FBS.

Gatto, M., de Haan, S., Laborte, A., Bonierbale, M., Labarta, R. and Hareau, G., 2021. Trends in Varietal Diversity of Main Staple Crops in Asia and Africa and Implications for Sustainable Food Systems. Frontiers in Sustainable Food Systems, [online] 5. Available at: https://www.frontiersin.org/articles/10.3389/fsufs.2021.626714 [Accessed 18 July 2022].

Genesys, 2021. Global Portal on Plant Genetic Resources. [online] Available at: https://www.genesys-pgr.org/.

Goettsch, B., Urquiza-Haas, T., Koleff, P., Acevedo Gasman, F., Aguilar-Meléndez, A., Alavez, V., Alejandre-Iturbide, G., Aragón Cuevas, F., Azurdia Pérez, C., Carr, J.A., Castellanos-Morales, G., Cerén, G., Contreras-Toledo, A.R., Correa-Cano, M.E., De la Cruz Larios, L., Debouck, D.G., Delgado-Salinas, A., Gómez-Ruiz, E.P., González-Ledesma, M., González-Pérez, E., Hernández-Apolinar, M., Herrera-Cabrera, B.E., Jefferson, M., Kell, S., Lira-Saade, R., Lorea-Hernández, F., Martínez, M., Mastretta-Yanes, A., Maxted, N., Menjívar, J., de los Ángeles Mérida Guzmán, M., Morales Herrera, A.J., Oliveros-Galindo, O., Orjuela-R., M.A., Pollock, C.M., Quintana-Camargo, M., Rodríguez, A., Ruiz Corral, J.A., Sánchez González, J. de J., Sánchez-de la Vega, G., Superina, M., Tobón Niedfeldt, W., Tognelli, M.F., Vargas-Ponce, O., Vega, M., Wegier, A., Zamora Tavares, P. and Jenkins, R.K.B., 2021. Extinction risk of Mesoamerican crop wild relatives. Plants, People, Planet, [online] 3(6), pp. 775-795. https://doi.org/10.1002/ppp3.10225.

Haro, A., Mendoza-Ponce, A., Calderón-Bustamante, Ó., Velasco, J.A. and Estrada, F., 2021. Evaluating Risk and Possible Adaptations to Climate Change Under a Socio-Ecological System Approach. Frontiers in Climate, [online] 3. Available at: https://www.frontiersin.org/article/10.3389/fclim.2021.674693 [Accessed 19 April 2022].

Hernández, R., 2019. El protocolo de Nagoya en México: un análisis legal del cumplimiento y el papel de los protocolos comunitarios bioculturales. Revista de la Facultad de Derecho de México, [online] (275), pp. 1-36. http://dx.doi.org/10.22201/fder.24488933e.2019.275-2.69422.

Hernández-Ochoa, I.M., Asseng, S., Kassie, B.T., Xiong, W., Robertson, R., Luz Pequeno, D.N., Sonder, K., Reynolds, M., Babar, M.A., Molero Milan, A. and Hoogenboom, G., 2018. Climate change impact on Mexico wheat production. Agricultural and Forest Meteorology, [online] 263, pp. 373-387. https://doi.org/10.1016/j.agrformet.2018.09.008.

Hunter, D., Borelli, T. and Gee, E. eds., 2020. Biodiversity, Food and Nutrition: A New Agenda for Sustainable Food Systems. [online] Bioversity International. Available at: https://www.routledge.com/Biodiversity-Food-and-Nutrition-A-New-Agenda-for-Sustainable-Food-Systems/Hunter-Borelli-Gee/p/book/9780367141516 [Accessed 21 March 2021].

INEGI, 2019. Encuesta Nacional Agropecuaria 2019. [online] Available at: https://www.inegi.org.mx/programas/ena/2019/ [Accessed 29 May 2021].

International Food Policy Research Institute, 2019. Global Spatially-Disaggregated Crop Production Statistics Data for 2010 Version 1.1. Harvard Dataverse, V3. [online] Available at: https://doi.org/10.7910/DVN/PRFF8V.

Jones, S.K., Estrada-Carmona, N., Juventia, S.D., Dulloo, M.E., Laporte, M.-A., Villani, C. and Remans, R., 2021. Agrobiodiversity Index scores show agrobiodiversity is underutilized in national food systems. Nature Food, [online] 2(9), pp. 712-723. https://doi.org/10.1038/s43016-021-00344-3.

Juventia, S., Jones, S., Laporte, M., Remans, R., Villani, C. and Estrada-Carmona, N., 2020. Text Mining National Commitments towards Agrobiodiversity Conservation and Use. Sustainability, 12, p.715. https://doi.org/10.3390/su12020715.

Khoury, C.K., Amariles, D., Soto, J.S., Diaz, M.V., Sotelo, S., Sosa, C.C., Ramírez-Villegas, J., Achicanoy, H.A., Velásquez-Tibatá, J., Guarino, L., León, B., Navarro-Racines, C., Castañeda-Álvarez, N.P., Dempewolf, H., Wiersema, J.H. and Jarvis, A., 2019. Comprehensiveness of conservation of useful wild plants: An operational indicator for biodiversity and sustainable development targets. Ecological Indicators, [online] 98, pp. 420-429. https://doi.org/10.1016/j.ecolind.2018.11.016.

Khoury, C.K., Bjorkman, A.D., Dempewolf, H., Ramirez-Villegas, J., Guarino, L., Jarvis, A., Rieseberg, L.H. and Struik, P.C., 2014. Increasing homogeneity in global food supplies and the implications for food security. Proceedings of the National Academy of Sciences, [online] 111(11), pp. 4001-4006. https://doi.org/10.1073/pnas.1313490111.

Khoury, C.K., Brush, S., Costich, D.E., Curry, H.A., de Haan, S., Engels, J.M.M., Guarino, L., Hoban, S., Mercer, K.L., Miller, A.J., Nabhan, G.P., Perales, H.R., Richards, C., Riggins, C. and Thormann, I., 2021. Crop genetic erosion: understanding and responding to loss of crop diversity. New Phytologist, [online] n/a(n/a). https://doi.org/10.1111/nph.17733.

LaFevor, M.C., 2022. Spatial and Temporal Changes in Crop Species Production Diversity in Mexico (1980–2020). Agriculture, [online] 12(7), p.985. https://doi.org/10.3390/agriculture12070985.

Lippert, C., Feuerbacher, A. and Narjes, M., 2021. Revisiting the economic valuation of agricultural losses due to large-scale changes in pollinator populations. Ecological Economics, [online] 180, p.106860. https://doi.org/10.1016/j.ecolecon.2020.106860.

Luque, D., Gay, C. and Ortiz, B. eds., n.d. Complejos bioculturales de México. Bienestar comunitario en escenarios de cambio climático. [online] Puebla: Benemérita Universidad Autónoma de Puebla. Available at: https://patrimoniobiocultural.com/archivos/publicaciones/libros/Complejos_bioculturales.pdf.

OECD, 2019. The Heavy Burden of Obesity: The Economics of Prevention | en | OECD. [online] OECD. Available at: https://www.oecd.org/health/the-heavy-burden-of-obesity-67450d67-en.htm [Accessed 31 March 2022].

Okunogbe, A., Nugent, R., Spencer, G., Ralston, J. and Wilding, J., 2021. Economic impacts of overweight and obesity: current and future estimates for eight countries. BMJ Global Health, [online] 6(10), p.e006351. https://doi.org/10.1136/bmjgh-2021-006351.

Peña, J.E. la, Rascón-Pacheco, R.A., Ascencio-Montiel, I. de J., González-Figueroa, E., Fernández-Gárate, J.E., Medina-Gómez, O.S., Borja-Bustamante, P., Santillán-Oropeza, J.A. and Borja-Aburto, V.H., 2021. Hypertension, Diabetes and Obesity, Major Risk Factors for Death in Patients with COVID-19 in Mexico. Archives of Medical Research, [online] 52(4), pp. 443-449. https://doi.org/10.1016/j.arcmed.2020.12.002.

Pérez-Tepayo, S., Rodríguez-Ramírez, S., Unar-Munguía, M. and Shamah-Levy, T., 2020. Trends in the dietary patterns of Mexican adults by sociodemographic characteristics. Nutrition Journal, [online] 19(1), p.51. https://doi.org/10.1186/s12937-020-00568-2.

Robinson, T.P., Wint, G.R.W., Conchedda, G., Boeckel, T.P.V., Ercoli, V., Palamara, E., Cinardi, G., D’Aietti, L., Hay, S.I. and Gilbert, M., 2014. Mapping the Global Distribution of Livestock. PLOS ONE, [online] 9(5), p.e96084. https://doi.org/10.1371/journal.pone.0096084.

SEMARNAT, 2022. Elabora SEMARNAT plan para incentivar la agroecología en México. [online] gob.mx. Available at: http://www.gob.mx/semarnat/prensa/elabora-semarnat-plan-para-incentivar-la-agroecologia-en-mexico?state=published [Accessed 7 April 2022].

SIAP, 2020. Sistema de Información Agroalimentaria de Consulta Nueva Generación (SIACON NG).

SNICS, 2020. Informe Nacional sobre el estado de los recursos fitogenéticos para la alimentación y la agricultura. [online] México: Servicio Nacional de Inspección y Certificación de Semillas. p.319. Available at: https://www.gob.mx/snics/documentos/informe-nacional-recursos-fitogeneticos-para-la-alimentacion-y-la-agricultura.

Snyder, L.D., Gómez, M.I. and Power, A.G., 2020. Crop Varietal Mixtures as a Strategy to Support Insect Pest Control, Yield, Economic, and Nutritional Services. Frontiers in Sustainable Food Systems, [online] 4. Available at: https://www.frontiersin.org/articles/10.3389/fsufs.2020.00060 [Accessed 18 July 2022].

Toledo, Barrera-Bassols and Boege, E., 2019. ¿Qué es la diversidad biocultural? [online] Michoacán: Universidad Nacional Autónoma de México (Proyecto PAPIME: PE404318). Available at: https://patrimoniobiocultural.com/producto/que-es-la-diversidad-biocultural/.

Vargas-Meza, J., Cervantes-Armenta, M.A., Campos-Nonato, I., Nieto, C., Marrón-Ponce, J.A., Barquera, S., Flores-Aldana, M. and Rodríguez-Ramírez, S., 2022. Dietary Sodium and Potassium Intake: Data from the Mexican National Health and Nutrition Survey 2016. Nutrients, [online] 14(2), p.281. https://doi.org/10.3390/nu14020281.

Vincent, H., Amri, A., Castañeda-Álvarez, N.P., Dempewolf, H., Dulloo, E., Guarino, L., Hole, D., Mba, C., Toledo, A. and Maxted, N., 2019. Modeling of crop wild relative species identifies areas globally for in situ conservation. Communications Biology, [online] 2(1), pp. 1-8. https://doi.org/10.1038/s42003-019-0372-z.

Vincent, H., Hole, D. and Maxted, N., 2022. Congruence between global crop wild relative hotspots and biodiversity hotspots. Biological Conservation, [online] 265, p.109432. https://doi.org/10.1016/j.biocon.2021.109432.

White, M. and Barquera, S., 2020. Mexico Adopts Food Warning Labels, Why Now? Health Systems & Reform. [online] Available at: https://www.tandfonline.com/doi/abs/10.1080/23288604.2020.1752063 [Accessed 19 September 2021].

Zimmerer and Haan, S., 2017. Agrobiodiversity and a sustainable food future. Nature Plants, 3, p.17047. https://doi.org/10.1038/nplants.2017.47.




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v26i2.46187

DOI: http://dx.doi.org/10.56369/tsaes.4618



Copyright (c) 2023 Laura Escárraga Torres

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.