Fernando de Jesús Aldama, Roberto Montes de Oca Jiménez, Beatriz Arellano Reynoso


Background. Ovine Enzootic Abortion is a contagious infectious disease caused by a Gram negative and obligate intracellular bacterium, Chlamydia abortus. For field diagnosis, commercial serological tests are used; however, some of these tests show low sensitivity and specificity rates, due to the cross-reactions that the antigens used have against other pathogens. For the most accurate diagnosis, it is necessary to develop tests with more specific antigens such as polymorphic membrane proteins (Pmp's), that allow to determine the presence of specific epitopes using new technologies. Objective. To determine in silico the presence of epitopes with specific immunogenic potential against Chlamydia abortus of two fragments of the PMP17G protein. Methodology. The cloning and sequencing of the fragments was carried out from a field isolate of Chlamydia abortus, and from the analysis of these sequences, with the help of two bioinformatics software’s. Results. Several epitopes from Chlamydia abortus were found, rPOMP90-3 (eight epitopes) and rPOMP90-4 (one epitope). Implications. Bioinformatics analysis indicated that both fragments of the protein have the capacity to activate the immune system, which would be useful for the development of diagnostic kits and immunogens. Conclusions. The in silico analysis allowed to efficiently predict and identify specific epitopes against Chlamydia abortus in both fragments of the protein. 


Chlamydia abortus; Ovine Enzootic Abortion; ELISA; epitopes; in silico; Polymorphic Membrane Protein.

Full Text:



Aguilar-Montes de Oca, S., Montes-de-Oca-Jiménez, R., Carlos Vázquez-Chagoyán, J., Barbabosa-Pliego, A., Eliana Rivadeneira-Barreiro, P. and C Zambrano-Rodríguez, P., 2022. The Use of Peptides in Veterinary Serodiagnosis of Infectious Diseases: A Review. Veterinary Sciences, 9(10), p. 561.

Ansari, H.R. and Raghava, G.P., 2010. Identification of conformational B-cell Epitopes in an antigen from its primary sequence. Immunome Research, 6, p. 6.

Atalla, H., Alzuheir, I., Jalboush, N., 2017. Detection of Chlamydophila abortus antibody in active reproductive rams in sheep herds in northern Palestine. Revue de Médecine Vétérinaire, 168, p. 192-196.

Bommana, S., Polkinghorne, A., 2019. Mini Review: Antimicrobial Control of Chlamydial Infections in Animals: Current Practices and Issues. Frontiers in Microbiology, 10(113), p. 1–9.

Bommana, S., Jelocnik, M., Borel, N., Marsh, I., Carver, S., Polkinghorne, A., 2019. The limitations of commercial serological assays for detection of chlamydial infections in Australian livestock. Journal of Medical Microbiology, 68(4), p. 627–632.

Campos-Hernández, E., Vázquez-Chagoyán, J. C., Salem, A. Z., Saltijeral-Oaxaca, J. A., Escalante-Ochoa, C., López-Heydeck, S. M., de Oca-Jiménez, R. M., 2014. Prevalence and molecular identification of Chlamydia abortus in commercial dairy goat farms in a hot region in Mexico. Tropical Animal Health and Production, 46(6), p. 919–924.

Cheong, H. C., Lee, C., Cheok, Y. Y., Tan, G., Looi, C. Y., Wong, W. F., 2019. Chlamydiaceae: Diseases in Primary Hosts and Zoonosis. Microorganisms, 7(5), p. 146.

De Jesus-Aldama, F., 2022. Identificación in silico de epítopes inmunogénicos en fragmentos de la Proteína de Membrana Polimórfica (POMP90) en un aislado de Chlamydia abortus de origen mexicano [Tesis de Doctorado]. Universidad Autónoma del Estado de México. Repositorio institucional – Universidad Autónoma del Estado de México.

de Oliveira, J., Rozental, T., de Lemos, E., Forneas, D., Ortega-Mora, L. M., Porto, W., da Fonseca Oliveira, A. A., Mota, R. A., 2018. Coxiella burnetii in dairy goats with a history of reproductive disorders in Brazil. Acta Tropica, 183, p. 19–22.

De Puysseleyr, K., Kieckens, E., De Puysseleyr, L., Van den Wyngaert, H., Ahmed, B., Van Lent, S., Creasy, H. H., Myers, G., Vanrompay, D., 2018. Development of a Chlamydia suis-specific antibody enzyme-linked immunosorbent assay based on the use of a B-cell epitope of the polymorphic membrane protein C. Transboundary and Emerging Diseases, 65(2), p. e457–e469.

Escalante-Ochoa, C., Díaz-Aparicio, E., Segundo-Zaragoza, C., Suárez-Güemes, F., 1997. Isolation of Chlamydia psittaci involved in abortion of goats in Mexico: first report. Revista Latino Americana de Microbiología, 39(3-4), p. 117–121.

Escalante-Ochoa, C., Rivera-Flores, A., Trigo-Tavera, F., Romero-Martínez, J., 1996. Detection of Chlamydia psittaci in enteric subclinical infections in adult sheep, through cell culture isolation. Revista Latinoamericana de Microbiologia, 38(1), p. 17–23.

Essig, A., Longbottom, D., 2015. Chlamydia abortus: New Aspects of Infectious Abortion in Sheep and Potential Risk for Pregnant Women. Current Clinical Microbiology Reports, p. 22–34. doi:

Forsbach-Birk, V., Foddis, C., Simnacher, U., Wilkat, M., Longbottom, D., Walder, G., Benesch, C., Ganter, M., Sachse, K., Essig, A., 2013. Profiling antibody responses to infections by Chlamydia abortus enables identification of potential virulence factors and candidates for serodiagnosis. PloS One, 8(11), e80310.

Hagemann, J. B., Simnacher, U., Longbottom, D., Livingstone, M., Maile, J., Soutschek, E., Walder, G., Boden, K., Sachse, K., Essig, A., 2016. Analysis of Humoral Immune Responses to Surface and Virulence-Associated Chlamydia abortus Proteins in Ovine and Human Abortions by Use of a Newly Developed Line Immunoassay. Journal of Clinical Microbiology, 54(7), p. 1883–1890.

Hireche, S., Ababneh, M. M., Bouaziz, O., Boussena, S., 2016. Seroprevalence and molecular characterization of Chlamydia abortus in frozen fetal and placental tissues of aborting ewes in northeastern Algeria. Tropical Animal Health and Production, 48(2), p. 255–262.

Illingworth, M., Hooppaw, A. J., Ruan, L., Fisher, D. J., Chen, L., 2017. Biochemical and Genetic Analysis of the Chlamydia GroEL Chaperonins. Journal of Bacteriology, 199(12), e00844-16.

Jespersen, M. C., Peters, B., Nielsen, M., Marcatili, P. 2017. BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Research, 45(W1), p. W24–W29.

Klasinc, R., Reiter, M., Digruber, A., Tschulenk, W., Walter, I., Kirschner, A., Spittler, A., Stockinger, H., 2021. A Novel Flow Cytometric Approach for the Quantification and Quality Control of Chlamydia trachomatis Preparations. Pathogens, 10(12), p. 1617.

Laroucau, K., Aaziz, R., Vorimore, F., Menard, M. F., Longbottom, D., Denis, G., 2018. Abortion storm induced by the live Chlamydia abortus vaccine 1B strain in a vaccinated sheep flock, mimicking a natural wild-type infection. Veterinary Microbiology, 225, p. 31–33.

Livingstone, M., Wattegedera, S. R., Palarea-Albaladejo, J., Aitchison, K., Corbett, C., Sait, M., Wilson, K., Chianini, F., Rocchi, M. S., Wheelhouse, N., Entrican, G., Longbottom, D., 2021. Efficacy of Two Chlamydia abortus Subcellular Vaccines in a Pregnant Ewe Challenge Model for Ovine Enzootic Abortion. Vaccines, 9(8),p. 898.

Longbottom, D., Fairley, S., Chapman, S., Psarrou, E., Vretou, E., & Livingstone, M. 2002. Serological diagnosis of ovine enzootic abortion by enzyme-linked immunosorbent assay with a recombinant protein fragment of the polymorphic outer membrane protein POMP90 of Chlamydophila abortus. Journal of clinical microbiology, 40(11), 4235–4243.

Longbottom, D., Sait, M., Livingstone, M., Laroucau, K., Sachse, K., Harris, S. R., Thomson, N. R., Seth-Smith, H., 2018. Genomic evidence that the live Chlamydia abortus vaccine strain 1B is not attenuated and has the potential to cause disease. Vaccine, 36(25), p. 3593–3598.

Montbrau, C., Fontseca, M., March, R., Sitja, M., Benavides, J., Ortega, N., Caro, M. R., Salinas, J., 2020. Evaluation of the Efficacy of a New Commercially Available Inactivated Vaccine Against Ovine Enzootic Abortion. Frontiers in Veterinary Science, 7, p. 593.

Mora Diaz, J. C., Díaz Aparicio, E., Herrera López, E., Suarez Güemes, F., Escalante Ochoa, C., Jaimes Villareal, S., Arellano Reynoso, B., 2015. Isolation of Chlamydia abortus in dairy goat herds and its relation to abortion in Guanajuato, Mexico. Veterinaria México OA, 2(1), p. 01-11.

Nabi, H., Rashid, I., Ahmad, N., Durrani, A., Akbar, H., Islam, S., Bajwa, A. A., Shehzad, W., Ashraf, K., Imran, N., 2017. Induction of specific humoral immune response in mice immunized with ROP18 nanospheres from Toxoplasma gondii. Parasitology Research, 116(1), p. 359–370.

O'Neill, L. M., Keane, O. M., Ross, P. J., Nally, J. E., Seshu, J., Markey, B., 2019. Evaluation of protective and immune responses following vaccination with recombinant MIP and CPAF from Chlamydia abortus as novel vaccines for enzootic abortion of ewes. Vaccine, 37(36), p. 5428–5438.

O'Neill, L. M., O'Driscoll, Á., Markey, B., 2018. Comparison of three commercial serological tests for the detection of Chlamydia abortus infection in ewes. Irish Veterinary Journal, 71, p. 13.

Ortega, N., Caro, M. R., Gallego, M. C., Murcia-Belmonte, A., Álvarez, D., Del Río, L., Cuello, F., Buendía, A. J., Salinas, J., 2016. Isolation of Chlamydia abortus from a laboratory worker diagnosed with atypical pneumonia. Irish Veterinary Journal, 69, p. 8.

Osman, K. M., Ali, H. A., ElJakee, J. A., Galal, H. M., 2011. Chlamydophila psittaci and Chlamydophila pecorum infections in goats and sheep in Egypt. Revue scientifique et technique (International Office of Epizootics), 30(3), p. 939–948.

Pichon, N., Guindre, L., Laroucau, K., Cantaloube, M., Nallatamby, A., Parreau, S., 2020. Chlamydia abortus in Pregnant Woman with Acute Respiratory Distress Syndrome. Emerging Infectious Diseases, 26(3), p. 628–629.

Pourhajibagher, M., Bahador, A., 2016. Designing and in Silico Analysis of PorB Protein from Chlamydia Trachomatis for Developing a Vaccine Candidate. Drug Research, 66(9), p. 479–483.

Praga-Ayala, A. R., Montes de Oca-Jiménez, R., Ortega-Santana, C., Salem, A. Z. M., Cubillos-Godoy, V., Fernández-Rosas, P., Monroy-Salazar, H. G., 2014. Low seroprevalence of Chlamydia abortus in dairy cows of hot environment in southern of. Life Science Journal, 10457.

Rahman, K., Chowdhury, E. U., Sachse, K., Kaltenboeck, B., 2016. Inadequate Reference Datasets Biased toward Short Non-epitopes Confound B-cell Epitope Prediction. The Journal of Biological Chemistry, 291(28), p. 14585–14599.

Rodolakis, A., Laroucau, K., 2015. Chlamydiaceae and chlamydial infections in sheep or goats. Veterinary Microbiology, 181(1-2), p. 107–118.

Rubio-Navarrete, I., Montes-de-Oca-Jiménez, R., Acosta-Dibarrat, J., Monroy- Salazar, H.G., Morales-Erasto, V., Fernández-Rosas, P. and Odongo, E.N., 2017. Prevalence of Chlamydia abortus Antibodies in Horses from the Northern State of Mexico and Its Relationship with Domestic Animals. Journal of Equine Veterinary Science, 56, p. 110-113.

Sachse, K., Rahman, K. S., Schnee, C., Müller, E., Peisker, M., Schumacher, T., Schubert, E., Ruettger, A., Kaltenboeck, B., Ehricht, R., 2018. A novel synthetic peptide microarray assay detects Chlamydia species-specific antibodies in animal and human sera. Scientific Reports, 8(1), p. 4701.

Sánchez-Rocha, L., Arellano-Reynoso, B., Hernández-Castro, R., Palomares-Resendiz, G., Barradas-Piña, Francisco, Díaz-Aparicio, E., 2021. Presencia de Chlamydia abortus en cabras con historial de abortos en México. Abanico Veterinario, 11, p. e118.

Soria-Guerra, R. E., Nieto-Gomez, R., Govea-Alonso, D. O., Rosales-Mendoza, S., 2015. An overview of bioinformatics tools for epitope prediction: implications on vaccine development. Journal of Biomedical Informatics, 53, p. 405–414.

Vita, R., Mahajan, S., Overton, J. A., Dhanda, S. K., Martini, S., Cantrell, J. R., Wheeler, D. K., Sette, A., Peters, B., 2019. The Immune Epitope Database (IEDB): 2018 update. Nucleic Acids Research, 47(D1), p. D339–D343.

Vretou, E., Giannikopoulou, P., Longbottom, D., Psarrou, E., 2003. Antigenic organization of the N-terminal part of the polymorphic outer membrane proteins 90, 91A, and 91B of Chlamydophila abortus. Infection and Immunity, 71(6), p. 3240–3250.

Vretou, E., Psarrou, E., Kaisar, M., Vlisidou, I., Salti-Montesanto, V., & Longbottom, D. 2001. Identification of protective epitopes by sequencing of the major outer membrane protein gene of a variant strain of Chlamydia psittaci serotype 1 (Chlamydophila abortus). Infection and immunity, 69(1), 607–612.

Walder, G., Hotzel, H., Brezinka, C., Gritsch, W., Tauber, R., Würzner, R., Ploner, F., 2005. An unusual cause of sepsis during pregnancy: recognizing infection with Chlamydophila abortus. Obstetrics and Gynecology, 106(5 Pt 2), p. 1215–1217.

Walder, G., Meusburger, H., Hotzel, H., Oehme, A., Neunteufel, W., Dierich, M. P., Würzner, R., 2003. Chlamydophila abortus pelvic inflammatory disease. Emerging Infectious Diseases, 9(12), p. 1642–1644.

Walker, E., Lee, E. J., Timms, P., Polkinghorne, A., 2015. Chlamydia pecorum infections in sheep and cattle: A common and under-recognised infectious disease with significant impact on animal health. Veterinary Journal, 206(3), p. 252–260.

Wasissa, M., Lestari, F. B., Nururrozi, A., Tjahajati, I., Indarjulianto, S., Salasia, S., 2021. Investigation of chlamydophilosis from naturally infected cats. Journal of veterinary science, 22(6), p. e67.

World Organization for animal Health (WOAH) 2018. – Manual terrestre: Chapter 3.7.5. - Enzootic abortion of ewes (ovine chlamydiosis) 59, 1456–1465. Disponible en: (fecha de consulta: 20 de abril de 2020)

Yin, L., Schautteet, K., Kalmar, I., Bertels, G., Van Driessche, E., Czaplicki, G., Borel, N., Longbottom, D., Frétin, D., Dispas, M., Al, E., 2014. Prevalence of Chlamydia abortus in Belgian ruminants Prevalentie. VLAAMS Diergeneeskd. Tijdschr. 83, p. 164–170.



Copyright (c) 2023 Fernando de Jesús Aldama, Roberto Montes de Oca Jiménez, Beatriz Arellano-Reynoso

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.