Ernesto Javier Gómez-Padilla, Francisco Guevara-Hernandez, Manuel Alejandro La-O Arias, Mercedes Fernández-Pascual, René Pinto-Ruiz, Raúl López-Sánchez


Background: The introduction of species with tolerance to salinity is one of the strategies to reduce the harmful effect of salts in the eastern region of Cuba. The species Vigna unguiculata L., shows rusticity and capability of adaptation, however, it is necessary to search for cultivars with greater tolerance and symbiotic nitrogen fixation possibilities to increase yields. Objective: To determine the behavior of the bradyrizobium-cowpea bean relationship under salinity conditions, based on variables related to symbiotic nitrogen fixation, growth and development. Methodology: An experiment was carried out under controlled glass house conditions at the CSIC, Madrid, Spain. Two cultivars were used; IITA-Precoz and IT 86 D-715, which were inoculated with Strain VIBA-1 of Bradyrhizobum liaoningense. Treatments were Hoagland nutrient solution (control) and nutrient solution with 150 mM NaCl (saline). A completely randomized design with eight replications was used. At 40 days after germination, variables related to symbiotic nitrogen fixation, growth and development, protein concentration of the cytosolic soluble fraction of leaves and nodules were evaluated. Results: Although salinity negatively affected both cultivars, the damage did not manifest with the same intensity. IT 86 D-715 was less affected by showing less damage on the variables number of nodules, ARA, protein concentration in nodules and leaves, accumulation of leaf and root biomass, so its tolerance was greater. The IITA-Precoz cultivar was more susceptible, all the variables were notably affected under stress conditions, therefore, its tolerance level is lower. Implications: The cultivar IT 86 D-715 can be used in salinized soils due to its high tolerance, which is evidenced in variables of growth development and atmospheric nitrogen fixation. Conclusions: The cultivar IT 86 D-715 presents a greater capacity for symbiotic nitrogen fixation under salinity conditions and the tolerance index in all the growth and development variables evaluated was higher than IITA-Precoz, for which it presents a high susceptibility level.


saline stress; symbiotic relationship; tolerance; nodulation

Full Text:



AL-Mansor, K.J.A. and Thaher, A.Z.T., 2020. Isolation and Diagnosis of Rhizobium of Cowpea Plant and their Efficiency in Host Plant Infection and Nitrogen Fixation. International Journal of Agricultural and Statistical Sciences, 16(2), pp. 641–645.

Anuario Estadístico de Cuba., 2021. [online] Oficina Nacional de Estadística e Información. Available at:[Accessed 22 September 2022].

Arif, Y., Singh, P., Siddiqui, H., Bajguz, A. and Hayat, S., 2020. Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiology and Biochemistry, 156, pp. 64–77.

Biswas, K., Adhikari, S., Tarafdar, A., Kumar, R., Saha, S. and Ghosh, P., 2020. Reactive Oxygen Species and Antioxidant Defence Systems in Plants: Role and Crosstalk Under Biotic Stress. Sustainable Agriculture in the Era of Climate Change pp. 265–292.

Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), pp. 248–254.

Cabral, M.D., Amanda, A.G., da Costa Elaine, M., de Carvalho Teotonio, S., Eduardo, B., Willems, A. and de Souza Emanuel, M., 2020. Bradyrhizobium uaiense sp. nov., a new highly efficient cowpea symbiont. Archives of Microbiology, 202(5), pp. 1135–1141.

Chidebe, I.N., Jaiswal, S.K. and Dakora, F.D., 2018. Distribution and phylogeny of microsymbionts associated with cowpea (Vigna unguiculata) nodulation in three agroecological regions of Mozambique. Applied and Environmental Microbiology, 84(2), pp. e01712-17.

da Costa, E.M., de Carvalho, T.S., Guimarães, A.A., Leão, A.C.R., Cruz, L.M., de Baura, V.A., Lebbe, L., Willems, A. and de Souza Moreira, F.M., 2019. Classification of the inoculant strain of cowpea UFLA03-84 and of other strains from soils of the Amazon region as Bradyrhizobium viridifuturi (symbiovar tropici). Brazilian Journal of Microbiology, 50(2), pp. 335–345.

do Nascimento, T.R., Sena, P.T.S., Oliveira, G.S., da Silva, T.R., Dias, M.A.M., de Freitas, A.D.S., Martins, L.M.V. and Fernandes-Júnior, P.I., 2021. Co-inoculation of two symbiotically efficient Bradyrhizobium strains improves cowpea development better than a single bacterium application. 3 Biotech, 11(1), pp. 1–12.

Dong, S. and Beckles, D.M., 2019. Dynamic changes in the starch-sugar interconversion within plant source and sink tissues promote a better abiotic stress response. Journal of Plant Physiology, 234, pp. 80–93.

FAO, 1995. Manual técnico de la fijación simbiótica del nitrógeno: leguminosa/Rhizobium. Rome: Organización de las Naciones Unidas para Agricultura y la Alimentación. Available at:

Fatima, T., Mishra, I., Verma, R. and Arora, N.K., 2020. Mechanisms of halotolerant plant growth promoting Alcaligenes sp. involved in salt tolerance and enhancement of the growth of rice under salinity stress.3 Biotech, 10(8), pp. 1–12.

Fernández-Pascual, M., Pozuelo, J.M., Serra, M.T. and De Felipe, M.R., 1988. Effects of Cyanazine and Linuron on Chloroplast Development, Nodule Activity and Protein Metabolism in Lupinus albus L. Journal of Plant Physiology, 133(3), pp. 288–294.

Gómez-Padilla., Ernesto J., Argentel M.L., Amador, C., Alarcón B.K., López S.R., Ruiz-Díez, B., Fernández-Pascual, M., and Eichler-Loebermann, B.,2013. Evaluación de la tolerancia a la salinidad en frijol Caupí a partir de variables relacionadas con la nodulación y la acumulación de nitrógeno foliar. Cultivos Tropicales, 34(3), 11-16. Recuperado en 18 de enero de 2023, de

Gómez-Padilla, E., López Sánchez, R., Ruiz-Diez, B., Fernández-Pascual, M., Fajardo, S. and Eichler-Loebermann, B., 2014. Ultrastructural alterations into chloroplasts and root nodules of cowpea plants grown under saline stress conditions. Cultivos Tropicales, 35(1), pp. 62–66. Recuperado en 18 de enero de 2023, de

Gómez-Padilla, E., Ruiz-Díez, B., Fajardo, S., Eichler-Loebermann, B., Samson, R., Van-Damme, P., López-Sánchez, R. and Fernández-Pascual, M., 2017. Characterization of rhizobia isolated from cowpea nodules, in Cuban saline soils. Cultivos Tropicales, 38(4), pp. 39-49. Recuperado en 18 de enero de 2023, de

Haro, H., Sanon, K.B., Le Roux, C., Duponnois, R. and Traoré, A.S., 2018. Improvement of cowpea productivity by rhizobial and mycorrhizal inoculation in Burkina Faso. Symbiosis, 74(2), pp. 107–120.

Hernández, J.A., 2019. Salinity tolerance in plants: trends and perspectives. International Journal of Molecular Sciences, 20(10), p.2408.

Hoagland, D.R. and Arnon, D., 1938. The Water-Culture Method for Growing Plants Without Soil. Caifornia Agricultural Experiment Station, Circular 347 [Revised January 1950], Berkeley: The College of Agriculture, University of California. [online] Available at: [Accessed 13 September 2021].

Kataria, S. and Verma, S.K., 2018. Salinity stress responses and adaptive mechanisms in major glycophytic crops: the story so far. In: V. Kumar, S. Wani, P. Suprasana, L.S. Tran, eds. Salinity Responses and Tolerance in Plants, Vol. 1. Cham: Springer pp. 1–39.

Kebede, E., Amsalu, B., Argaw, A. and Tamiru, S., 2020. Symbiotic effectiveness of cowpea (Vigna unguiculata (L.) Walp.) nodulating rhizobia isolated from soils of major cowpea producing areas in Ethiopia. Cogent Food & Agriculture, 6(1), p.1763648.

Kehinde, A.A., Titilola, A.O., Bosede, A.F., Oluremi, O.A. and Esther, O.T., 2020. Nutrient uptake and cowpea performance following early season maize cultivation under different fertilizer types. Tropical and Subtropical Agroecosystems, [online] 23(1), pp. #04. Available at: [Accessed 22 September 2022].

Khan, W.-D., Tanveer, M., Shaukat, R., Ali, M. and Pirdad, F., 2020. An overview of salinity tolerance mechanism in plants. In: M. Hasanuzzaman, M. Tanveer, eds. Salt and drought stress tolerance in plants. Cham: Springer. pp. 1–16.

Le, L., 2020. Examining salinity tolerance mechanisms in (sub) tropical grain legumes: Soybean (Glycine max), cowpea (Vigna unguiculata), mungbean (Vigna radiata), and common bean (Phaseolus vulgaris). Thesis presented of doctor of philosophy. University of Western Australia. School of Agriculture and Environment Faculty of Science, pp. 237.

López-Sánchez, R.C., Gómez-Padilla, E., Campos-Posada, R., Eichler-Löbermann, B., Rodríguez-Larramendi, L.A., Guevara-Hernández, F. and Gongora-Mora, G., 2018. Afectaciones en el rendimiento de líneas de frijol común (Phaseolus vulgaris L.) provocado por salinidad. Cultivos Tropicales, 39(1), pp. 74–80. Recuperado en 18 de enero de 2023, de

Matamoros, M.A. and Becana, M., 2021. Molecular responses of legumes to abiotic stress: post-translational modifications of proteins and redox signaling. Journal of Experimental Botany, 72(16), pp. 5876–5892.

Mukhtar, S., Hirsch, A.M. and Khan, N., 2020. Impact of soil salinity on the cowpea nodule-microbiome and the isolation of halotolerant. Phytobiomes Journal, 4 (4), pp. 364–374.

Ndungu, S.M., Messmer, M.M., Ziegler, D., Gamper, H.A., Mészáros, É., Thuita, M., Vanlauwe, B., Frossard, E. and Thonar, C., 2018. Cowpea (Vigna unguiculata L. Walp) hosts several widespread bradyrhizobial root nodule symbionts across contrasting agro-ecological production areas in Kenya. Agriculture, Ecosystems & Environment, 261, pp. 161–171.

Oliveira, G.S., Sena, P.T.S., do Nascimento, T.R., Neto, R.A.F., Pereira, J.R.C., Martins, L.M.V., de Freitas, A.D.S., Signor, D. and Fernandes-Júnior, P.I., 2019. Are cowpea-nodulating bradyrhizobial communities influenced by biochar amendments in soils? Genetic diversity and symbiotic effectiveness assessment of two agricultural soils of Brazilian drylands. Journal of Soil Science and Plant Nutrition, 20, pp. 439–449.

Omara, A., and El-Gaafarey, T. (2018). Alleviation of salinity stress effects in forage cowpea (Vigna unguiculata L.) by Bradyrhizobium sp. inoculation. Microbiology Research Journal International, 23(3), 1-16.

Pernús, M., and Sánchez, JA (2015). Salinidad en Cuba y tratamientos pregerminativos de hidratación-deshidratación de semillas. Pastos y Forrajes, 38 (4), 379-392. Recuperado en 18 de enero de 2023, de

Ravelombola, W., Dong, L., Barickman, T.C., Xiong, H., Olaoye, D., Bhattarai, G., Zia, B., Alshaya, H., Alatawi, I. and Shi, A., 2021. Evaluation of salt tolerance in cowpea at seedling stage. Euphytica, 217(6), pp. 1–20.

Safdar, H., Amin, A., Shafiq, Y., Ali, A., Yasin, R., Shoukat, A., Hussan, M.U. and Sarwar, M.I., 2019. A review: Impact of salinity on plant growth. Nature and Science, 17(1), pp. 34–40.

Santos, A. de A., Silveira, J.A.G. da, Guilherme, E. de A., Bonifacio, A., Rodrigues, A.C. and Figueiredo, M. do V.B., 2018. Changes induced by co-inoculation in nitrogen–carbon metabolism in cowpea under salinity stress. Brazilian Journal of Microbiology, 49, pp. 685–694.

Shahid, M.A., Sarkhosh, A., Khan, N., Balal, R.M., Ali, S., Rossi, L., Gómez, C., Mattson, N., Nasim, W. and Garcia-Sanchez, F., 2020. Insights into the Physiological and Biochemical Impacts of Salt Stress on Plant Growth and Development. Agronomy, 10(7), p. 938.

StatSoft, Inc. 2011. STATISTICA (Sistema de software de análisis de datos), versión 10.

Tofiño, A., Romero, H.M. and Ceballos, H., 2007. Efecto del estrés abiótico sobre la síntesis y degradación de almidón. Una revisión. Agronomía Colombiana, 25(2), pp. 245–254. Recuperado el 18 de enero de 2023, de



Copyright (c) 2023 Ernesto Javier Gómez-Padilla, Francisco Guevara-Hernandez, Raúl López-Sánchez, Beatriz Ruiz-Diez, Mercedes Fernández-Pascual, Manuel Alejandro La-O Arias

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.