SOIL MACROFAUNA ABUNDANCE AND DIVERSITY UNDER TREES WOODLOTS IN EASTERN DEMOCRATIC REPUBLIC OF CONGO

Jean-Leon Mirembe Kataka, Richard Onwonga, Nancy Karanja, Solomon Kamau

Abstract


Background. Soil macrofauna are key components of agricultural processes due to their ability to enhance major soil functions such as nutrient cycling and organic matter decomposition. Yet, in the Democratic Republic of Congo, their compositions and dynamics are threatened by the intensification of agricultural activities on small pieces of land characterised by integration of trees into crops farms. Objective. To assess the effect of diverse tree species on soil macrofauna abundance and diversity and selected soil chemical properties. Methodology. Eucalyptus saligna and Grevillea robusta woodlots were considered for this study, together with a natural forest, an indigenous tree (Ficus benghalensis) and an agricultural farm (with beans grown on it), and were set up as treatments. A complete randomised design was used whereby each treatment was replicated five times in four different locations. Soil macrofauna were collected using soil monoliths as well as Pitfall and Winkler traps, while composite soil samples were taken from monoliths after macrofauna catching. Soil macrofauna were identified at the order level and soil nutrients analysed in the laboratory following standard procedures. The analysis of variance and correlations were carried out using R programming software. Results. Soils under natural forest showed significantly low pH as compared to grevillea, eucalyptus, ficus and beans. Soil C levels were significantly low in beans (33.6 g kg-1), than grevillea (45.0 g kg-1), ficus and eucalyptus (46.2 g kg-1 and 47.7 g kg-1), and natural forest (60.7 g kg-1), whereas N was significantly low in beans (3.7 g kg-1) as compared to ficus and eucalyptus (4.3 g kg-1 and 4.7 g kg-1), and grevillea and natural forest (5.3 g kg-1 and 5.3 g kg-1). Soil Ca was significantly higher under ficus, than beans, grevillea, natural forest and eucalyptus. Same trends were observed for P, K and Mg. Highly significant (p <0.05) macrofauna abundance was observed for Araneae (spiders) under beans with an average of 7.3 individuals, compared to grevillea and eucalyptus (6.0 and 5.1 individuals respectively), and natural forest and ficus (3.3 and 2.8 individuals respectively). Inversely, Coleoptera (beetles) were significantly lower under beans than natural forest, ficus, eucalyptus and grevillea, whereas Haplotaxida (earthworms) and Hymenoptera were both higher under ficus.  Soils in natural forest and ficus revealed highly significant richness index (9.8 and 9.5) than grevillea and eucalyptus (9.0 and 8.8) and beans (7.5). The Shannon diversity index together with the evenness index were both significantly (p <0.05) higher under beans and lower under ficus.  Implication. The diversification of soil macrofauna under specific tree species for this study indicates their importance towards the preservation of soil macrofauna communities whose activities impact on soil chemical and physical properties and contribute to maintaining soil ecological functions. Conclusion. Thus, in order to maximize positive interactions between tree species, soil macrofauna and soil properties, hence to sustain soil health and maintain a better soil biodiversity, it is important to take into consideration the integration of appropriate tree species into farming systems.

Keywords


soil macrofauna; soil chemicals; soil degradation; Eucalyptus saligna; Grevillea robusta.

Full Text:

PDF

References


Alemie, T.C., 2009. The Effect of Eucalyptus on Crop Productivity, and Soil Properties in the Koga Watershed, Western Amhara Region, Ethiopia [Master thesis]. Cornell University, pp. 96.

Anderson, J. and Ingram, J., 1993. Tropical Soil Biology and Fertility: A Handbook of Methods, 2nd ed., C.A.B. International, Wallingford, UK, 2, pp. 221. http://doi.org/10.1017/S0014479700024832

Angers, D.A. and Eriksen-Hamel, N.S., 2008. Full-Inversion Tillage and Organic Carbon Distribution in Soil Profiles: A Meta-Analysis. Soil Science Society of America, 72, pp. 1370-1374. http://doi.org/10.2136/sssaj2007.0342.

Avendaño-Yáñez, López-Ortiz, S., Perroni, Y., M.D.L.L and Pérez-Elizalde, S., 2018. Leguminous trees from tropical dry forest generate fertility islands in pastures. Arid Land Research and Management, 32 (1), pp. 57–70. http://doi.org/10.1080/15324982.2017.1377782

Aweto, A.O. and Moleele, N.M., 2005. Impact of Eucalyptus camaldulensis plantation on an alluvial soil in south eastern Botswana. International Journal of Environmental Studies, 62 (2), pp. 163–170. http://doi.org/10.1080/0020723042000275141

Ayuke, F.O., Pulleman, M.M., Vanlauwe, B., de Goede, R.G.M., Six, J., Csuzdi, C. and Brussaard, L., 2011b. Agricultural management affects earthworm and termite diversity across humid to semi-arid tropical zones. Agriculture, Ecosystems & Environment, 140, pp. 148–154. http://doi.org/10.1016/j.agee.2010.11.021

Bailey, S.W., Horsley, S.B. and Long, R.P., 2005. Thirty years of change in forest soils of the Allegheny Plateau, Pennsylvania. Soil Science Society of America Journal, 69 (3), pp. 681–690. http://doi.org/10.2136/sssaj2004.0057

Bardgett, R.D., Bowman W.D.,K.R. and Kaufmann, S.S., 2005. A temporal approach to 105 linking aboveground and belowground ecology. Trends in Ecology & Evolution, 20 (11), pp. 634–641. http://doi.org/10.1016/j.tree.2005.08.005

Bardgett, R.D., Mawdsley, J.L., Edwards, S., Hobbs, P.J. and Rodwell, J.S. 1999. Plant species and nitrogen effects on soil biological properties of temperate upland grasslands. Functional. Ecology, 13 (5), pp. 650–660. http://doi.org/10.1046/j.1365-2435.1999.00362.x

Baretta, D., Bartz, M., Fachini, I., Anselmi, R., Zortéa, T. and Maluche-Baretta, C. 2014. Fauna edáfica e sua relação com variáveis ambientais em sistemas de manejo do solo. Revista Ciencia Agronomica, 45 (5), pp.71-90. http://www.repositorio.ufc.br/handle/riufc/14985

Barrios, E., 2007. Soil biota, ecosystem services and land productivity, Ecological Economics. 64 (2), pp. 269–285. http://doi.org/10.1016/j.ecolecon.2007.03.004

Barrios, E., Cobo, J.G., Rao, I.M., Thomas, R.J., Amezquita, E., Jimenez, J.J.and Rondon, M.A., 2005. Fallow management for soil fertility recovery in tropical Andean agroecosystems in Colombia. Agriculture, Ecosystems and Environment, 110, pp. 29-42. https://doi.org/10.1016/j.agee.2005.04.009

Barrios, E., Sileshi, G.W. and Shepherd, K., 2011. Agroforestry and soil health: Linking trees, soil biota and ecosystem services. In: D.H. Wall, eds. The Oxford Handbook of Soil Ecology and Ecosystem Services. Oxford University Press, Oxford, UK, pp. 315-330. http://doi.org/10.1093/acprof:oso/9780199575923.003.0028

Bates, D., Maechler, M., Bolker, B. and Walker, S., 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67, pp. 1–48. https://doi.org/10.18637/jss.v067.i01

Boyle, J.R., 1999. Planted forests: Views and viewpoints. In: J.R., Boyle, J.K., Winjum, K., Kavanagh, E.C., Jensen, eds. Planted Forests: Contributions to the Quest for Sustainable Societies, Dordrecht: Forestry Sciences, 56, pp. 5–9. https://doi.org/10.1007/978-94-017-2689-4_1

Bremner, J.M., 1965. Organic forms of nitrogen. In: C.A., Black, Eds. Methods of soils analysis. Part 2. Chemical and microbiological properties. USA: Madison, pp. 1238–1255.

Castro-Díez, P., Fierro-Brunnenmeister, N., González Muñoz and Gallardo, A., 2011. Effects of exotic and native tree leaf litter on soil properties of two contrasting sites in the Iberian Peninsula. Plant and Soil, 350, pp. 179–191. http://doi.org/10.1007/s11104-011-0893-9

Catherine, L.P. and Steven, L.S., 2001. Inventory and bioindicator sampling: Testing pitfall and Winkler methods with ants in a South African savanna. Journal of Insect Conservation, 5, pp. 27–36. http://doi.org/10.1023/A:1011311418962

Cortez, C.T., Nunes, L.A. P.L., Rodrigues, L.B., Eisenhauer, N. and Araújo, A.S.F., 2014. Soil microbial properties in Eucalyptus grandis plantations of different ages. Journal of Soil Science and Plant Nutrition, 14 (3), pp. 734–742. http://doi.org/10.4067/S0718-95162014005000059

David, L.K., 2015. Influence of indigenous trees on soil macrofauna and soil organic matter dynamics in tropical miombo woolands [Thesis]. University of Nairobi. http://hdl.handle.net/11295/93388

Dhanya, B., Syam, V. and Seema, P., 2013. Decomposition and Nutrient Release Dynamics of Ficus benghalensis Litter in Traditional Agroforestry Systems of Karnataka, Southern India. International Scholarly Research Notices, 2013, pp. 7. http://doi.org/10.1155/2013/524679

Ebenezer, A., Ann, D., Zac, T., Apollinaire, B., Bernadette, H., Cyrille, H. and Salvator, K., 2014. Agroforestry and Tree Domestication in Central Africa pp. 185–195. http://www.researchgate.net/publication/271205522_Agroforestry_and_Tree_Domestication_in_Central_Africa

Emilie, S. D., and Subira, B., 2015. Rapport des journées de formation sur l’agroforesterie au Nord-Kivu. The World Agroforestry Centre.

Emilie, S.D., Subira,B. and Fergus, S., 2015. Guide technique d’agroforesterie pour la sélection et la gestion des arbres au Nord-Kivu—République Démocratique du Congo RDC. The World Agroforestry Centre.

Eviner, V.T., 2004. Plant traits that influence ecosystem processes vary independently among species. Ecology, 85 (8), pp. 2215–2229. http://doi.org/10.1890/03-0405.

Fernandes, E.C.M., Motavalli, P.P., Castilla, C. and Mukumrumbira, L., 1997. Management control of soil organic matter dynamics in tropical land-use systems. Geoderma, 79, pp. 49–67. http://doi.org/10.1016/S0016-7061(97)00038-4

Geert, L., Françoise, A., Mone Van, G. and Thierry, L., 2013. ECOmakala: Meeting energy needs, fighting poverty and protecting the forests of the Virunga National Park in North Kivu DRC. WWF-Communauté francophone, pp.35.

Harrington, R.A. and Ewel, J.J., 1997. Invasibility of tree plantations by native and nonindigenous plant species in Hawaii. Forest Ecology and Management, 99, 153-162. http://doi.org/10.1016/S0378-1127(97)00201-6

He, J., H., M., H. and Xu, J., 2015. Participatory selection of tree species for agroforestry on sloping land in North Korea. Mountain Research and Development, 35 (4), 318-327. http://doi.org/10.1659/MRD-JOURNAL-D-15-00046.1

Hopp, P.W., Edilson, C., Richard, O. and Martina, R.N., 2011. Evaluating leaf litter beetle data sampled by Winkler extraction from Atlantic forest sites in southern Brazil. Revista Brasileira de Entomologia, 55 (2), pp. 253–266. http://doi.org/10.1590/S0085-56262011000200017

Innes, L., Hobbs, P.J. and Bardgett, R.D., 2004. The impacts of individual plant species on rhizosphere microbial communities in soils of different fertility. Biology and Fertility of Soils, 40 (1), pp. 7–13. https://doi.org/10.1007/s00374-004-0748-0

Isaac, R.A. and Johnson Jr., W.C., 1998. Elemental determination by inductively coupled plasma atomic emission spectrometry. In: Y.K., Kalra, eds. Handbook of Reference Methods for Plant Analysis, Boca Raton: CRC Press, pp. 165–170.

Islam, K.R. and Weil, R.R., 1999. Land use effects on soil quality in a tropical forest ecosystem of Bangladesh. Agriculture, Ecosystems and Environment, 79 (1), pp. 9–16. https://doi.org/10.1016/S0167-8809(99)00145-0

Jama, B.A. and Nair, P.K.R., 1996. Decomposition and nitrogen mineralization patterns of Leucaena leucocephala and Cassia siamea mulch under tropical semiarid conditions in Kenya. Plant and Soil, 179 (2), pp. 275–285. http://doi.org/10.1007/BF00009338

Jones, C.G., Lawton, J.H. and Shachak, M., 1994. Organisms as ecosystem engineers. Oikos, 69 (3), pp. 373–386. http://doi.org/10.2307/3545850

Kamau, S., Edmundo, B., Nancy, K., Fredrick, A. and Johannes, L. 2017a. Soil macrofauna abundance under dominant tree species increases along a soil degradation gradient. Soil Biology & Biochemistry, pp. 35–46. http://doi.org/10.1016/j.soilbio.2017.04.016

KASAY, K., 1998. Dynamisme Démo-Géographique et mise en valeur de l’Espace en milieu équatorial d’altitude: Cas du Pays Nande au Kivu Septentrional, Zaïre [PhD Thesis : Geography]. Université de Lubumbashi.

Katembo, S.S., 2017. Contribution de la foresterie urbaine dans la séquestration du carbone: Cas de la ville de Beni [Monography]. Université Catholique du Graben.

Kerkhof, P., 1990. Agroforestry in a Survey of Project Experience. SIDA-Commission of the European Communities and CTA, pp. 97–104.

Korboulewsky, N., Perez, G. and Chauvat, M., 2016. How tree diversity affects soil fauna diversity: A review. Soil Biology and Biochemistry, 94, pp. 94–106. http://doi.org/10.1016/j.soilbio.2015.11.024

Lavelle, P., 1997. Faunal activities and soil processes: Adaptive strategies that determine ecosystem function. Advances in Ecological Research, 27, pp. 93–132. https://doi.org/10.1016/S0065-2504(08)60007-0

Lavelle, P., Dangerfield, M., Fragoso, C., Eschenbrenner, V., Lopez-Hernandez, D., Pashani, B. and Brussaard, L., 1994. The relationship between soil fauna and tropical soil fertility. In: P.L. Woomer, M.J. Swift., ed. The biological management of tropical soil fertility, Chichester, pp. 137–169..

Leda, L.M. and Welington, D., 2018. Effects of Eucalyptus and Pinus Forest Management on Soil Organic Carbon in Brazilian Wooded-Savanna. IntechOpen, pp. 61–81. http://doi.org/10.5772/intechopen.72684

Leonardo, R.S., Yuli, T.P.J., Erika, J.A.S., Karla, D.L.C., Ervin, H.D.B. and Juan, C.S.S., 2018. Soil macrofauna under different land uses in the Colombian Amazon. Pesquisa Agropecuaria Brasileira, Brasília, 53 (12), pp. 1383–1391. http://doi.org/10.1590/S0100-204X2018001200011

Lin., 2010. The role of agroforestry in reducing water loss through soil evaporation and crop transpiration in coffee agroecosystems. Agricultural and Forest Meteorology, 150 (4), pp. 510–518. https://doi.org/10.1016/j.agrformet.2009.11.010

Mbau, S.K., Karanja, N.K. and Ayuke, F.O., 2015. Short-term influence of compost application on maize yield, soil macrofauna diversity and abundance in nutrient deficient soils of Kakamega County, Kenya. Plant and Soil, 387, pp. 379–394. http://doi.org/10.1007/s11104-014-2305-4

Mboukou-Kimbatsa, I.M.C. and Bernhard-Reversat, F., 2001. Effect of exotic tree plantations on invertebrate soil macrofauna. In: F.R. Bernhard, ed. Effect of Exotic Tree Plantations on Plant Diversity and Biological Soil Fertility in the Congo Savanna: With Special Reference to Eucalyptus, Center for International Forestry Research, pp. 49-55. http://doi.org/10.17528/cifor/001008

Mehlich, M., 1984. Mehlichs-3 soil test extractant: A modification of the Mehlich 2 extractant. Communications in Soil Science and Plant Analysis, 15, pp. 1409–1416. http://dx.doi.org/10.1080/00103628409367568

Michael, B.M., Kaitlin, U.C. and Thomas, O.C., 2017. Effectiveness of Winkler Litter Extraction and Pitfall Traps in Sampling Ant Communities and Functional Groups in a Temperate Forest. Environmental Entomology, 46 (3), pp. 470-479. http://doi.org/10.1093/ee/nvx061

Murage, E.W., Karanja, N.K., Smithson, P.C. and Woomer, P.C., 2000. Diagnostic indicators of soil quality in productive and non-productive smallholders’ fields of Kenya’s Central Highlands. Agriculture, Ecosystems & Environment, 79 (1), pp. 1–8. http://doi.org/10.1016/S0167-8809(99)00142-5

Muvunga, K.G., 2019. Reduction of aflatoxin contamination of maize flour in three major cities Beni, Butembo and Goma of North-Kivu of D. R. Congo by employing nixtamalization preparation for consumption [Master thesis]. University of Nairobi. http://erepository.uonbi.ac.ke/handle/11295/108207

Nabunya, M., 2017. Contribution of agroforestry practices to reducing farmers’ vulnerability to climate variability in Rakai district, Uganda. Makerere University, College of Agriculture and environmental sciences.

Nelson, P.W. and Sommers, C.E., 1996. Total C, organic C and organic matter. In: A.L., Page, eds. Methods of soil analysis. Part 2. Madison: Chemical Methods SSSA, 2 (9), pp. 539–579. https://doi.org/10.2136/sssabookser5.3.c34

Noella, E., John, W., Jonathan, M. and Jeremias, M., 2015. Influence of selected tree species on soil characteristics, growth and yield of maize in Western Kenya. African Journal of Agricultural Research, 10 (24), pp. 2439–2406. http://doi.org/10.5897/AJAR2014.8825

Pauli, N., Oberthür, T., Barrios, E. and Conacher, A., 2010. Fine-scale spatial and temporal variation in earthworm surface casting activity in agroforestry fields, western Honduras. Pedobiologia, 53, pp. 127–139. https://doi.org/10.1016/j.pedobi.2009.08.001

Peres, M.C.L., Kátia, R.B., Alessandra, R.S.deA., Marcos, V.A.G., Tércio da Silva, M., Antonio, D.B. and Jacques, H.C.D., 2014. Tree-Fall Gaps Effects on Spider Araneae Assemblages in an Atlantic Forest Landscape in Northeastern Brazil. Open Journal of Animal Sciences, 4 (3), 118–133. http://doi.org/10.4236/ojas.2014.43016

R Core Team, 2015. R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/.

Ravina., 2012. Impact of Eucalyptus plantations on pasture land on soil properties and carbon sequestration in Brazil. Swedish University of Agricultural Sciences.

RDC, M. du plan., 2005b. Consultations participatives sur la pauvreté auprès des communautés de base en Province du Nord-Kivu, Rapport final.

Ruiz, N., Lavelle, P. and Jiménez, J., 2008, Rome. Soil macrofauna field manual: Technical level. Food and Agriculture Organisation of the United Nations, pp. 101.

Sahani, M., 2004. Érosion des sols et potentiel agroforestier de quelques ligneux en milieu paysan dans la zone agroécologique de Beni-Lubero, Nord-Kivu/RDC. Mémoire de fin d’études pour l’obtention d’un DES interuniversitaire en gestion des risques naturels, Communauté francophone de Belgique. Université de Liège et faculté universitaire des sciences agronomiques de Gembloux.

Sahani, M., 2011. Le contexte urbain et climatique des risques hydrologiques de la ville de Butembo Nord-Kivu/RDC [Thèse de doctorat]. Université de Liège.

Sharma, K.L., 2011. Effect of Agroforestry Systems on Soil Quality –Monitoring and Assessment. Central Research Institute for Dryland Agriculture, 122-132. http://www.crida.in/DRM1-Winter%20School/KLS.pdf

Sheila, T.deS., Paulo Cezar, C., Dilmar, B., Marie Luise, C.B., Osmar Klauberg, F., Álvaro Luiz, M. and Marcio, G. da R., 2016. Abundance and Diversity of Soil Macrofauna in Native Forest, Eucalyptus Plantations, Perennial Pasture, Integrated Crop-Livestock, and No-Tillage Cropping. Revista Brasileira Ciencia do Solo, 40, pp. 1–14. http://doi.org/10.1590/18069657rbcs20150248

Silva, R.F., Saidelles, F.L.F., Vasconcellos, N.J.S., Webber, D.P. and Manassero, D., 2011. Impacto do fogo na comunidade da fauna edáfica em florestas de Eucaliptus grandis e Pinus taeda. Revista Brasileira de Agrociencia, 17 (2), pp. 234–241.

Sivirihauma, L.C., 2013. Caractérisation morphologique et diversité variétale des bananiers et bananiers plantains dans la Province du Nord Kivu et le District de l’Ituri, Province Orientale, en RDC [Msc]. Université Catholique du Graben.

Szostek, M., Szpunar-Krok, E., Pawlak, R., Stanek-Tarkowska, J. and Ilek, A., 2022. Effect of Different Tillage Systems on Soil Organic Carbon and Enzymatic Activity. Agronomy, 12 (1), 208. http://doi.org/10.3390/agronomy12010208

Tererai, F., 2012. The effects of invasive trees in riparian zones and implications for management and restoration: Insights from Eucalyptus invasions in South Africa. Stellenbosch University. http://hdl.handle.net/10019.1/71981

Ukonmaanaho, L., Pitman, R., Bastrup-Birk, A., Breda, N. and Rautio, P., 2016. Sampling and analysis of Litterfall. Part XIII. In: UNECE ICP Forests Programme Co-ordinating Centre, eds. Manual on Methods and Criteria for Harmonized Sampling, Assessment, Monitoring and Analysis of the Effects of Air Pollution on Forests. Thünen Institute for Forests Ecosystems, pp. 1-14.

Van der Putten, W., Bardgett, R.D., de Ruiter, P.C., Hol, W.H.G., Meyer, K.M., Bezemer, T.M., Brdford, M.A., Christensen, S., Eppinga, M.B., Fukami, T., Hemerik, L., Molofsky, J., Schadler, M., Scherber, C., Strauss, S.Y., Vos, M. and Wardle, D.A., 2009. Empirical and theoretical challenges in aboveground-belowground ecology. Oecologia, 161 (1), pp. 1–14. http://doi.org/10.1007/s00442-009-1351-8

Vyakuno, K.E., 2006. Pression anthropique et aménagement rationnel des hautes terres de Lubero en R.D.C. : Rapports entre société et milieu physique dans une montagne équatoriale. Touluse 2.

Worku, G., Bantider, A. and Temesgen, H. 2014. Effects of land use/land cover change on some soil physical and chemical properties in Ameleke micro-watershed Gedeo and Borena zones, South Ethiopia. Environment and Earth Science, 4 (11), pp. 13-24.

Yeates, G.W. and Bongers, T., 1999b. Nematode diversity in agroecosystems. Agriculture Ecosystems & Environment, 74, 113–135. http://doi.org/10.1016/S0167-8809(99)00033-X

Zewdie. 2008. Temporal Changes of Biomass Production, Soil Properties and Ground Flora in Eucalyptus globulus Plantations in the Central Highlands of Ethiopia. Swedish University of Agricultural Sciences. http://res.slu.se/id/publ/17959

Zomer, R.J., Trabucco, A., Coe, R., Place, F., van Noordwijk, M. and Xu, J., 2014. Trees on farm: An update and analysis of agroforestry’s global extent and socio-ecological characteristics. World Agroforestry Center, pp. 1–54. http://doi.org/10.5716/WP16263.PDF




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v26i3.45485

DOI: http://dx.doi.org/10.56369/tsaes.4548



Copyright (c) 2023 Jean-Leon Mirembe Kataka, Richard Onwonga, Nancy Karanja, Solomon Kamau

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.