CHARACTERIZATION OF THE FECAL MICROBIOTA IN HORSES WITH CYATOSTOMOSIS IN MEXICO

Cintli Martínez-Ortiz-de-Montellano, Claudia Cecilia Márquez-Mota, Leslie Mariella Montes-Carreto, Rosa Estela Quiroz-Catañeda, Edgar Dantán-González, Hugo Oswaldo Toledo-Alvarado

Abstract


Background: The excess of antimicrobials and anthelmintics cause important dysbiosis processes in equines, as well as resistance phenomena mainly in the communities of bacteria, archaea, protozoa, and helminths. The study of the equine microbiome is becoming more and more relevant to understand the biotic processes of the gastrointestinal tract. In colon and cecum, the role of cyathostomins as part of the microbiome is still unexplored. While interaction with certain bacterial groups may be key to the understanding of parasitism. Objective: To characterize the microbiota in feces of yearling naturally infected with cyathostomins in a quarter-horse farm in Sierra de Lobos, Guanajuato, Mexico. Methodology: Weights were measured and obtained the parasite burden in feces, from which samples were transfer and processing in the laboratory for DNA extraction and later sent for sequencing and analysis. Results: Average weight of the colts was 399 kg, and the average weight of the fillies was 432 kg. All horses were high shedders:  1,390 ± 698 egg per gram of feces. Alpha and beta diversity analyses indicated no differences within the microbial community between colts and fillies. Main bacteria at Phyla in both groups (females; males) were Bacteroidetes (37%; 37%), Firmicutes (46%; 37%), Verrucomicrobia (4%; 10%), Spirochaetes 5%; 4%) and Proteobacteria (1%; 3%). At Class level the principal identified groups were Bacteroidia (31%; 31%), Clostridia (43%; 35%), at Order level are Bacteroidales (31%; 31%) and Clostridiales (43%; 35%). Main bacteria at Family level were Ruminococcaceae (19%; 11%), Lachnospiraceae (15%; 6%) and non-assigned family Bacteriodales (19%; 21%). The most abundant non-assigned bacterial Genra were Bacteroidales (26%; 27%), Ruminococcaceae (10%; 5%) y Lachnospiraceae (9%; 6%); the assigned bacterial Genra were Clostridium (5%; 9%) and Treponema (4% y 3%).  The most abundant non-assigned bacterial Species were Methanocorpusculaceae sp (19%; 22%), Pedobacter sp (10%; 5%), Bacteroidales sp (9% y 6%) and Prevotella sp (4% y 3%); the assigned bacterial species were Fibrobacter succinogenes (2%; 1%), Succinispira mobilis (1%; 1%).  Implications: It is suggested that environmental factors and feeding are aspects that regulate the parasitic burden and the bacterial composition in this studied population. This is a short communication of the finding of the components of the microbiota and is relevant in Mexico for future studies, however it is imperative to explore the composition of the metacommunity of a horse free of cyathostomines. Conclusion: Considering that these nematodes are in the cecum and colon, where this microbiota was inferred, and that it is not known whether this interaction is beneficial or detrimental, the study of the microbiome is imperative. In the study, no horse presented clinical signs or colic due to the presence of nematodes.

Keywords


horses; microbiota; macrobiota; cyathostomosis; Mexico

Full Text:

PDF

References


Bellaw, J. and Nielsen, M.K., 2015. Evaluation of Baermann apparatus sedimentation time on recovery of Strongylus vulgaris and S. edentatus third stage larvae from equine coprocultures. Veterinary Parasitology, 211(1-2), pp. 99-101. https://doi.org/10.1016/j.vetpar.2015.05.001

Bishop, S., 2012. A consideration of resistance and tolerance for ruminant nematode infections. Frontiers in Genetics, 3, p. 168. https://doi.org/10.3389/fgene.2012.00168

Bokulich, N.A., Kaehler, B.D., Rideout, J.R., Dillon, M., Bolyen, E., Knight, R., Huttley, G.A. and Caporaso, J.G., 2018. Optimizing taxonomic classification of marker?gene amplicon sequences with QIIME 2’s q2?feature?classifier plugin. Microbiome, 6 (1), pp.1-17. https://doi.org/10.1186/s40168-018-0470-z

Bolyen, E., Rideout, J.R., Dillon, M.R., Bokulich, N.A., Abnet, C.C., Al-Ghalith, G.A., Alexander, H., Alm, E.J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J.E., Bittinger, K., Brejnrod, A., Brislawn, C.J., Brown, C.T., Callahan, B.J., Caraballo-Rodríguez, A.M., Chase, J., Cope, E.K., Da Silva, R., Diener, C., Dorrestein, P.C., Douglas, G.M., Durall, D.M., Duvallet, C., Edwardson, C.F., Ernst, M., Estaki, M., Fouquier, J., Gauglitz, J.M., Gibbons, S.M., Gibson, D.L., Gonzalez, A., Gorlick, K., Guo, J., Hillmann, B., Holmes, S., Holste,H., Huttenhower, C., Huttley, G.A., Janssen, S., Jarmusch, A.K., Jiang, L., Kaehler, B.D., Bin Kang, K., Keefe, C.R., Keim, P., Kelley, S.T., Knights, D., Koester, I., Kosciolek, T., Kreps, J., Langille, M.G.I., Lee, J., Ley, R., Liu, Y.X., Loftfield, E., Lozupone, C., Maher, M., Marotz, C., Martin, B.D., McDonald, D., McIver, L.J., Melnik, A.V., Metcalf, J.L., Morgan, S.C., Morton, J.T., Naimey,A.T., Navas-Molina, J.A., Nothias, L.F., Orchanian, S.B., Pearson, T., Peoples, S.L., Petras, D., Preuss, M.L., Pruesse, E., Rasmussen, L.B., Rivers, A., Robeson II, M.S., Rosenthal, P., Segata, N., Shaffer, M., Shiffer, A., Sinha, R., Song, S.J., Spear, J.R., Swafford, A.D., Thompson, L.R., Torres, P.J., Trinh, P., Tripathi, A., Turnbaugh, P.J., Ul-Hasan, S., van der Hooft, J.J.J., Vargas, F., Vázquez-Baeza, Y., Vogtmann, E., von Hippel, M., Walters, W., Wan, Y., Wang, M., Warren, J., Weber, K.C., Williamson, C.H.D., Willis, A.D., Xu, Z.Z., Zaneveld, J.R., Zhang, Y., Zhu, Q., Knight R. and Caporaso, J.G., 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 37(8), pp. 852–857. https://doi.org/10.1038/s41587-019-0209-9

Buttigieg, P.L.and Ramette, A., 2014. A guide to statistical analysis in microbial ecology: A community-focused, living review of multivariate data analyses. FEMS Microbiology Ecology, 90(3), pp. 543–550. https://doi.org/10.1111/1574-6941.12437

Callahan, B.J., Mc Murdie, P.J., Rosen, M.J., Han, A.W., Johnson, A. J. and Holmes, S.P., 2016. DADA2: High resolution sample inference from Illumina amplicon data. Nature Methods, 13(7), pp. 581-583. https://doi.org/10.1038/nmeth.3869

Costa, M.C. and Weese, S., 2012. The equine intestinal microbiome. Animal Health Research Reviews, 13(1), pp. 121-128. https://doi:10.1017/S1466252312000035

Corticelli, B. and Lai, M., 1963. Ricerche sulla tecnica di coltura delle larve infestive degli strongili gastro-intestinali del bovino. Acta Medica Veterinaria, 9(V-VI).

Chen, S., Zhou, Y., Chen, Y. and Gu, J., 2018. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34(17), pp. i884-i890. 10.1093/bioinformatics/bty560

Dheilly, N.M., Martínez Martínez, J., Rosario, K., Brindley, P.J., Fichorova, R.N., Kaye, J.Z., Kohl, K.D., Knoll, L.J., Lukeš, J., Perkins, S.L., Poulin, R., Schriml, L. and Thompson, L.R., 2019. Parasite microbiome project: Grand challenges. PLoS Pathogenes, 15(10), p. e1008028. https://doi.org/10.1371/journal.ppat.1008028

Dicks, L.M.T., Botha, M., Dicks, E. and Botes, M., 2014. The equine gastro-intestinal tract: An overview of the microbiota, disease and treatment. Livestock Science, 160, pp. 69-81. https://doi.org/10.1016/j.livsci.2013.11.025

European Scientific Counsel Companion Animal Parasites (ESCCAP)., 2020. pp. 22-24. www.esccap.es

Falalyeyeva, T., Chornenka, N., Cherkasova, L., Tsyryuk, O., Molchek, N., Kovalchuk, O., Kyriachenko, Y., Ostapchenko, L. and Kobyliakc, N., 2022. Gut Microbiota Interactions With Obesity. In: Reference Module in Food Science. Elsevier. pp. 201-219. https://doi.org/10.1016/B978-0-12-819265-8.00030-9

Garber, A., Hastie, P. and Murray, J.A., 2020. Factors Influencing Equine Gut Microbiota: Current Knowledge. Journal of Equine Veterinary Science, 88, pp. 1-12. https://doi.org/10.1016/j.jevs.2020.102943

Green, D.A., 1961. A review of studies on the growth rate of the horse. British Veterinary Journal, 117(5), pp. 181-191.

García, E., 2004. Modificaciones al sistema de clasificación climática de Köppen. Instituto de Geografía. México: Universidad Nacional Autónoma de México. p. 50-75.

Gause, W.C. and Maizels, R.M., 2016. Macrobiota — helminths as active participants and partners of the microbiota in host intestinal homeostasis. Current Opinion in Microbiology 32, pp. 14–18.

Hayes, K. and Copeland, S.M., 2001. Hands on Senior Horse Care: The Complete Book of Senior Equine Management and First Aid. USA. Trafalgar Square Books.

Hoste, H., Le Frielex, Y., Goudeau, C., Chartier, C., Pors, I., Broqua, C. and Bergeaud, J.P., 2002. Distribution and repeatability of nematode feacal egg counts in dairy goats: a farm survey and implications for worm control. Research of Veterinary Science, 72(3), pp. 211-215. https://doi:10.1053/rvsc.2002.0546

Hoste, H., Le Frieleux, Y. and Pommaret A., 2001. Distribution and repeatability of feacal egg counts and blood parameters in dairy goats naturally infected with gastrointestinal nematodes. Research of Veterinary Science, 70(1), pp. 57-60. http://doi:10.1053/rvsc.2000.0442

Ishiguro, E., Haskey, N. and Campbell, K., 2018. Gut Microbiota Throughout the Lifespan. Gut Microbiota, p.p. 41-55.

Kaplan, R.M. and Nielsen, M.K., 2010. An evidence-based approach to equine parasite control: It ain’t the 60s anymore. Equine Veterinary Education, 22(6), pp. 306-316. https://doi.org/10.1111/j.2042-3292.2010.00084.x

Kauter, A., Epping, L., Semmler, T., Antao, E.M., Kannapin, D., Stoeckle, S.D., Gehlen, H., Lübke-Becker, A., Günther, S., Wieler, LH. and Walther, B., 2019. The gut microbiome of horses: current research on equine enteral microbiota and future perspectives. Animal Microbiome 1(1), pp. 1-15. https://doi.org/10.1186/s42523-019-0013-3

Korna?, S., Gawor, J., Cabaret, J., Molenda, K., Skalska, M. and Nowosad, B., 2009. Morphometric identification of equid cyathostome (Nematoda: Cyathostominae) infective larvae. Veterinary Parasitology, 162(3-4), pp. 290-294. https://doi.org/10.1016/j.vetpar.2009.03.018

Kunz, I.G.Z., Reed, K.J., Metcalf, J.L., Hassel, D.M., Coleman, R.J., Hess, T.M. and Coleman, S.J., 2019. Equine fecal microbiota changes associated with anthelmintic administration. Journal of Equine Veterinary Science, 77, pp. 98-105. https://doi.org/10.1016/j.jevs.2019.01.018

Lindenberg, F., Krych, L., Fielden, J., Frokiaer, H., van Galen, G., Nielsen, D.S. and Hansen, A.K., 2019. Expression of immune regulatory genes correlate with the abundance of specific Clostridiales and Verrucomicrobia species in the equine ileum and cecum. Scientific Reports, 9(1), pp. 1-10. https://doi.org/10.1038/s41598-019-49081-5

Lozupone, C. A., Hamady, M., Kelley, S. T. and Knight, R., 2007. Quantitative and qualitative ? diversity measures lead to different insights into factors that structure microbial communities. Applied and Environmental Microbiology, 73(5), pp. 1576-1585. https://doi.org/10.1128/AEM.01996-06

Lozupone, C. and Knight, R. (2005). UniFrac: a new phylogenetic method for comparing microbial communities. Applied and Environmental Microbiology, 71(12), pp. 8228-8235. https://doi.org/10.1128/AEM.71.12.8228-8235.2005

Martínez-Ortiz-de-Montellano, C., Rodríguez-Vivas, R.I., Rosado-Aguilar, J.A. and Galicia-Velázquez, G., 2021. Estudio de la eficacia de lactonas macrocíclicas en cuatro criaderos equinos en el centro de México. XXVI Congreso Panamericano de Ciencias Veterinarias PANVET. www.federacionmvz.org/programa-panvet

Martínez-Ortiz-de-Montellano, C., Quiroz-Castañeda, R.E., Dantán-González, E., Aguilar-Díaz, H., Márquez-Mota, C.C. and Toledo-Alvarado, H.O., 2022b. Concepción integrativa del parasitismo: redefiniendo nuevos conceptos. Bioagrociencias 15(2), pp. 48-49. http://dx.doi.org/10.56369/BAC.4448.

Martínez-Ortiz-de-Montellano, C., Torres-Acosta, J.F.J., Ojeda-Robertos, N.F., González-Reyes, L. and Muñoz-Marín, S., 2022a. Manejo Integrado de Parásitos en Pequeños Rumiantes. Bioagrociencias. 15 (2), pp. 1-10. http://dx.doi.org/10.56369/BAC.4463.

Matthews, J., 2014. Anthelmintic resistance in equine nematodes. International Journal of Parasitology: Drugs and Drug Resistance, 4(3), pp. 310-315. https://doi.org/10.1016/j.ijpddr.2014.10.003

Maynard, C.L., 2019. The microbiota in immunity and inflammation. Rich, R.R., Fleisher, T.A., Shearer, W.T., Schroeder, H.W., Frew, A.J., Weyand, C.M., editors. In: Clinical Immunology. Elsevier, pp. 207-219.

Misuno, E., Stacy, C., Anderson, L., Jenkins, E., Wagner, B., Dembek, K. and Petrie, L., 2018. Characteristics of parasitic egg shedding over a 1-year period in foals and their dams in 2 farms in central Saskatchewan. Canadian Veterinary Journal, 59(3), pp. 284–292.

Muñoz, M., Restrepo-Montoya, D., Kumar, N., Iraola, G., Herrera, G., Ríos-Chaparro, D. I., Díaz-Arevalo, D., Patarroyo, M.A., Lawley, T.D. and Ramírez, J. D., 2019. Comparative genomics identifies potential virulence factors in Clostridium tertium and C. paraputrificum. Virulence, 10(1), pp. 657-676. https://doi.org/10.1080/21505594.2019.1637699

McDonald, D., Price, M.N., Goodrich, J., Nawrocki, E.P., DeSantis, T.Z., Probst, A., Andersen, G.L., Knight, R. and Hugenholtz, P., 2012. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. The ISME Journal, 6(3), pp. 610? 618.

Nielsen, M.K., 2012. Sustainable Equine Parasite Control. Veterinary Parasitology, 185(1), pp. 32-44. https://doi.org/10.1016/j.vetpar.2011.10.012

Nielsen, M.K., 2021. Parasite faecal egg counts in equine veterinary practice. Equine Veterinary Education pp. 1-8 https://doi:10.1111/eve.13548

Nielsen, M.K., Mittel, L., Grice, A., Erskine, M., Graves, E., Vaala, W., Tully, R.C., French, D.D., Bowmann, R. and Kaplan, R.M., 2019. AAEP Parasite Control Guidelines. American Association of Equine Practitioners. www.aaep.org

Peachey, L.E., Castro, C., Molena, R.A., Jenkins, T.P., Griffin, J.L. and Cantacessi, C., 2019. Dysbiosis associated with acute helminth infections in herbivorous youngstock - observations and implications. Science Reports, 9(1), pp. 1.16. https://doi:10.1038/s41598-019-47204-6

Peachey, L.E., Molena, R.A., Jenkins, T.P., Di Cesare, A., Traversa, D., Hodgkinson, J.E. and Cantacessi, C., 2018. The relationships between faecal egg counts and gut microbial composition in UK Thoroughbreds infected by cyathostomins. International Journal of Parasitology, 48(6), pp. 403-412. https://doi:10.1016/j.ijpara.2017.11.003

Rangel, I., Sundin, J., Fuentes, S., Repsilber, D., De Vos, W.M. and Brummer, R.J., 2015. The relationship between faecal?associated and mucosal?associated microbiota in irritable bowel syndrome patients and healthy subjects. Alimentary Pharmacology & Therapeutics, 42(10), pp. 1211-1221. https://doi.org/10.1111/apt.13399

Requena, T. and Velasco, M., 2021. The human microbiome in sickness and in health. Revista Clínica Española, 221(4), pp. 233-240. https://doi.org/10.1016/j.rceng.2019.07.018

Roy, D., 2017. Fecal Microbiota and Probiotic Yogurt Intake. Shah NP, editor. In: Yogurt in Health and Disease Prevention. USA: Academic Press, p. 237-258.

Sommer, F., Anderson, J., Bharti, R., Raes, J. and Rosenstiel, P., 2017. The resilience of the intestinal microbiota influences health and disease. Nature, 15(10), pp. 630-638. https://doi.org/10.1038/nrmicro.2017.58

Shin, N. R., Whon, T. W. and Bae, J. W., 2015. Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends in biotechnology, 33(9), 496-503.

Sréter, T., Molnár, V. and Kassai, T. 1994. The distribution of nematode egg counts and larval counts in grazing sheep and their implications for parasite control. International Journal of Parasitology, 24(1), pp. 103-108. https://doi.org/10.1016/0020-7519(94)90063-9

Theelen, M.J.P., Luiken, R.E.C., Wagenaar, J.A., Sloet van Oldruitenborgh-Oosterbaan, M.M., Rossen, J.W.A. and Zomer, A.L., 2021. The Equine Faecal Microbiota of Healthy Horses and Ponies in The Netherlands: Impact of Host and Environmental Factors. Animals; 11(6), p. 1762. https://doi.org/10.3390/ani11061762

Ursell, L.K., Metcalf, J.L., Parfrey, L.W. and Knight, R., 2012. Defining the human microbiome. Nutrition Reviews, 70, pp. 38–44. https://doi.org/10.1111/j.1753-4887.2012.00493.x

Walshe, N., Duggan, V., Cabrera-Rubio, R., Crispie, F., Cotter, P., Feehan, O. and Mulcahy, G., 2019. Removal of adult cyathostomins alters faecal microbiota and promotes an inflammatory phenotype in horses. International Journal of Parasitology, 49(6), pp. 489–500. https://doi.org/10.1016/j.ijpara.2019.02.003

Walshe, N., Mulcahy, G., Hodgkinson, J. and Peachey, L., 2020. No Worm Is an Island; The Influence of Commensal Gut Microbiota on Cyathostomin Infections. Animals, 10(12), p. 2309. https://doi:10.3390/ani10122309

Woellner- Santos, D., Madeira de Carvalho, L.M.D. and Molento, M.B., 2018. Identification of third stage larval types of cyathostomins of equids: An improved perspective. Veterinary Parasitology, 260, pp. 49-52. https://doi.org/10.1016/j.vetpar.2018.08.007

Zajac, M.A. and Conboy, A.G., 2012. Veterinary Clinical Parasitology. 8th Ed. Blackwell publishing, London, UK. pp. 67–72.

Zilber-Rosenberg, I. and Rosenberg, E., 2008. Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiology Reviews, 32(5), pp. 723-735. https://doi.org/10.1111/j.1574-6976.2008.00123.x




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v26i1.45468

DOI: http://dx.doi.org/10.56369/tsaes.4546



Copyright (c) 2022 Cintli Martínez-Ortiz-de-Montellano, Claudia Cecilia Márquez-Mota, Leslie Mariella Montes-Carreto, Rosa Estela Quiroz-Catañeda, Edgar Dantán-González, Hugo Oswaldo Toledo-Alvarado

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.