NITROGEN, PHOSPHORUS AND POTASSIUM CONTENT IN DIFFERENT ORGANS OF PINEAPPLE CULTIVARS AT DIFFERENT PLANTING DENSITY

Andrés Rebolledo Martínez, Nain Peralta Antonio, Rosa Laura Rebolledo García, Alberto Enrique Becerril Román, Laureano Rebolledo Martínez, David Jaén Contreras, Daniel Emigdio Uriza Ávila, Hector Daniel Inurreta Aguirre, Gerardo Montiel Vicencio

Abstract


Background. The amount of nutrients required by pineapple varies depending on the cultivar and planting density. Knowing the nutrient requirement in quantity and the appropriate phenological stage will allow the development of an adequate fertilization program. Objective. To determine the effect of pineapple cultivar and planting density on N, P, and K content during plant development and at harvest. Methodology. The cultivars 'Smooth Cayenne', 'Champaka', and 'MD-2' were established at 30000, 45000, and 60000 plants ha-1. Eight samples were taken to determine the N, P, and K content in the organs and the total plant. Results. The highest and lowest N, P, and K contents were detected in the leaf and root, respectively. The highest N and K contents occurred at 441 - 506 days after planting. Higher P content occurred close to harvest. The highest N, P, and K contents per plant were at 30000 plants ha-1 (14.86, 1.52, and 16.29 g plant-1, respectively) and the lowest at 60000 plants ha-1 (10.16, 1.13, and 14.6 g plant-1, respectively). Higher N, P, and K contents per hectare were detected with 60000 plants ha-1 (609, 68, and 875 kg ha-1, respectively).  At harvest, ‘Smooth Cayenne’ at 60000 plants ha-1 accumulated the highest amount of N, P, and K (147, 37, and 306 kg ha-1, respectively). Implications. The changes that can occur in the nutrient requirements of pineapple as a function of cultivar, planting density, and stage of plant development were identified. This information will be useful for producers, agricultural technicians, and researchers in Mexico and the world, to generate fertilization programs or establish new research. Conclusion. At the beginning of plant growth, a higher N, P, and K contents in the leaf, this amount decreases as the fruit harvest approaches. Regardless of cultivar, the highest nutrient content per plant occurs at the lowest planting density, however, the highest content per hectare occurs at the highest planting density. At harvest time, fewer nutrients are removed from the soil with 'Champaka' and 'MD-2' fruit.

Keywords


Ananas comosus L.; Plant growth; Nutrient uptake; Soil fertility; Fertilization

Full Text:

PDF

References


Ahmed, O.H., Husni, M.H.A., Hanafi, M.M., Anuar, A.R. and Omar, S.S., 2007. Phosphorus fertilizer use in pineapple cultivation with in situ residues burning on organic soils. Communications in Soil Science and Plant Analysis, 38(9-10), pp. 1243-1254. https://doi.org/10.1080/00103620701328388

Ávila-Escobedo, M.deJ., Peralta-Antonio, N., Montiel-Vicencio, G., Trejo-Téllez, L.I., Rebolledo-Martinez, A. and Sanchez-Garcia, P., 2022. Screening of Potential Legume to be Used as Green Manure in Tropical Areas of Mexico. Journal of Soil Science and Plant Nutrition, 22(3), pp. 3172-3188. https://doi.org/10.1007/s42729-022-00876-y

Bartholomew, D.P., 2018. Crop environment, plant growth and physiology. In: G. Sanewski, D.P. Bartholomew and R. E. Paull, eds. The pineapple: botany, production and uses. Wallingford UK: CAB International. pp. 105-142.

Bremner, J.M., 1965. Total nitrogen. In: Norman A.G., Ed. Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties. Wisconsin, American Society of Agronomy, Inc. pp. 1149-1178. https://doi.org/10.2134/agronmonogr9.2.c32

Cardoso, M.M., Pegoraro, R.F., Maia, V.M., Kondo, M.K. and Fernandes, L.A., 2013. Growth of pineapple 'Vitória' irrigated under different population densities, sources and doses of nitrogen. Revista Brasileira de Fruticultura, 35(3), pp. 769-781. https://doi.org/10.1590/S0100-29452013000300014

Chapman, H.D., Pratt, P.F., Vanselow, A.P., Bradford, G.R., Whiting, L.D. and Contin, A., 1973. Métodos de análisis para suelos, plantas y aguas. México, Ed. Trillas.

José, J.S., Montes, R. and Cabrera?Bisbal, E., 2007. Nitrogen budget in a pineapple crop growing in the Orinoco lowlands. Communications in Soil Science and Plant Analysis, 38(3-4), pp. 423-447. https://doi.org/10.1080/00103620601172449

Hanafi, M.M., Selamat, M.M., Husni, M.H.A. and Adzemi, M.A., 2009. Dry matter and nutrient partitioning of selected pineapple cultivars grown on mineral and tropical peat soils. Communications in Soil Science and Plant Analysis, 40(21-22), pp. 3263-3280. https://doi.org/10.1080/00103620903335983

López-Herrera, M., Ching-Jones, R.W. and Rojas-Bourrillón, A., 2014. Meta-análisis de los subproductos de piña (Ananas comosus) para la alimentación animal. Agronomía Mesoamericana, 25(2), pp. 383-392.

Maia, V.M., Oliveira, F.S., Pegoraro, R.F., Aspiazú, I. and Pereira, M.C.T., 2014. 'Pérola' pineapple growth under semi-arid climate conditions. Acta Horticuture, 1, pp. 267-263. http://dx.doi.org/10.17660/ActaHortic.2016.1111.38

Maia, V.M., Pegoraro, R.F., Aspiazú, I., Oliveira, F.S. and Nobre, D.A.C., 2020. Chapter 50 - Diagnosis and management of nutrient constraints in pineapple. In: A.K. Srivastava and C. Hu, eds. Fruit Crops: Diagnosis and Management of Nutrient Constraints. Elsevier. pp. 739-760. https://doi.org/10.1016/B978-0-12-818732-6.00050-2

Malézieux, E., 1992. Dry matter accumulation and yield elaboration of pineapple in Cote D'Ivoire. Acta Horticultura, 334, pp. 149–158. https://doi.org/10.17660/ActaHortic.1993.334.15

Mota, M.F., Pegoraro, R.F., Batista, P.S., Pinto, V.D.O., Maia, V.M. and Silva, D.F.D., 2016. Macronutrients accumulation and growth of pineapple cultivars submitted to aluminum stress. Revista Brasileira de Engenharia Agrícola e Ambiental, 20, pp. 978-983. http://dx.doi.org/10.1590/1807-1929/agriambi.v20n11p978-983

Neri, J.C., Meléndez Mori, J.B., Vilca Valqui, N.C., Huaman Huaman, E., Collazos Silva, R. and Oliva, M., 2021. Effect of planting density on the agronomic performance and fruit quality of three pineapple cultivars (Ananas comosus L. Merr.). International Journal of Agronomy, 5559564, pp. 1-9.

Olsen, S.R., Cole, C.V., Watanabe, F.S. and Dean, L.A., 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Washington, D. C., U.S. Dept. Agric. Circ.

Pegoraro, R.F., Souza, B.A.M.D., Maia, V.M., Amaral, U.D. and Pereira, M.C.T., 2014a. Growth and production of irrigated Vitória pineapple grown in semi-arid conditions. Revista Brasileira de Fruticultura, 36(3), pp. 693-703. http://dx.doi.org/10.1590/0100-2945-265/13

Pegoraro, R.F., Souza, B.A.M., Maia, V.M., Silva, D.F., Medeiros, A.C. and Sampaio, R.A., 2014b. Macronutrient uptake, accumulation and export by the irrigated 'Vitória' pineapple plant. Revista Brasileira de Ciência do Solo, 38(3), pp. 896-904. https://doi.org/10.1590/S0100-06832014000300021

Ramos, M.J.M., Monnerat, P.H., Pinho, L.G.D.R. and Silva, J.A.D., 2011. Deficiência de macronutrientes e de boro em abacaxizeiro'Imperial': composição mineral. Revista Brasileira de Fruticultura, 33(1), pp. 261-271. https://doi.org/10.1590/S0100-29452011005000032

Rebolledo, M.A., Uriza A.D.E. y Rebolledo M.L., 1998. Tecnología para la producción de piña en México. Campo Experimental Papaloapan, Veracruz, México, Libro técnico Núm. 20. SAGAR. INIFAP. CIRGOC.

Rebolledo-Martínez, A., del Ángel-Pérez, A.L., Becerril-Román, A.E., and Rebolledo-Martínez, L., 2005. Growth analysis for three pineapple cultivars grown on plastic mulch and bare soil. Interciencia, 30(12), pp. 758-763.

Rebolledo Martínez, A., del Ángel Pérez, A.L., Rebolledo Martínez, L., Becerril Román, A.E. and Uriza-Ávila, D., 2006. Rendimiento y calidad de fruto de cultivares de piña en densidades de plantación. Revista Fitotecnia Mexicana, 29(1), pp. 55-62.

Rebolledo Martínez, A., Uriza Ávila, D.E., del Ángel Pérez, A.L., Rebolledo Martínez, L. and Zetina-Lezama, R., 2016. La piña y su cultivo en México: Cayena Lisa y MD2. Segunda edición. Campo Experimental Cotaxtla, Medellín de Bravo, Veracruz, México. Libro técnico N° 38. INIFAP. CIRGOC.

Salgado García, S., Palma López, D.J., Zavala Cruz, J., Ortiz García, C.F., Lagunés Espinoza, L.D.C., Castelán Estrada, M., Guerrero Peña, A., Ortiz Ceballos, A.I. and Córdova Sánchez, S., 2017. Integrated system for recommending fertilization rates in pineapple (Ananas comosus (L.) Merr.) crop. Acta Agronómica, 66(4), pp. 566-573. https://doi.org/10.15446/acag.v66n4.62257

Sampaio, A.C., Fumis, T.D.F. and Leonel, S., 2011. Vegetative growth and fruit characteristics of five cultivars of pineapple in the Bauru region. Revista Brasileira de Fruticultura, 33, pp. 816-822. https://doi.org/10.1590/S0100-29452011005000101

SIAP (Servicio de Información Agroalimentaria y Pesquera)., 2023. Anuario Estadístico de la Producción Agrícola – Piña. https://nube.siap.gob.mx/cierreagricola/

Silva, A.P.D., Alvarez V.V.H., Souza, A.P.D., Neves, J.C.L., Novais, R.F. and Dantas, J.P., 2009. Fertilizer and lime recommendation system for pineapple-fertcalc-abacaxi. Revista Brasileira de Ciência do Solo, 33(5), 1269-1280. https://doi.org/10.1590/S0100-06832009000500020

Soler, A., 1992. La Piña, Criterios de Calidad. Paris, Francia. CIRAD-IRFA.

Souza, R.P.D., Pegoraro, R.F., Reis, S.T., Maia, V.M. and Sampaio, R.A., 2019. Partition and macronutrients accumulation in pineapple under nitrogen doses and plant density. Comunicata Scientiae, 10(3), pp. 384-395. https://doi.org/10.14295/cs.v10i3.2604

Souza, C.B.D., Silva, B.B.D. and Azevedo, P.V.D., 2007. Crescimento e rendimento do abacaxizeiro nas condições climáticas dos Tabuleiros Costeiros do Estado da Paraíba. Revista Brasileira de Engenharia Agrícola e Ambiental, 11(2), pp. 134-141. https://doi.org/10.1590/S1415-43662007000200002

Teixeira, L.A.J., Quaggio, J.A., Cantarella, H. and Mellis, E.V., 2011. Potassium fertilization for pineapple: effects on plant growth and fruit yield. Revista Brasileira de Fruticultura, 33(2), pp. 618-626. https://doi.org/10.1590/S0100-29452011000200035

Trejo, D., Bañuelos, J., Gavito, M.E. and Sangabriel-Conde, W., 2020. High phosphorus fertilization reduces mycorrhizal colonization and plant biomass of three cultivars of pineapple. Terra Latinoamericana, 38(4), pp. 853-858. https://doi.org/10.28940/terra.v38i4.701

Uriza?Ávila, D.E., Torres?Ávila, A., Aguilar?Ávila, J., Santoyo?Cortés, V.H., Zetina?Lezama, R. y Rebolledo?Martínez. A., 2018. La piña mexicana frente al reto de la innovación. Avances y retos en la gestión de la innovación. Chapingo, Estado de México. México. Colección Trópico Húmedo. UACh.

Vilela, G.B., Pegoraro, R.F. and Maia, V.M., 2015. Predicting the production of 'Vitória' pineapple from phytotechnical and nutritional characteristics. Revista Ciência Agronômica, 46, 724-732. https://doi.org/10.5935/1806-6690.20150059

Vrieze, S.I., 2012. Model selection and psychological theory: a discussion of the differences between the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). Psychological methods, 17(2), pp. 228-243. https://doi.org/10.1037/a0027127

Zhang, J. and Bartholomew, D.P., 1995. Effect of plant population density on growth and dry-matter partitioning of pineapple. Acta Horticultura, 425, pp.363-376. https://doi.org/10.17660/ActaHortic.1997.425.40




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v26i3.45396

DOI: http://dx.doi.org/10.56369/tsaes.4539



Copyright (c) 2023 Andrés Rebolledo Martínez, Nain Peralta Antonio, Rosa Laura Rebolledo García, Alberto Enrique Becerril Román, Laureano Rebolledo Martínez, David Jaén Contreras, Daniel E. Uriza Ávila, Héctor Daniel Inurreta Aguirre, Gerardo Montiel Vicencio

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.