SOIL HEALTH INDICATORS FOR ANALYZING SUSTAINABILITY IN CONVENTIONAL AND TRADITIONAL AGROECOSYSTEMS

Ana María Quiroga-Arcila, Megan Dwyer Baumann, Álvaro Acevedo-Osorio

Abstract


Background. Rice production is a major economic activity in the department of Tolima, Colombia. However, conventional agronomic practices have led to soil depletion. In contrast, within the same region, traditional Indigenous Pijao systems persist, characterized by a high degree of crop diversification as well as no or reduced use of agrochemicals and mechanization. Objective. To evaluate soil health over time in rice monocultures and traditional Pijao agroecosystems in Colombia. Methodology. Data was collected between May and September 2019 at four municipalities in an Andean valley. Experimental units were arranged in four treatments classified according to a chrono sequence of consecutive rice monoculture: agroecosystems in which rice has never been planted or ‘traditional Pijao agroecosystems’ (TPA); rice monoculture for 5 to 10 years or ‘young rice agroecosystems’ (YRA); for 10 to 20 years or ‘medium rice agroecosystems’ (MRA); and for more than 20 years or ‘old rice agroecosystems’ (ORA). Twelve indicators were evaluated in each experimental unit: physical (penetration resistance, water infiltration, bulk density, and soil structural index), chemical (pH, CEC/CL%, EC, SOC), and biological (microbial respiration, earthworm abundance, and diversity of arthropods and plants) indicators. Results. Physical and chemical indicators did not present significant differences among the four chrono sequences evaluated. However, TPA obtained the highest values for SOC, structural stability index, and microbial respiration in comparison with conventional rice agroecosystems. Diversity of arthropods and plants significantly differed among the four treatments. Implications. Results suggest that traditional Pijao agroecosystems promote arthropod diversity and plant (weed and crop species) diversity, contributing to a greater sustainability of the region’s agroecosystems. Conclusions. The study illustrates the most relevant soil health indicators for the tropical dry forest zone of southern Tolima are those providing information on soil diversity, structural stability, compaction, and microbial respiration.

Keywords


arthropod diversity; plant diversity; soil health indicators; sustainable soil management; tropical dry forest soils.

Full Text:

PDF

References


Abdi, H. and Williams, L., 2010. Principal Component Analysis. Wiley Interdisciplinary Reviews, Computational Statistic, 2(4), pp. 433-459. https://doi.org/10.1002/wics.101

Acevedo, Á., 2015. Revaluation of the multiple functions of peasant agriculture as a strategy for resilience and adaptation in the Guaguarco river basin, southern Tolima-Colombia. National University of Colombia. Retrieved from https://repositorio.unal.edu.co/handle/unal/54488. Accessed on 11 July 2023.

Acevedo, Á., 2016. Monofuncionalidad, multifuncionalidad e hibridación de funciones de las agriculturas en la Cuenca del río Guaguarco, sur del Tolima. Luna Azul, 43, pp. 251-285. https://doi.org/10.17151/luaz.2016.43.12

Acevedo Osorio, Á., and Angarita Leiton, A., 2013. Metodología para la evaluación de sustentabilidad a partir de indicadores locales para el diseño y desarrollo de programas agroecológicos - MESILPA. Bogotá: Corporación Universitaria Minuto de Dios. Facultad de Ingeniería. Retrieved from https://hdl.handle.net/10656/13886. Accessed on 11 July 2023.

Adeux, G., Vieren, E., Carlesi, S., Bàrberi, P., Munier-Jolain, N. and Cordeau, S., 2019. Mitigating crop yield losses through weed diversity. Nature Sustainability, 2(11), pp. 1018-1026. https://doi.org/10.1038/s41893-019-0415-y

Adi-Saab Arrieche, R., 2012. Evaluation of soil quality in the organic production system La Estancia, Madrid, Cundinamarca, 2012. Using soil quality indicators. Doctoral dissertation. Pontificia Universidad Javeriana. Retrieved from https://repository.javeriana.edu.co/handle/10554/8990. Accessed on 11 July 2023.

.

Aguilar, Y., Valdés, S. and Gutiérrez, J., 2018. Effect of the Herbicide Chiron 400 (2, 4-Dichlorophenoxyacetic), on the abundance and diversity of Collembola familias, in maize crop, San Roque, San Francisco, Veraguas. Centers: Revista Científica Universitaria, 7(2), pp. 101-114. http://portal.amelica.org/ameli/jatsRepo/228/2281017008/index.html

Arnés, E., Antonio, J., Val, E. and Astier, M., 2013. Sustainability and climate variability in low-input peasant maize systems in the central Mexican highlands. Agriculture, Ecosystems and Environment, 181, pp. 195–205. http://dx.doi.org/10.1016/j.agee.2013.09.022

Avendaño, B., Avendaño, G., Cruz, W. and Cárdenas, A., 2013. Reference guide for non-expert researchers in the use of multivariate statistics. Faculty of Psychology, Catholic University of Colombia. Bogotá, Colombia.

Baio, F.H., Scarpin, I.M., Roque, C.G. and Neves, D.C., 2017. Soil resistance to penetration in cotton rows and interrows. Revista Brasileira de Engenharia Agrícola e Ambiental, 21(6), pp. 433-439. https://doi.org/10.1590/1807-1929/agriambi.v21n6p433-439

Baumann, M.D., 2022. Agrobiodiversity’s caring material practices as a symbolic frame for environmental governance in Colombia’s southern Tolima. Geoforum, 128, 286-299. https://doi.org/10.1016/j.geoforum.2021.01.002

Baumann, M.D., and Zimmerer, K.S., 2022. Linkages of Suspended Infrastructure, Contestation, and Social-Environmental Unevenness: Colombia's Tolima Triangle Irrigation Megaproject. Journal of Latin American Geography, 21(3), 123-160. https://doi.org/10.1353/lag.2022.0041

Beltramelli, M., Rodríguez R., Blanco C., and Saldanha, S., 2019. Establishment and grain yield of oats in tilled soil and direct sowing. Advances in Agricultural Science, 7, pp. 31-37.

Bogunovic, I., Pereira, P., Kisic, I., Sajko, K. and Sraka, M., 2018. Tillage management impacts on soil compaction, erosion and crop yield in Stagnosols (Croatia). Catena, 160, pp. 376-384. https://doi.org/10.1016/j.catena.2017.10.009

Cortés, C.A., Camacho-Tamayo, J.H. and Leiva, F.R., 2013. Multivariate analysis of the spatial and temporal behavior of soil resistance to penetration. Acta Agronómica, 62(3), pp. 268-278. Retrieved from https://repositorio.unal.edu.co/handle/unal/70975. Accessed on 11 July 2023.

Dedeurwaerdere, T. and Hannachi, M., 2019. Socio-economic drivers of coexistence of landraces and modern crop varieties in agro-biodiversity rich Yunnan rice fields. Ecological Economics, 159, pp. 177-188. https://doi.org/10.1016/j.ecolecon.2019.01.

Dinakaran, S. and Anbalagan, S., 2007. Anthropogenic impacts on aquatic insects in six streams of south Western Ghats. Journal of Insect Science, 7(1). https://doi.org/10.1673/031.007.3701

Erktan, A., Cecillon, L., Graf, F., Roumet, C., Legout, C. and Rey, F., 2016. Increase in soil aggregate stability along a Mediterranean successional gradient in severely eroded gully bed ecosystems: combined effects of soil, root traits and plant community characteristics. Plant Soil, 398, pp. 121-137. https://doi.org/10.1007/s11104-017-3423-6

Escribano-Viana, R., López-Alfaro, I., López, R., Santamaría, P., Gutiérrez, A. R. and González-Arenzana, L., 2018. Impact of chemical and biological fungicides applied to grapevine on grape biofilm, must, and wine microbial diversity. Frontiers in Microbiology, 9, pp. 59. https://doi.org/10.3389/fmicb.2018.00059

Estrada-Herrera, I.R., Hidalgo-Moreno, C., Guzman-Plazola, R., Almaraz Suarez, J., Navarro-Garza, H. and Etchevers-Barra, J.D., 2017. Soil quality indicators to evaluate soil fertility. Agrociencia, 51, pp. 813-831.

FAO., 2021. Soil health for paddy rice: a manual for farmer field school facilitators. Rome. https://doi.org/10.4060/ca8167en.

Fusaro, S., Gavinelli, F., Lazzarini, F. and Paoletti, M.G., 2018. Soil Biological Quality Index based on earthworms (QBS-e). A new way to use earthworms as bioindicators in agroecosystems. Ecological Indicators, 93, pp. 1276-1292. https://doi.org/10.1016/j.ecolind.2018.06.007.

García Álvarez, A., Ibáñez, J.J. and Bello, A., 2003. Soil functions, soil quality or soil health. Scientific, metaphorical or utilitarian concepts in soil sciences, in: Lobo, M.C., Ibáñez, J.J. (Eds.), Preserving Soil Quality and Soil Biodiversity. IMIA – CSIC. Madrid, pp. 151-164.

González, L.A., Wilches-Álvarez, W., and Rocha-Caicedo, C., 2017. Alpha and beta diversity of epigean arthropods (Arthropoda) in three sectors on the Eastern Cordillera of Colombia. Revista Colombiana de Entomología, 43(2). https://doi.org/10.25100/socolen.v43i2.5962

Gutiérrez Marroquín, J.M., 2018. Diagnosis of the compaction of rice soils in the municipality of Campoalegre-Huila. School of Geosciences. Retrieved from https://repositorio.unal.edu.co/handle/unal/69299. Accessed on 18 April 2021.

Heaton, L., Fullen, M.A. and Bhattacharyya, R., 2016. Critical analysis of the van Bemmelen conversion factor used to convert soil organic matter data to soil organic carbon data: comparative analyses in a UK loamy sand soil. Espaço Aberto, 6(1), pp. 35-44. http://dx.doi.org/10.36403/espacoaberto.2016.5244. Accessed on 18 April 2021.

Hernández, F., Portoles, T., Ibanez, M., Bustos-Lopez, M.C., Diaz, R., Botero-Coy, A. M., Fuentes, C.L. and Penuela, G., 2012. Use of time-of-flight mass spectrometry for large screening of organic pollutants in surface waters and soils from a rice production area in Colombia. Science of the total environment, 439, pp. 249-259. http://dx.doi.org/10.1016/j.scitotenv.2012.09.036.

Huang, L.M., Thompson, A., Zhang, G.L., Chen, L.M., Han, G.Z. and Gong, Z.T., 2015. The use of chronosequences in studies of paddy soil evolution: a review. Geoderma, 237-238, pp. 199-210. https://doi.org/10.1016/j.geoderma.2014.09.007.

IGAC., 2006. Métodos analíticos del laboratorio de suelos. VI Edición. Bogotá. Subdirección de Agrología (Eds.), 499.

IGAC., 2014. Colombian soil management. Bogotá: IGAC.

IGAC., 2015. Soils and lands of Colombia. Volume 1. Bogotá: IGAC.

IGAC., 2017. Recommendations for taking samples for analysis by the National Soil Laboratory. Retrieved from https://www.igac.gov.co/sites/igac.gov.co/files/guiademuestreo.pdf. Accessed on 18 April 2021.

Kinoshita, R., Schindelbeck, R.R. and van Es, R.M., 2017. Quantitative soil profile-scale assessment of the sustainability of long-term maize residue and tillage management. Soil Tillage Research. 174, pp. 34-44. https://doi.org/10.1016/j.still.2017.05.010.

Kölbl, A., Schad, P., Jahn, R., Amelung, W., Bannert, A., Cao, Z.H., Fiedler, S., Kalbitz, K., Lehndorff, E., Müller-Niggemann, C., Schloter, M., Schwark, L., Vogelsang, V., Wissing, L. and Kögel-Knabner, I., 2014. Accelerated soil formation due to paddy management on marshlands (Zhejiang Province, China). Geoderma, 228, pp. 67-89. https://doi.org/10.1016/j.geoderma.2013.09.005.

Kopittke, P.M., Menzies, N.W., Wang, P., McKenna, B.A. and Lombi, E., 2019. Soil and the intensification of agriculture for global food security. Environment International, 132, 105078. https://doi.org/10.1016/j.envint.2019.105078.

Kumar, A., Dorodnikov, M., Splettstößer, T., Kuzyakov, Y. and Pausch, J., 2017. Effects of maize roots on aggregate stability and enzyme activities in soil. Geoderma, 306, pp. 50-57. https://doi.org/10.1016/j.geoderma.2017.07.007.

Laishraam, J., Saxena, K.G., Maikhuri, R.K. and Rao, K.S., 2012. Soil Quality and Soil Health: A Review. International Journal of Ecology and Environmental Sciences, 38(1), pp. 19-37.

Lal, R., 2015. Restoring soil quality to mitigate soil degradation. Sustainability, 7, pp. 5875-5895. https://doi.org/10.3390/su7055875.

Lehmann, J., Bossio, D.A., Kögel-Knabner, I. and Rillig, M.C., 2020. The concept and future prospects of soil health. Nature Reviews Earth & Environment, 1, pp. 544-553. https://doi.org/10.1038/s43017-020-0080-8.

León-Duran, M. V., 2020. Comparative assessment of land use sustainability on farms in agroecological transition. [Thesis]. Retrieved from https://repositorio.unal.edu.co/handle/unal/77868. Accessed on 18 April 2021.

Lima, A.C.R., Brussaard, L., Totola, M.R., Hoogmoed, W.B. and De Goede, R.G.M., 2013. A functional evaluation of three indicator sets for assessing soil quality. Applied Soil Ecology, 64, pp. 194-200. https://doi.org/10.1016/j.apsoil.2012.12.009.

López-Bejarano, J. M., 2020. Domestic production generates 93% of the rice consumed by households in Colombia. [Report]. Agribusiness. Retrieved from https://www.agronegocios.co/agricultura/la-produccion-nacional-genera-93-del-arroz-que-consumen-los-hogares-en-colombia-3058665. Accessed on 18 April 2021.

López, R., 2016. Management and efficient use of intra-predial irrigation water for southern Chile. Instituto de Investigaciones Agropecuarias (INIA), Centro Regional Carillanca. Retrieved from: http://biblioteca.inia.cl/medios/biblioteca/boletines/NR40569.pdf. Accessed on 18 April 2021.

Machado, L., Holanda, F. S. R., Pedrotti, A., Ferreira, O. J. M., Araújo Filho, R. N. D. and Moura, M. M., 2018. Effect of vetiver roots on soil resistance to penetration in a typic fluvic neossol in the São Francisco Riverbank. Revista Caatinga, 31(4), pp. 935-943.

Masera, O., Astier, M and López-Ridaura, S., 1999. Sustainability and natural resource management. The MESMIS assessment framework. Mexico: Mundi-Prensa Mexico, GIRA, Instituto de Ecología.

Mavunganidze, Z., Madakadze, I. C., Nyamangara, J., Mafongoya, P. and Mashingaidze, N., 2020. Weed community responses to soil type during transition to no-till practice on smallholder farms in Zimbabwe. Weed Research. https://doi.org/10.1111/wre.12437.

Mojocoa Alarcón, M., 2004. Effect of chlorpyrifos use on corn (zea mays l.) on non-target soil arthropods. University of Tolima. Faculty of Agricultural Engineering. Ibague, pp. 57. https://hdl.handle.net/10568/66168.

Muchane, M.N., Sileshi, G.W., Gripenberg, S., Jonsson, M., Pumarino, L. and Barrios, E., 2020. Agroforestry boosts soil health in the humid and sub-humid tropics: A meta-analysis. Agriculture, Ecosystem and Environment, 295, pp. 106899. https://doi.org/10.1016/j.agee.2020.106899.

Nguyen, M.L., Haynes, R.J. and Goh, K.M., 1995. Nutrient budgets and status in three pairs of conventional and alternative mixed cropping farms in Canterbury, New Zealand. Agriculture, Ecosystem and Environment, 52, pp. 149-162. https://doi.org/10.1016/0167-8809(94)00544-O.

Nunes, M. R., van Es, H. M., Schindelbeck, R., Ristow, A. J. and Ryan, M., 2018. No-till and cropping system diversification improve soil health and crop yield. Geoderma, 328, pp. 30-43. https://doi.org/10.1016/j.geoderma.2018.04.031.

Perales, A., Loli, O., Alegre, J., and Camarena, F., 2009. Indicators of sustainability of soil management in pea (Pisum sativum L.) production. Applied Ecology, 8(1-2), pp. 47-52. Retrieved from http://www.lamolina.edu.pe/ecolapl/Articulo_6_vol_8.pdf. Accessed on 18 April 2021.

Pereira, P., Bogunovic, I., Muñoz-Rojas, M., and Brevik, E.C., 2018. Soil ecosystem services, sustainability, valuation and management. Current Opinion in Environmental Science & Health, 5, pp. 7-13. https://doi.org/10.1016/j.coesh.2017.12.003

Pieri, C., 1995. Long-term management experiments in semi-arid Francophone Africa. In: Soil management. Experimental basis for sustainability and environmental quality, Lal, R. & Stewart, B.A. (eds.). Lewis Publishers, pp. 225-266. Retrieved from https://agritrop.cirad.fr/387515/. Accessed on 18 April 2021.

Rayo Estrada-Herrera, I., Hidalgo-Moreno, C., Guzman-Plazola, R., Jose Almaraz Suarez, J., Navarro-Garza, H. and Etchevers-Barra, J. D., 2017. Soil quality indicators to evaluate soil fertility. Agrociencia, 51(8), pp. 813-831.

Ren, X., Chen, F., Ma, T. and Hu, Y., 2020. Soil quality characteristics as affected by continuous rice cultivation and changes in cropping systems in South China. Agriculture, 10, pp. 1–11. https://doi.org/10.3390/agriculture10100443.

Rodriguez, L., Suárez, J.C., Pulleman, M., Guaca, L., Rico, A., Romero, M., Quintero, M. and Lavelle, P., 2021. Agroforestry systems in the Colombian Amazon improve the provision of soil ecosystem services. Applied Soil Ecology, 164, pp. 103933. https://doi.org./10.1016/j.apsoil.2021.103933.

Sattler, C., Gianuca, A. T., Schweiger, O., Franzén, M. and Settele, J., 2020. Pesticides and land cover heterogeneity affect functional group and taxonomic diversity of arthropods in rice agroecosystems. Agriculture, Ecosystems & Environment, 297, pp. 106927. https://doi.org/10.1016/j.agee.2020.106927.

Shahid, S. A., Abdelfattah, M. A., Wilson, M. A., Kelley, J. A. and Chiaretti, J. V., 2014. United Arab Emirates keys to soil taxonomy. Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-007-7420-9.

Tisdell, C., Alauddin, M., Sarker, M., Rashid, A. and Kabir, M.A., 2019. Agricultural diversity and sustainability: general features and Bangladeshi illustrations. Sustainability, 11(21), pp. 6004. https://doi.org/10.3390/su11216004.

Toresani, S., Bonel, B., Ferreras, L., Magra, G., Dickie, M.J., Galarza, C. and Faggioli, V., 2008. Biological, physical and chemical soil indicators in tillage and fertilization systems. [Conference Paper.] In: Actas XXI Congreso Argentino de la Ciencia del Suelo, Potrero de los Funes. San Luis, Argentina.

Truffer, B. and Coenen, L., 2012. Environmental Innovation and Sustainability Transitions in Regional Studies. Regional Studies, 46, pp. 1-21. https://doi.org/10.1080/00343404.2012.646164.

UPRA-Agricultural Rural Planning Unit., 2013. Land evaluation for zoning for agricultural and livestock purposes. Southern case of the department of Tolima. Retreived from http://bibliotecadigital.agronet.gov.co/handle/11438/8484. Accessed on 18 April 2021.

Uribe-Hernández, R., Juárez-Méndez, C.H., Montes de Oca, M.A., Palacios-Vargas, J.G., Cutz-Pool, L. and Mejía-Recarmier, B.E., 2010. Springtails (Hexapoda) as bioindicators of the quality of hydrocarbon-contaminated soils in southeastern Mexico. Revista mexicana de biodiversidad, 81(1), pp. 153-162. Retrieved from http://www.scielo.org.mx/scielo.php?pid=S1870-34532010000100020&script=sci_abstract&tlng=en. Accessed on 18 April 2021.

USDA., 1999. Soil quality test kit guide. Soil Quality Institute, National Resources Conservation Service, US Department of Agriculture. Retrieved from https://efotg.sc.egov.usda.gov/references/public/WI/Soil_Quality_Test_Kit_Guide.pdf. Accessed on 11 July 2023.

Van Es, H.M. and Karlen, D.L., 2019. Reanalysis validates soil health indicator sensitivity and correlation with long-term crop yields. Soil Science Society of America Journal, 83(3), pp. 721-732. https://doi.org/10.2136/sssaj2018.09.0338.

Wang, R., Luo, Y., Chen, H., Yuan, Y., Bingner, R. L., Denton, D., Locke, M. and Zhang, M., 2019. Environmental fate and impact assessment of thiobencarb application in California rice fields using RICEWQ. Science of The Total Environment, 664, pp. 669-682. https://doi.org/10.1016/j.scitotenv.2019.02.003.

Wezel, A., Herren, B.G., Kerr, R.B., Barrios, E., Gonçalves, A.L.R. and Sinclair, F., 2020. Agroecological principles and elements and their implications for transitioning to sustainable food systems. A review. Agronomy for Sustainable Development, 40, pp. 1-13. https://doi.org/10.1007/s13593-020-00646-z.

Xu, S., Tian, L., Chang, C., Li, X., and Tian, C., 2019. Cultivated rice rhizomicrobiome is more sensitive to environmental shifts than that of wild rice in natural environments. Applied Soil Ecology, 140, pp. 68-77. https://doi.org/10.1016/j.apsoil.2019.04.006.

Xun, W., Shao, J., Shen, Q. and Zhang, R., 2021. Rhizosphere microbiome: Functional compensatory assembly for plant fitness. Computational and Structural Biotechnology Journal, 19, pp. 5487-5493. https://doi.org/10.1016/j.csbj.2021.09.035.

Yi, J., Qiu, W., Hu, W., Zhang, H., Liu, M., Zhang, D., Wu, T., Tian, P. and Jiang, Y., 2020. Effects of cultivation history in paddy rice on vertical water flows and related soil properties. Soil and Tillage Research, 200, pp. 104613. https://doi.org/10.1016/j.still.2020.104613.

Zagatto, M. R. G., Zanão Júnior, L. A., Pereira, A. P. D. A., Estrada-Bonilla, G. and Cardoso, E. J. B. N., 2019. Soil mesofauna in consolidated land use systems: how management affects soil and litter invertebrates. Scientia Agricola, 76(2), pp. 165-171. http://dx.doi.org/10.1590/1678-992x-2017-0139.




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v26i3.45252

DOI: http://dx.doi.org/10.56369/tsaes.4525



Copyright (c) 2023 Ana María Quiroga-Arcila, Megan Dwyer Baumann, Álvaro Acevedo-Osorio

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.