VULNERABILITY OF FOREST SPECIES IN THE YUCATAN PENINSULA TO CLIMATIC AND ANTHROPOGENIC FACTORS

Teresa Alfaro Reyna, Josue Delgado-Balbuena, Fernando Arellano-Martín, Aixchel Maya-Martínez, Xavier García-Cuevas, Yameli Aguilar-Duarte, Carlos Alberto Aguirre-Gutierrez

Abstract


Background: The Yucatan Peninsula is covered mainly by semi-humid forests associated with karstic zones. These landscapes show high rates of endemism, and although they are resilient ecosystems, climatic variations place them as highly susceptible areas to climate change. Objective: To identify environmental and anthropogenic risk factors in the semi-humid forests of the Yucatan Peninsula, and to evaluate the vulnerability to climate change of 25 forest species with economic importance in this region. Methodology: A multi-criteria analysis was carried out to rank edaphic and climatic variables, changes in potential distribution due to climate change, species density and growing rate. These variables were integrated into a matrix and each variable was valued from 0 to 4, weighted between parameters, the higher the value, the greater the susceptibility. Four percent of the species were classified into the high-risk susceptibility and 84 % as medium risk and the rest as low. These species have a low density per hectare, have a restricted distribution, are slow growing and are over shallow soils. Implications: Species that can develop in a wide range of environmental conditions and have rapid growth rates were less susceptible to the risk factors analyzed here. Conclusions: The greatest risk factor was due to the effect of climate change, followed by the proximity to the Caribbean coast and the type of soil, which suggests that more conservation actions for forest species are needed, which will also ensure the provision of environmental services to human populations.

Keywords


multicriteria analysis; potential distribution; ecological range.

Full Text:

PDF

References


Bautista, F., Palacio-Aponte, G., Quintana, P. and Zinck, J.A., 2011. Spatial distribution and development of soils in tropical karst areas from the Peninsula of Yucatan, Mexico. Geomorphology, 135(3–4), pp. 308–321. https://doi.org/10.1016/J.GEOMORPH.2011.02.014.

Boose, E.R., Foster, D.R., Barker Plotkin, A. and Hall, B., 2003. Geographical and historical variation in hurricanes across the Yucatan Peninsula. In: The Lowland Maya Area. [online] New York: Haworth.pp. 495–516.

Brum, M., Teodoro, G.S., Abrahão, A. and Oliveira, R.S., 2017. Coordination of rooting depth and leaf hydraulic traits defines drought-related strategies in the campos rupestres, a tropical montane biodiversity hotspot. Plant and Soil, [online] 420(1–2), pp. 467–480. https://doi.org/10.1007/s11104-017-3330-x.

Caballero, C. B., Ruhoff, A., and Biggs, T. 2022. Land use and land cover changes and their impacts on surface-atmosphere interactions in Brazil: A systematic review. Science of The Total Environment, 808, p. 152134. https://doi.org/10.1016/j.scitotenv.2021.152134

Cardelús, C.L., Woods, C.L., Mekonnen, A.B., Dexter, S., Scull, P. and Tsegay, B.A., 2019. Human disturbance impacts the integrity of sacred church forests, Ethiopia. PLOS ONE, [online] 14(3), p. e0212430. https://doi.org/10.1371/JOURNAL.PONE.0212430.

Chitra-Tarak, R., Xu, C., Aguilar, S., Anderson-Teixeira, K.J., Chambers, J., Detto, M., Faybishenko, B., Fisher, R.A., Knox, R.G., Koven, N. Kunert, J. Kupers, Nate G. McDowell, D. Newman, R. Paton, R. Pérez, L. Ruiz, L. Sack, M. Warren, Brett T. Wolfe, C. Wright, S.J.Wright, J. Zailaa, and McMahon, S.M., 2021. Hydraulically-vulnerable trees survive on deep-water access during droughts in a tropical forest. New Phytologist, [online] 231(5), pp. 1798–1813. https://doi.org/10.1111/NPH.17464.

CONABIO, 2010. Población por localidad. [online] Available at: [Accessed 15 May 2022].

CONAFOR, 2015. Inventario Nacional Forestal y de Suelos. Procedimiento de muestreo. Guadalajara, México.

Corea-Arias, E., Arnáez-Serrano, E., Moreira-González, I. and Castillo-Ugalde, M., 2016. Situación de nueve especies forestales en peligro crítico de extinción en Costa Rica. Revista Forestal Mesoamericana Kurú, [online] 13(33), pp. 36–46. https://doi.org/10.18845/RFMK.V13I33.2576.

Edenhofer, O. (Ed.), 2015. Climate change 2014: mitigation of climate change (Vol. 3). Cambridge University Press.

Fragoso-Servón, P. and Pereira Corona, A., 2014. El Karst de la porción este de la Península de Yucatán. researchgate.net. [online] https://doi.org/10.13140/2.1.5098.5280.

Francis, E.J., Muller-Landau, H.C., Wright, S.J., Visser, M.D., Iida, Y., Fletcher, C., Hubbell, S.P. and Kassim, Abd.R., 2017. Quantifying the role of wood density in explaining interspecific variation in growth of tropical trees. Global Ecology and Biogeography, [online] 26(10), pp. 1078–1087. https://doi.org/10.1111/geb.12604.

Geekiyanage, N., Goodale, U.M., Cao, K. and Kitajima, K., 2018. Leaf trait variations associated with habitat affinity of tropical karst tree species. Ecology and Evolution, 8(1), pp. 286–295. https://doi.org/10.1002/ECE3.3611.

Geekiyanage, N., Goodale, U.M., Cao, K. and Kitajima, K., 2019. Plant ecology of tropical and subtropical karst ecosystems. Biotropica, 51(5), pp. 626–640. https://doi.org/10.1111/BTP.12696.

Greenwood, S., Ruiz-Benito, P., Martínez-Vilalta, J., Lloret, F., Kitzberger, T., Allen, C.D., Fensham, R., Laughlin, D.C., Kattge, J., Bönisch, G., Kraft, N.J.B. and Jump, A.S., 2017. Tree mortality across biomes is promoted by drought intensity, lower wood density and higher specific leaf area. Ecology Letters, [online] 20(4), pp. 539–553. https://doi.org/10.1111/ele.12748.

Howes, N.C., FitzGerald, D.M., Hughes, Z.J., Georgiou, I.Y., Kulp, M.A., Miner, M.D., Smith, J.M. and Barras, J.A., 2010. Hurricane-induced failure of low salinity wetlands. Proceedings of the National Academy of Sciences, [online] 107(32), pp. 14014–14019. https://doi.org/10.1073/pnas.0914582107.

Huang, W., Pohjonen, V., Johansson, S., Nashanda, M., Katigula, M.I.L. and Luukkanen, O., 2003. Species diversity, forest structure and species composition in Tanzanian tropical forests. Forest Ecology and Management, [online] 173(1–3), pp. 11–24. https://doi.org/10.1016/S0378-1127(01)00820-9.

Hubp, J., Quesado, J. and Pereño, R., 1992. Rasgos geomorfológicos mayores de la Península de Yucatán. Revista mexicana de ciencias geológicas, [online] 10(2), pp. 143–150.

Jaramillo, V.J., Martínez-Yrízar, A., Maass, M., Nava-Mendoza, M., Castañeda-Gómez, L., Ahedo-Hernández, R., Araiza, S. and Verduzco, A., 2018. Hurricane impact on biogeochemical processes in a tropical dry forest in western Mexico. Forest Ecology and Management, [online] 426, pp. 72–80. https://doi.org/10.1016/j.foreco.2017.12.031.

Jiménez-González, A., Pincay-Alcivar, F.A., Ramos-Rodríguez, M.P., Mero-Jalca, O.F. and Cabrera-Verdesoto, C.A., 2017. Utilización de productos forestales no madereros por pobladores que conviven en el bosque seco tropical. [online] Revista Cubana de Ciencias Forestales: CFORES. 5 (3), pp. 270-286. http://cfores.upr.edu.cu/index.php/cfores/article/view/264/html

King, D.A., Davies, S.J., Supardi, M.N.N. and Tan, S., 2005. Tree growth is related to light interception and wood density in two mixed dipterocarp forests of Malaysia. Functional Ecology, [online] 19(3), pp. 445–453. https://doi.org/10.1111/j.1365-2435.2005.00982.x.

Lases-Hernández, F., Medina-Elizalde, M. and Benoit Frappier, A., 2020. Drip water ?18O variability in the northeastern Yucatán Peninsula, Mexico: Implications for tropical cyclone detection and rainfall reconstruction from speleothems. Geochimica et Cosmochimica Acta, 285, pp. 237–256. https://doi.org/10.1016/J.GCA.2020.07.008.

Laurance, W.F., Goosem, M. and Laurance, S.G.W., 2009. Impacts of roads and linear clearings on tropical forests. Trends in Ecology & Evolution, [online] 24(12), pp. 659–669. https://doi.org/10.1016/j.tree.2009.06.009.

Liu, L., Chen, X., Ciais, P., Yuan, W., Maignan, F., Wu, J., Piao, S., Wang, Y., Wigneron, J., Fan, L., Gentine, P., Yang, X., Gong, F., Liu, H., Wang, C., Tang, X., Yang, H., Ye, Q., He, B., Shang, J. and Su, Y., 2022. Tropical tall forests are more sensitive and vulnerable to drought than short forests. Global Change Biology, [online] 28(4), pp. 1583–1595. https://doi.org/10.1111/gcb.16017.

Maciel Mata, C.A., Manríquez Morán, N., Octavio Aguilar, P. and Sánchez Rojas, G., 2015. Geographical distribution of the species: a concept review. Acta Universitaria, [online] 25(2), pp. 3–19. https://doi.org/10.15174/au.2015.690.

Martínez-Sánchez, J.L., 2019. Relación logística entre la diversidad de especies arbóreas de áreas naturales y los asentamientos humanos del trópico de México. Acta Botanica Mexicana, [online] (126). https://doi.org/10.21829/abm126.2019.1484.

Matthies, D., Bräuer, I., Maibom, W. and Tscharntke, T., 2004. Population size and the risk of local extinction: empirical evidence from rare plants. Oikos, [online] 105(3), pp. 481–488. https://doi.org/10.1111/j.0030-1299.2004.12800.x.

Maya-Martínez, A. and Pozo, C., 2009. Distribution patterns of Charaxinae (Lepidoptera: Nymphalidae) in Yucatan Peninsula, Mexico. Acta zoológica Mexicana, [online] 25(2), pp. 283-301. Disponible en: . ISSN 2448-8445.

Mulcahy, N., Kennedy, D.M. and Blanchon, P., 2016. Hurricane-induced shoreline change and post-storm recovery: Northeastern Yucatan Peninsula, Mexico. Journal of Coastal Research, 1(75), pp. 1192–1196. https://doi.org/10.2112/SI75-239.1/29782.

Muller-Landau, H.C., 2004. Interspecific and Inter-site Variation in Wood Specific Gravity of Tropical Trees. Biotropica, [online] 36(1), pp. 20–32. https://doi.org/10.1111/j.1744-7429.2004.tb00292.x.

Nizam, A., Meera, S.P. and Kumar, A., 2022. Genetic and molecular mechanisms underlying mangrove adaptations to intertidal environments. iScience, [online] 25(1), p. 103547. https://doi.org/10.1016/j.isci.2021.103547.

Palomo-Kumul, J., Valdez-Hernández, M., Islebe, G.A., Cach-Pérez, M.J. and Andrade, J.L., 2021. El Niño-Southern Oscillation affects the water relations of tree species in the Yucatan Peninsula, Mexico. Scientific Reports, [online] 11(1), p. 10451. https://doi.org/10.1038/s41598-021-89835-8.

Parker, G., Martínez-Yrízar, A., Álvarez-Yépiz, J.C., Maass, M. and Araiza, S., 2018. Effects of hurricane disturbance on a tropical dry forest canopy in western Mexico. Forest Ecology and Management, [online] 426, pp. 39–52. https://doi.org/10.1016/j.foreco.2017.11.037.

Pérez-Verdín, G., Márquez-Linares, M.A., Cortés-Ortiz, A. and Salmerón-Macías, M., 2013. Análisis espacio-temporal de la ocurrencia de incendios forestales en Durango, México. [online] Madera y Bosques. 19(2), pp. 37-58. Disponible en: . ISSN 2448-7597.

Peterson, C.J., 1995. Forest reorganization: A case study in an old-growth forest catastrophic blowdown. Ecology, 76(3), pp. 763–774. https://doi.org/10.2307/1939342.

Reynolds, J. and Stafford Smith, D., 2002. Do humans cause deserts? [online] Global Desertification: Do humans cause deserts. Berlin: Dahlem University Press.

Rodríguez-Trejo, D.A., Hubert Tchikoué, Carlos Cíntora-González, Rafael Contreras-Aguado and Alfonso de la Rosa-Vázquez, 2011. Modelaje del peligro de incendio forestal en las zonas afectadas por el huracán Dean. Agrociencia, [online] 45(5), pp. 593–608.

Romo-Lozano, J.L., Vargas-Hernández, J.J., López-Upton, J., Ávila Angulo, M.L., Romo-Lozano, J.L., Vargas-Hernández, J.J., López-Upton, J. and Ávila Angulo, M.L., 2017. Estimación del valor financiero de las existencias maderables de cedro rojo (Cedrela odorata L.) en México. Madera y Bosques, [online] 23(1), pp. 111–120. https://doi.org/10.21829/MYB.2017.231473.

Sánchez-Rivera, G., 2022. Efectos de los ciclones tropicales en la resiliencia de la vegetación en la península de Yucatán, México, entre 2000-2012. Investigaciones. [online].

SEMARNAT, 2010. Norma Oficial Mexicana. NOM-059-SEMARNAT-2010. Protección Ambiental-Especies Nativas de México de Flora y Fauna Silvestres-Categorías de Riesgo y Especificaciones para su Inclusión, Exclusión o Cambio-Lista de especies en Riesgo. Diario Oficial de la Federación, [online] p. 78. https://doi.org/10.1007/s13398-014-0173-7.2.

Smith-Martin, C.M., Xu, X., Medvigy, D., Schnitzer, S.A. and Powers, J.S., 2020. Allometric scaling laws linking biomass and rooting depth vary across ontogeny and functional groups in tropical dry forest lianas and trees. New Phytologist, 226(3), pp. 714–726. https://doi.org/10.1111/NPH.16275.

Snyder, C.M., Feher, L.C., Osland, M.J., Miller, C.J., Hughes, A.R. and Cummins, K.L., 2022. The Distribution and Structure of Mangroves (Avicennia germinans and Rhizophora mangle) Near a Rapidly Changing Range Limit in the Northeastern Gulf of Mexico. Estuaries and Coasts, [online] 45(1), pp. 181–195. https://doi.org/10.1007/s12237-021-00951-0.

Tyree, M., Patiño, S. and Becker, P., 1998. Vulnerability to drought-induced embolism of Bornean heath and dipterocarp forest trees. Tree Physiology, 18(8-9), 583-588., [online] 18(8–9), pp. 583–588.

Vergara, G. and Gayoso, J., 2004. Efecto de factores físico-sociales sobre la degradación del bosque nativo. Bosque (Valdivia), [online] 25(1), pp. 43–52. https://doi.org/10.4067/S0717-92002004000100004.

Villanueva-Fragoso, Ponce-Velez, García, C. and Presa, 2010. Vulnerabilidad de la zona costera. Ecosistemas costeros. Vulnerabilidad de las zonas costeras mexicanas ante el cambio climático. [online]. Gobierno del estado de Tabasco. Semarnat-INE, UNAM-ICMYL, Universidad de Campeche, pp. 37-72.

Wagner, F. H., H'erault, B., Bonal, D., Stahl, C. and Anderson, L. O., Baker, T. R., Becker, G. S., Beeckman, H., Boanerges Souza, D., Botosso, P. C., Bowman, D. M. J. S., Br"auning, A. and Brede, B., Brown, F. I., Camarero, J. J., Camargo, P. B., Cardoso, F. C. G., Carvalho, F. A., Castro, W., Chagas, R. K., Chave, J., Chidumayo, E. N., Clark, D. A., Costa, F. R. C., Couralet, C., da Silva Mauricio, P. H., Dalitz, H., de Castro, V. R., de Freitas Milani, J. E., de Oliveira, E. C., de Souza Arruda, L., Devineau, J.-L., Drew, D. M., D"unisch, O., Durigan, G., Elifuraha, E., Fedele, M., Ferreira Fedele, L., Figueiredo Filho, A., Finger, C. A. G., Franco, A. C., Freitas Junior, J. L., Galvao, F., Gebrekirstos, A., Gliniars, R., Gracca, P. M. L. D. A., Griffiths, A. D., Grogan, J., Guan, K., Homeier, J., Kanieski, M. R.,Kho, L. K., Koenig, J., Kohler, S. V., Krepkowski, J., Lemos-Filho, J. P., Lieberman, D., Lieberman, M. E., Lisi, C. S., Longhi Santos, T., López Ayala, J. L., Maeda, E. E., Malhi, Y., Maria, V. R. B., Marques, M. C. M., Marques, R., Maza Chamba, H., Mbwambo, L., Melgacco, K. L. L., Mendivelso, H. A., Murphy, B. P., O'Brien, J. J., Oberbauer, S. F., Okada, N., Pelissier, R., Prior, L. D., Roig, F. A., Ross, M., Rossatto, D. R., Rossi, V., Rowland, L., Rutishauser, E. and Santana, H. and Schulze, M., Selhorst, D., Silva, W. R. and Silveira, M. and Spannl, S., Swaine, M. D., Toledo, J. J., Toledo, M. M., Toledo, M., Toma, T., Tomazello Filho, M., Valdez Hernández, J. I., Verbesselt, J., Vieira, S. A., Vincent, G., Volkmer de Castilho, C., Volland, F., Worbes, M., Zanon, M. L. B. and Aragão, L.E.O.C., 2016. Climate seasonality limits leaf carbon assimilation and wood productivity in tropical forests. Biogeosciences, [online] 13(8), pp. 2537–2562. https://doi.org/10.5194/bg-13-2537-2016.

Wigneron, J.-P., Fan, L., Ciais, P., Bastos, A., Brandt, M., Chave, J., Saatchi, S., Baccini, A. and Fensholt, R., 2020. Tropical forests did not recover from the strong 2015–2016 El Niño event. Science Advances, [online] 6(6). https://doi.org/10.1126/sciadv.aay4603.

Zeide, B., 2004. Optimal stand density: a solution. Canadian Journal of Forest Research, [online] 34(4), pp. 846–854. https://doi.org/10.1139/x03-258.




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v26i1.45165

DOI: http://dx.doi.org/10.56369/tsaes.4516



Copyright (c) 2022 Teresa Alfaro Reyna

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.