SEQUENTIAL SAMPLING FOR YIELDS MONITORING IN KINGWORM (ZOPHOBAS SPP. [COLEOPTERA: TENEBRIONIDAE]) FARMS IN THE AMAZON

Carlos Daniel Vecco - Giove, Hitler Panduro Salas, Milton Francisco Ubeda-Olivas, Basilia Miriam Fernández Argudín, Ileana . Miranda Cabrera

Abstract


Background: Sampling for monitoring commercial production of kingworm (Zophobas spp.) requires knowledge about optimal sample sizes and methods for projecting yields. Hypothesis and objective: A sequential enumerative sampling (SES) based on larval weight records should present significant levels of productivity prediction under known margins of error and precision. To verify this, it was proposed to evaluate the performance of an SES method in two kingworm’s farms in Tarapoto, Peruvian Amazon. Methodology: Means (m) and respective variances (s2) of larvae number and weight since six sample units (SU) of 500 ml from 35 production units (PU) of 48 l were obtained. Log-transformed data were fitted to Taylor’s Power Law TPL (log s2 =log a +b. log m). A Morisita’s index transformation was applied with original larvae number data to obtain an independent measure of intra-sample spatial arrangement. TPL elements constituted the Green's function optimal sample size for three margins of error E. Sequential sampling simulations were carried out, whose means predicted yields comparing two methods of weight relationship between SU and PU (w/W, linear function), with their respective census. Results: Number of larvae (s2 =1.06 m1.61) and weights (s2 =0.79 m1.53) showed highly significant adjustments in TPL, with aggregation coefficients corresponding crowded spatial arrangement. Larval density and Ip index showed close correlation. Although simulations provided a lower hit frequency than expected, the mean precision increased highly significantly while increasing the error margin, with detection levels of 0.25, 2.23 and 12.57 g to E 50, 30 and 20 %, respectively. Implications: Applying SES, kingworm’s breeders should standardize substrate volume contained in each UP and adjust their w/W conversion factor to avoid plus sampling efforts. Conclusion: The SES suits the needs of productivity monitoring, where using of w/W ratio and 50 % margins of error are associated with greater effectiveness and precision with a sample size of ni<3. 

Keywords


spatial pattern, Taylor's Power Law, size sample.

Full Text:

PDF

References


Badii, M.H., Guillen, A., Cerna, E. and Landeros, J., 2011. Dispersión espacial: el prerrequisito esencial para el muestreo. Daena: International Journal of Good Conscience, 6(1), pp.40–71. http://www.spentamexico.org/v6-n1/40a71.pdf

Barrera G, J.F., 2008. Aplicación de la Ley de Poder de Taylor al muestreo de insectos. In: J. Toledo y F. Infante, eds. 2008. Manejo integrado de plagas. México D.F.: Editorial Trillas.

Barrera G., J.F., Valle, J., Herrera, J., García, H., Villalobos, J. and Gómez, J., 2006. Potencial de la Ley de Poder de Taylor para transformar datos de trampeo de la broca del café, Hypothenemus hampei. Entomología Mexicana, 5(2), pp.647-653. http://plagas-cafe.tap-ecosur.edu.mx/Proyecto_Produce/PDFs/PotencialLPTDatos2006.pdf

Carvalho, M.O., 2016. Developing and Validating Sequential Sampling Plans for Integrated Pest Management on Stored Products. Advanced Techniques in Biology & Medicine, 4(3). https://doi.org/10.4172/2379-1764.1000183

Cortes O., J.A., Ruiz, A.T., Morales-Ramos, J.A. Thomas, M., Rojas, M.G., Tomberlin, J.K., Y.I., L. Han, R., Giroud, L. and Jullien, R.L., 2016. Insect Mass Production Technologies. In: A. T. Dossey, J. A. Morales-Ramos and M. Guadalupe, eds. 2016. Insects as Sustainable Food Ingredients Production, Processing and Food Applications. UK/USA: Academic Press- Elsevier Inc. Ch.6. https://doi.org/10.1016/C2014-0-03534-4

Ferrer, J., 2011. Revisión del género Zophobas Dejean, 1834. Boletín de la Sociedad Entomológica Aragonesa (S.E.A.), 48, pp.287?319. http://sea-entomologia.org/Publicaciones/PDF/BOLN_48/287319BSEA48Zophobas.pdf

Fowler, G.W. and Lynch, A.M., 1987. Bibliography of Sequential Sampling Plans in Insect Pest Management Based on Wald's Sequential Probability Ratio Test. The Great Lakes Entomologist, 20 (3), pp.165–172. https://scholar.valpo.edu/tgle/vol20/iss3/12

Friederich, U. and Volland, W., 1981. Futtertierzucht: Lebendfutter für Vivarientiere. Eugen Ulmer, Stuttgart: Verlag.

Green, R.H., 1970. On fixed precision level sequential sampling. Researches on Population Ecology, 12(2), pp.249–251. https://doi.org/10.1007/bf02511568

Kao, S.-S., 1984. The spatial distribution of insects. Phytopathologist & Entomologist NTU, 11, pp.111–125. https://www.tactri.gov.tw/Uploads/Item/882b69e2-a1fa-4556-962a-31723ab2240b.pdf

Morote D., K. and Reátegui N., V.A., 2004. Aceptación de larvas de Zophobas opacus como alimento vivo para especies de fauna acuática y terrestre mantenidos en cautiverio en el Parque Turístico de Quistococha. Memorias, manejo de fauna silvestre en Amazonia y Latinoamérica, [online] Disponible en: https://docplayer.es/22150890-Resumen-introduccion-metodologia-karen-morote-dias-1-victor-a-reategui-navarro-2.html [Accessed 28 July 2022].

Morote D., K. and Vásquez B., J., 2004. Estudio del escarabajo amazónico Zophobas opacus (Coleoptera: Tenebrionidae) para incluirlo como alimento vivo en sistemas de crianza de fauna silvestre en cautiverio, peces ornamentales y de consumo. Memorias: Manejo de Fauna silvestre en Amazonia y Latinoamérica, [online] Disponible en: https://docplayer.es/44608051-Resumen-introduccion-materiales-y-metodos-karen-j-morote-d-1-joel-vasquez-bardales-1.html [Accessed 28 July 2022].

Otero, C., 1997. Metodología de la reproducción de en cautiverio del coleóptero Zophobas sp. (Tesis para optar al título de maestría en ciencias bilógicas). Universidad Nacional Autónoma de Nicaragua; Managua, Nicaragua. http://www.bio-nica.info/RevNicaEntomo/188-Zophobas.pdf

Pielou, E.C., 1969. An Introduction to Mathematical Ecology. New York: Wiley-Interscience. https://doi.org/10.1126/science.169.3940.43-a

Quennedey, A., Aribi, N., Everaerts, C. and Delbecque, J.P., 1995. Postembryonic Development of Zophobas atratus Fab. (Coleoptera: Tenebrionidae) under Crowded or Isolated Conditions and Effects of Juvenile Hormone Analogue Applications. Journal of Insect Physiology, 41, pp.143-152. https://doi.org/10.1016/0022-1910(94)00091-T

Rabinovich, J., 1978. Ecología de poblaciones animales. Washington D.C.: Secretaría General de la Organización de Estados Americanos. https://baixardoc.com/preview/j-e-rabinovich-ecologia-poblaciones-animales-5c3a4e5202aac

Romañach, R.J., Castro, A.J. and Esbensen, K.H., 2021. What are sampling errors- and What can we do about them? Part 1. Spectroscopyeurope, 33 (2), pp.36–42. https://doi.org/10.1255/sew.2021.a11

Schulte, R., 1996. El manejo de Zophobas morio (Coleoptera: Tenebrionidae) en climas tropicales húmedos. Folia Amazonica, 8(2), pp.47–75. http://iiap.org.pe/Archivos/publicaciones/PUBL680.pdf

Smith-Gill, S. J., 1975. Cytophysiological basis of disruptive pigmentary patterns in the leopard frog, Rana pipiens. II. Wild type and mutant cell specific patterns. Journal of Morphology. 146, pp.35–54. https://doi.org/10.1002/jmor.1051460103

Taylor, L.R., 1961. Aggregation, variance and the mean. Nature (189), pp.732-735. https://doi.org/10.1038/189732a0

Taylor, L.R., 1971. Aggregation as a species characteristic. Statistical Ecology (1), pp.357–377.

Tschinkel, W.R., 1984. Zophobas atratus (Fab.) and Z. rugipes Kirsch (Coleoptera: Tenebrionidae) are the same Species. The Coleopterists Bulletin, 38(4), pp.325–333. http://www.jstor.org/stable/4008210

Tschinkel, W.R. and van Belle, G., 1976. Dispersal of Larvae of the Tenebrionid Beetle, Zophobas rugipes, in Relation to Weight and Crowding. Ecology, 57(1), pp.161–168. https://doi.org/10.2307/1936407

Tschinkel W.R. and Willson C.D., 1971. Inhibition of Pupation due to Crowding in Some Tenebrionid Beetles. Journal of Experimental Zoology, 176, pp.137-146. https://doi.org/10.1002/jez.1401760203

Ubeda O., M.F., Quiroz, J.D., Abarca, G. and Maes, J.M., 2020. Factores que influyen el proceso de metamorfosis de Zophobas sp. (Coleoptera: Tenebrionidae) en sistemas de producción de alimento vivo. Revista Nicaraguense de Entomologia, 188, pp.3–24. http://www.bio-nica.info/RevNicaEntomo/188-Zophobas.pdf

Ubeda, M. and Maes, J.-M., 2021. Manual del manejo de crianza de Zophobas. Revista Nicaraguense de Entomologia, 233, pp.1–64. https://doi.org/10.5281/zenodo.5338765

Urías-López, M.A., Nava-Camberos, U. and González-Carrillo, J.A., 2016. Desarrollo de un programa de muestreo para la escama blanca del mango, Aulacaspis tubercularis Newstead. Southwestern Entomologist, 41(1), pp.115–126. https://doi.org/10.3958/059.041.0113

Vecco G., C.D., Pinedo R., R. and Fernández A., B.M., 2015. Métodos de muestreo para Pseudophilothrips sp. (Tubulifera: Phlaeothripidae) y sus enemigos naturales: I. Muestreo secuencial enumerativo. Revista de Protección Vegetal 30 (1), pp.6-13.

Vecco G., C.D., Pinedo R., R. and Fernández A., B.M., 2017. Muestreo secuencial enumerativo para el monitoreo de las poblaciones de Syphrea sp. (Chrysomelidae: Alticinae) en sacha inchik (Plukenetia volubilis L.) (Euphorbiaceae). Revista Peruana de Entomología, 52 (1), pp.1-7.

Vecco G., C.D., Rengifo R., J.A., Fernández A., B.M., García R., E. and Bardales P., R., 2009. Aplicación de una cartilla simplificada para el monitoreo de la incidencia de la broca del café (Hypothenemus hampei [Ferrari]) en el contexto de un sistema de gestión en el Valle del Alto Mayo, Perú. Sistemas Agroecológicos y Modelos Biomatemáticos, 2(2), pp.16–25.

Zhang, Ch.(C)., 2007. Fundamentals of Environmental Sampling and Analysis. John Wiley & Sons, Inc., Hoboken, New Jersey.




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v26i1.44426

DOI: http://dx.doi.org/10.56369/tsaes.4442



Copyright (c) 2022 Carlos Daniel Vecco Giove

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.