EFFECT OF THE ESSENTIAL OIL OF Lippia origanoides Kunth AND TWO OF ITS VOLATILE ORGANIC COMPOUNDS ON Tetranychus urticae Koch (Acari: Tetranychidae) AND Bemisia tabaci Genn (Hemiptera: Aleyrodidae) IN GREENHOUSE

Ángel M. Herrera-Gorocica, Emanuel Hernández-Núñez, Luz M. Calvo-Irabien, Ángeles Sánchez-Contreras, Ana L. Ruiz-Jiménez, Luis Latournerie-Moreno, Horacio S. Ballina-Gómez, Esaú Ruiz-Sánchez

Abstract


Background. The use of plant-derived products is an environmentally friendly option to reduce the use of chemical pesticides for pest management. Objective. To evaluate the lethal toxic and repellent effect of the essential oil (EO) of the Mexican oregano (Lippia origanoides) and two of its main components, carvacrol and thymol, on the mortality and repellency of immature B. tabaci and T. urticae in the greenhouse. Methodology. The EO of L. origanoides, carvacrol and thymol at 0.2% and 0.01% were sprayed on eggplant leaves infested with the pests. The mortality of individuals was evaluated at 24 and 48 h and the repellency at 2 and 5 days after application in T. urticae and B. tabaci. Results. The EO and carvacrol at 0.2 % v/v caused 80-99 % mortality in T. urticae and B. tabaci, and EO was the one that caused more than 50 % repellency. The analysis of the L. origanoides EO by gas chromatography – mass spectrometry showed that the major compounds were thymol (41.14 %), p-cymene (14.06 %) and carvacrol (9.25 %). Implication. The essential oil of L. origanoides and of its main components, thymol and carvacrol, represent a viable alternative to manage B. tabaci and T. urticae. Conclusion. The EO of L. origanoides and carvacrol at 0.2 % v/v produce more that 80 % mortality and more that 50 % repellency in T. urticae and B. tabaci

Keywords


Pest management; Toxic effect; Plant-derived pesticides.

Full Text:

PDF

References


Abbassy, M. A., Abdelgaleil, S. A. M., and Rabie, R. Y. A., 2009. Insecticidal and synergistic e?ects of Majorana hortensis essential oil and some of its major constituents. Entomologia Experimentalis et Applicata, 131, pp. 225–232. http://doi.org/10.1111/j.1570-7458.2009.00854.x

Abbott, W.S., 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18, pp. 265?267.

Akhtar, Y., Pages, E., Stevens, A., Bradbury, R., da Camara, C.A.G., and Isman, M.B., 2012. Effect of chemical complexity of essential oils on feeding deterrence in larvae of the cabbage looper. Physiological Entomology, 37(1), pp. 81–91. https://doi.org/10.1111/j.1365-3032.2011.00824.x

Attia, S., Grissa, K.L., Lognay, G., Heuskin, S., Mailleux, A.C., and Hance, T., 2011. Chemical Composition and Acaricidal Properties of Deverra scoparia Essential Oil (Araliales: Apiaceae) and Blends of Its Major Constituents Against Tetranychus urticae (Acari: Tetranychidae). Journal of Economic Entomology, 104(4), pp. 1220–1228. https://doi.org/10.1603/ec10318

Baldin, E.L.L., Aguiar, G.P., Fanela, T.L.M., Soares, M.C.E., Groppo, M., and Crotti, A.E.M., 2014. Bioactivity of Pelargonium graveolens essential oil and related monoterpenoids against sweet potato whitefly, Bemisia tabaci biotype B. Journal of Pest Science, 88(1), pp. 191–199. https://doi.org/10.1007/s10340-014-0580-8

Baldin, E.L.L., Crotti A.E.M., Wakabayashi, K.A.L., Silva, J.P.G.F., Aguiar, G.P., Souza, E.S., Veneziani, R.C.S., Groppo, M., 2012. Plant-derived essential oils affecting settlement and oviposition of Bemisia tabaci (Genn.) biotype B on tomato. Journal of Pest Science, 86(2), pp. 301-308. https://doi.org/10.1007/s10340-012-0462-x

Ballina-Gómez H., Ruiz-Sanchez, E., Chan-Cupul, W., Latournerie-Moreno, L., Hernández-Alvarado, L., Islas-Flores, I., Zuñiga-Aguilar, J.J., 2013. Response of Bemisia tabaci Genn. (Hemiptera: Aleyrodidae) Biotype B to Genotypes of Pepper Capsicum annuum (Solanales: Solanaceae). Neotropical Entomology, 42, pp. 205–210. https://doi.org/10.1007/s13744-012-0106-0

Bolzonella, C., Lucchetta, M., Teo, G., Boatto, V., and Zanella, A., 2019. Is there a way to rate insecticides that is less detrimental to human and environmental health? Global Ecology and Conservation, 20, p. e00699. https://doi.org/10.1016/j.gecco.2019.e00699

Calvo-Irabién L.M., Parra-Tabla V., Acosta-Arriola V., Escalante-Erosa F., Díaz-Vera L., Dzib G.R., and Peña-Rodríguez L.M., 2014. Phytochemical diversity of the essential oils of Mexican Oregano (Lippia graveolens Kunth) populations along an edapho-climatic gradient. Chemistry & Biodiversity, 11(7), pp. 1010-1021. https://doi.org/10.1002/cbdv.201300389

Calvo-Irabien, L.M., Yam-Puc, J.A., Dzib, G., Escalante-Erosa, F., and Peña-Rodriguez, L.M., 2009. Effect of Postharvest Drying on the Composition of Mexican Oregano (Lippia graveolens) Essential Oil. Journal of Herbs, Spices & Medicinal Plants, 15(3), pp. 281–287. https://doi.org/10.1080/10496470903379001

Camilo, C., Alves Nonato, C., Galvão-Rodrigues, F., Costa, W., Clemente, G., Sobreira Macedo, M., Galvão Rodrigues, F., da Costa, J., 2017. Acaricidal activity of essential oils: a review. Trends in Phytochemical Research, 1(4), pp. 183-198.

Camilo, C.J., Duarte Leite, D.O., Alves Nonato, C.F., Gomes de Carvalho, N.K., Alves Ribeiro, D., Martins da Costa, J.G., 2022. Traditional use of the genus Lippia sp. and pesticidal potential: A review. Biocatalysis and Agricultural Biotechnology, 40, 102296.

Cavalcanti, S.C.H., Niculau, E.dosS., Blank, A.F., Camara, C.A.G., Araújo, I.N., and Alves, P.B., 2010. Composition and acaricidal activity of Lippia sidoides essential oil against two-spotted spider mite (Tetranychus urticae Koch). Bioresource Technology, 101(2), pp. 829–832. https://doi.org/10.1016/j.biortech.2009.08.05

Chen, Q., Liang, X., Wu, C., Gao, J., Chen, Q., and Zhang, Z., 2019. Density threshold?based acaricide application for the two?spotted spider mite Tetranychus urticae on cassava: from laboratory to the field. Pest Management Science, 75(10), pp. 2634–2641. http://doi.org/10.1002/ps.5366

Correy, G.J., Zaidman, D., Harmelin, A., Carvalho, S., Mabbitt, P.D., Calaora, V., James, P.J., Kotze, A.C., Jackson, C.J., and London, N., 2019. Overcoming insecticide resistance through computational inhibitor design. Proceedings of the National Academy of Sciences of the United States of America, 116(42), pp. 21012-21021 https://doi.org/10.1073/pnas.1909130116

Cua-Basulto M., Ruiz, E., Chan-Cupul, W., Reyes-Ramírez, A., Ballina-Gómez, H., Núñez, E., 2022. Efecto de acaricidas químicos en la mortalidad de la araña roja Tetranychus urticae Koch (Acari: Tetranychidae). Tropical and Subtropical Agroecosystems, 25, pp. #040. http://doi.org/10.56369/tsaes.3964

Da Camara, C.A.G., Akhtar, Y., Isman, M.B., Seffrin, R.C., and Born, F.S., 2015. Repellent activity of essential oils from two species of Citrus against Tetranychus urticae in the laboratory and greenhouse. Crop Protection, 74, pp. 110–115. https://doi.org/10.1016/j.cropro.2015.04.014

De Clerck, C., Genva, M., Jijakli, M.H., Fauconnier, M.L., 2021. Use of essential oils and volatile compounds as biological control agents. Foods, 10: 1062. https://doi.org/10.3390/foods10051062

Di Rienzo, J.A., Casanoves, F., Gonzalez, L.A., Tablada, E.M., D?az, M.P., Robledo, C.W., and Balzarini, M.G., 2018 InfoStat ver. 2018. Grupo InfoStat, FCA Universidad Nacional de Cordoba, Argentina.

Ebadollahi, A., Ziaee, M., Palla, F., 2020. Essential oils extracted from different species of the Lamiaceae plant family as prospective bioagents against several detrimental pests. Molecules, 25(7), pp. 1556. https://doi.org/10.3390/molecules25071556

Fiallo-Olivé, E., Pan, L.L., Liu, S.S., and Navas-Castillo, J., 2019. Transmission of begomoviruses and other whitefly-borne viruses: dependence on the vector species. Phytopathology, 110, pp. 10-17. https://doi.org/10.1094/PHYTO-07-19-0273-FI

Khleifat, K.M., Matar, S.A., Jaafreh, M., Qaralleh, H., Al-limoun Muhamad O., and Alsharafa, K.Y., 2019. Essential Oil of Centaurea damascena Aerial Parts, Antibacterial and Synergistic Effect. Journal of Essential Oil Bearing Plants, 22(2), pp. 356–367. https://doi.org/10.1080/0972060x.2019.1626292

Laborda, R., Manzano, I., Gamón, M., Gavidia, I., Pérez-Bermúdez, P., and Boluda, R., 2013. Effects of Rosmarinus officinalis and Salvia officinalis essential oils on Tetranychus urticae Koch (Acari: Tetranychidae). Industrial Crops and Products, 48, pp. 106–110. https://doi.org/10.1016/j.indcrop.2013.04.011

Lage, T.C.A., Montanari, R.M., Fernandes, S.A., de Oliveira Monteiro, C.M., de Oliveira Souza S.T., Zeringota, V., Calmon, F., da Silva Matos, R. and Daemon, E., 2012. Activity of essential oil of Lippia triplinervis Gardner (Verbenaceae) on Rhipicephalus microplus (Acari: Ixodidae). Parasitology Research, 112(2), pp. 863–869. https://doi.org/10.1007/s00436-012-3209-y

Langeveld, W.T., Veldhuizen, E.J.A., and Burt, S.A., 2013. Synergy between essential oil components and antibiotics: a review. Critical Reviews in Microbiology, 40(1), pp. 76–94. https://doi.org/10.3109/1040841x.2013.763219

Le Goff, G.J., Hance, T., Detrain, C., Deneubourg, J.L., and Mailleux, A.C., 2014. Impact of living with kin/non-kin on the life history traits of Tetranychus urticae (Acari: Tetranychidae). Experimental and Applied Acarology, 63(1), pp. 37-47. https://doi.org/10.1007/s10493-014-9783-1

Li, S., Li, H., Zhou, Q., Zhang, F., Desneux, N., Wang, S., and Shi, L., 2021. Essential oils from two aromatic plants repel the tobacco whitefly Bemisia tabaci. Journal of Pest Science, 95(2), pp. 971-982. https://doi.org/10.1007/s10340-021-01412-0

Liu, J., Hua, J., Qu, B., Guo, X., Wang, Y., Shao, M., Luo, S., 2021. Insecticidal terpenes from the essential oils of Artemisia nakaii and their inhibitory effects on acetylcholinesterase. Frontiers in Plant Science, 12, p. 720816. https://doi.org/10.3389/fpls.2021.720816

Llamas-Torres, I., Grijalva-Arango, R., Porter-Bolland, L., Calvo-Irabien, L.M., 2022. Impacto del manejo in situ-ex situ del orégano mexicano (Lippia origanoides Kunth) en el noroeste de Yucatán. Botanical Sciences, 100(3), pp. 610-630. https://doi.org/10.17129/botsci.2994

Loetti, V., and Bellocq I., 2017. Effects of the insecticides methoxyfenozide and cypermethrin on non-target arthropods: A field experiment. Austral Entomology, 562, pp. 55-260. https://doi.org/10.1111/aen.12230

Lu, X., Liu, J., Weng, H., Ma, Z., and Zhang, X., 2019. Efficacy of binary combinations between methyl salicylate and carvacrol against thrips Anaphothrips obscurus: laboratory and field trials. Pest Management Science, 76(2), pp. 589-596. https://doi.org/10.1002/ps.5551

Luz, T.R.S.A., Leite, J.A.C., de Mesquita, L.S.S., Bezerra, S.A., Silveira, D.P.B., de Mesquita, J.W.C., Coutinho, D.F., 2020. Seasonal variation in the chemical composition and biological activity of the essential oil of Mesosphaerum suaveolens (L.) Kuntze. Industrial Crops and Products, 153, pp. 112600. https://doi.org/10.1016/j.indcrop.2020.112600

Magano, S.R., Nchu, F, and Eloff, J.N., 2011. In vitro investigation of the repellent effects of the essential oil of Lippia javanica on adults of Hyalomma marginatum rufipes. African Journal of Biotechnology, 10(44), pp. 8970–8975. https://doi.org/10.5897/ajb11.749

Manal S.M.I. y Mennat-Allah N.E.H., 2022. Potential? of plant extracts and ?their elicitor effect on the red sweet pepper ??(Capsicum annuum L.) defence system against Tetranychus urticae (Acari: ?Tetranychidae) infestation under greenhouse conditions. International Journal of Acarology, 48(2), pp. 130-138. http://doi.org/10.1080/01647954.2022.2041090

Mar, J.M., Silva, L.S., Azevedo, S.G., França, L.P., Goes, A.F., Santos, A.L., Bezerra, J.D., Nunomura, R.C., Machado, M.B., Sanches, E.A., 2018. Lippia origanoides essential oil: an efficient alternative to control Aedes aegypti, Tetranychus urticae and Cerataphis lataniae. Industrial Crops and Products, 111, pp. 292–297. https://doi.org/10.1016/j.indcrop.2017.10.033

Martinez-Velazquez, M., Rosario-Cruz, R., Castillo-Herrera, G., Flores-Fernandez, J.M., Alvarez, A.H., and Lugo-Cervantes, E., 2011. Acaricidal effect of essential oils from Lippia graveolens (Lamiales: Verbenaceae), Rosmarinus officinalis (Lamiales: Lamiaceae), and Allium sativum (Liliales: Liliaceae) against Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Journal of Medical Entomology. 48(4), pp. 822-827. https://doi.org/10.1603/me10140

Mondal, P.C., Nebapure, S.M., Shakil, N.A., Kaushik, P., Rana, V.S., 2021. Chemical composition, insecticidal and oviposition deterrent activities of the essential oil of Eucalyptus globulus against Bemisia tabaci (whitefly). Stechnolock: Plant Biology and Research, 1, pp. 1-10. https://www.stechnolock.com/article/Chemical-Composition-Insecticidal.pdf

Nerio, L.S, Olivero-Verbel, J., Stashenko, E.E., 2009. Repellent activity of essential oils from seven aromatic plants grown in Colombia against Sitophilus zeamais Motschulsky (Coleoptera). Journal of Stored Products Research, 45, pp. 212–214. https://doi.org/10.1016/j.jspr.2009.01.002

Ojeda-Martinez D., Martinez, M., Diaz Isabel., and Santamaria, M., 2020. Saving time maintaining reliability: a new method for quantification of Tetranychus urticae damage in Arabidopsis whole rosettes. BMC Plant Biology 20(397), pp. 1-19. http://doi.org/10.1186/s12870-020-02584-0

Jesse A. Pacheco-Aguirre, Esaú Ruiz-Sánchez, Luis Chel-Guerrero, Luis Jorge Corzo-Ríos, Alfonzo Pérez-Gutiérrez, Arturo Reyes-Ramírez, Horacio S. Ballina-Gómez. 2020. Characterization of Guazuma ulmifolia Lam. seed gum and its effect on the activity of Metarhizium anisopliae (Metschn.) Sorokin on Bemisia tabaci Genn. Mexican Journal of Biotechnology, 5(4) pp. 34-48. https://doi.org/10.29267/mxjb.2020.5.4.34

Peixoto, M.G., Costa-Júnior, L.M., Blank, A.F., Lima, A.S., Menezes, T.S.A., Santos, D.A., … Arrigoni-Blank, M.F., 2015. Acaricidal activity of essential oils from Lippia alba genotypes and its major components carvone, limonene, and citral against Rhipicephalus microplus. Veterinary Parasitology, 210(1-2), pp. 118–122. https://doi.org/10.1016/j.vetpar.2015.03.010

Peneder, S., and Koschier, E.H., 2011. Toxic and behavioural effects of carvacrol and thymol on Frankliniella occidentalis larvae. Journal of Plant Deseases and Protection, 118, pp. 26–30. https://doi.org/10.1007/BF03356377

Pereira, K., Quintela, E., da Silva, D., do Nascimento, V., da Rocha, D., Silva, J., … Cazal, C., 2018. Characterization of Nanospheres Containing Zanthoxylum riedelianum Fruit Essential Oil and Their Insecticidal and Deterrent Activities against Bemisia tabaci (Hemiptera: Aleyrodidae). Molecules, 23(8), pp. 2052. https://doi.org/10.3390/molecules23082052

Pereira, K.d.C., Quintela, E.D., do Nascimento, V.A., da Silva, D.J., Rocha, D.V.M., Silva, J.F.A., Arthurs, S.P., Forim, M.R., Silva, F.G., Cazal, C.d.M., 2022. Characterization of Zanthoxylum rhoifolium (Sapindales: Rutaceae) Essential Oil Nanospheres and Insecticidal Effects to Bemisia tabaci (Sternorrhyncha: Aleyrodidae). Plants, 11, pp. 1135. https://doi.org/10.3390/plants11091135

Reddy, S.G.E., and Dolma, S.K., 2017. Acaricidal activities of essential oils against two-spotted spider mite, Tetranychus urticae Koch. Toxin Reviews, 37(1), pp. 62-66. https://doi.org/10.1080/15569543.2017.1320805

Ribeiro, N., Camara, C., and Ramos, C., 2016. Toxicity of essential oils of Piper marginatum Jacq. against Tetranychus urticae Koch and Neoseiulus californicus (McGregor). Chilean Journal of Agricultural Research, 76(1), pp. 71–76. https://doi.org/10.4067/s0718-58392016000100010

Ribeiro, N.C., da Camara, C.A.G., Ramos, J.P., and de Morae, M.M., 2020. Insecticidal potential of citrus and mango essential oils and selected constituents on silverleaf whitefly. Revista Caatinga, 33, pp. 90-99. https://doi.org/10.1590/1983-21252020v33n110rc

Rioja, C., Zhurov, V., Bruinsma, K., Grbic, M., and Grbic, V., 2017. Plant-berbivore interactions: A case of an extreme generalist, the two-spotted spider mite Tetranychus urticae. Molecular Plant-Microbe Interactions, 30(12), pp. 935-945. https://doi.org/10.1094/MPMI-07-17-0168-CR

Salem, N., Kefi, S., Tabben, O., Ayed, A., Jallouli, S., Feres, N., … Elkahoui, S., 2018. Variation in chemical composition of Eucalyptus globulus essential oil under phenological stages and evidence synergism with antimicrobial standards. Industrial Crops and Products, 124, pp. 115–125. https://doi.org/10.1016/j.indcrop.2018.07.051

Sánchez-Ramos, G., Quezada, F.H., Lara-Villalón, M., Medina-Martínez, T., and Pérez-Quilantán, L.M., 2011. Parámetros ambientales y abundancia del orégano mexicano (Lippia graveolens) en el estado de Tamaulipas. CienciaUAT, 6(1), pp. 24-31.

Santana, A. da S., Baldin, E.L.L. Lima, A.P.S., dos Santos, T.L.B., Santos, M.C., Vieira, T.M., Crotti A.E.M., Takeara, R., 2022. New challenges demand new solutions: Selected essential oils as an alternative to control Bemisia tabaci MED in Brazil. Crop Protection, 155, pp. 105909. https://doi.org/10.1016/j.cropro.2022.105909.

Sombra, K. E. S., Aguiar, C. V. S. de, Oliveira, S. J. de, Barbosa, M. G., Zocolo, G. J., Pastori, P. L., 2018. Potential pesticide of three essential oils against Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae). Chilean Journal of Agricultural Research. 80, pp. 617-628. https://doi.org/10.4067/S0718-58392020000400617

Soto-Armenta, L.C., Sacramento-Rivero, J.C., Ruiz-Mercado, C.A., Lope-Navarrete, M.C., and Rocha-Uribe, J.A., 2019. Extraction yield and kinetic study of Lippia graveolens with supercritical CO2. The Journal of Supercritical Fluids, 145, pp. 205–210. https://doi.org/10.1016/j.supflu.

Souto, A.L., Sylvestre, M., Tölke, E.D., Tavares, J.F., Barbosa-Filho, J.M., and Cebrián-Torrejón, G., 2021. Plant-derived pesticides as an alternative to pest management and sustainable agricultural production: Prospects, applications and challenges. Molecules, 26(16), pp. 4835. https://doi.org/10.3390/molecules26164835

Tak, J.H., and Isman, M.B., 2017a. Acaricidal and repellent activity of plant essential oil-derived terpenes and the effect of binary mixtures against Tetranychus urticae Koch (Acari: Tetranychidae). Industrial Crops and Products, 108, pp. 786–792. https://doi.org/10.1016/j.indcrop.2017.08.003

Tak, J.-H., and Isman, M.B., 2017b. Penetration-enhancement underlies synergy of plant essential oil terpenoids as insecticides in the cabbage looper, Trichoplusia ni. Scientific Reports, 7(1), pp. 1-11. https://doi.org/10.1038/srep42432

Tak, J. H., Isman, M. B., 2017c. Enhanced cuticular penetration as the mechanism of synergy for the major constituents of thyme essential oil in the cabbage looper, Trichoplusia ni. Industrial Crop and Products, 101, pp. 29–35. https://doi.org/10.1016/j.indcrop.2017.03.003

Teixeira, M.L., Cardoso, M.D., Figueiredo, A.C., Moraes, J.C., Assis, F.A., Andrade, J.D., Nelson, D.L., Gomes, M.D., Souza, J.A., Albuquerque, L.R., 2014. Essential oil from Lippia origanoides Kunth. And Mentha spicata L.: chemical composition, insecticidal and antioxidant activities. American Journal of Plant Sciences, 5, pp. 1181–1190. https://doi.org/10.4236/ajps.2014.59131

Umpiérrez, M.L., Paullier, J., Porrini, M., Garrido, M., Santos, E., and Rossini, C., 2017. Potential botanical pesticides from Asteraceae essential oils for tomato production: Activity against whiteflies, plants and bees. Industrial Crops and Products, 109, pp. 686–692. https://doi.org/10.1016/j.indcrop.2017.09.025

Wagan, T.A., Cai, W., and Hua, H., 2018. Repellency, toxicity, and anti-oviposition of essential oil of Gardenia jasminoides and its four major chemical components against whiteflies and mites. Scientific Reports, 8(1), pp. 1-12. http://doi:10.1038/s41598-018-27366-5

Wagan, T.A., He, Y.P., Long, M., Chakira, H., Zhao, J., and Hua, H.X., 2017. Effectiveness of aromatic plant species for repelling and preventing oviposition of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). Journal of Applied Entomology, 142(3), pp. 287–295. https://doi.org/10.1111/jen.12471

Xie, Y., Huang, Q., Rao, Y., Hong, L., and Zhang, D., 2019. Efficacy of Origanum vulgare essential oil and carvacrol against the housefly, Musca domestica L. (Diptera: Muscidae). Environmental Science and Pollution Research, 26(23), pp. 23824-23831. https://doi.org/10.1007/s11356-019-05671-4




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v26i3.44134

DOI: http://dx.doi.org/10.56369/tsaes.4413



Copyright (c) 2023 Ángel M. Herrera-Gorocica, Emanuel Hernández-Núñez, Luz M. Calvo-Irabien, Ángeles Sánchez-Contreras, Ana L. Ruiz-Jiménez, Luis Latournerie-Moreno, Horacio S. Ballina-Gómez, Esaú Ruiz-Sánchez

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.