David Enrique Lindo Seminario, Sandra Mendez Farroñan, Jorge Canta Ventura, José Córdova Campos, Carlos Condemarín Montealegre, Savina Gutiérrez Calle, Arturo Morales Pizarro, Eric Mialhe Matonnier


Background: Pasteuria penetrans is a nonculturable bacterium that obligately parasitizes several species of phytopathogenic nematodes. Unknown endogenous female, plant or microbial reproductive factors are indispensable for multiplication and endospore formation of P. penetrans. Objective: To characterize P. penetrans endospores by 16S rRNA gene sequencing in samples from infected adult female Meloidogyne javanica and microbiota of infected and uninfected adult female M. javanica with P. penetrans by high-throughput sequencing of the V4 hypervariable region of the 16S rRNA gene. Methodology: Infected roots were collected from grapevines; fresh infective juvenile nematodes (J2) were extracted for P. penetrans endospore fixation and inoculation into tomato plants. Genomic and metagenomic DNA from infected and uninfected adult females of M. javanica was extracted for sequencing by sequencing the V4 region of the 16S rRNA gene of P. penetrans and its bacterial microbiome. The generated sequences were processed using bioinformatics software for analyses of alpha and beta diversity indices of the bacterial microbiome. Results: An amplicon of 550 base pairs with 98% identity and homology to P. penetrans was obtained. The taxonomic profile revealed the highest bacterial diversity and richness in the microbiota related to infected adult females, with Proteobacteria occurring in both samples between 45 and 83%, followed by Firmicutes, Actinobacteria and Bacteroidetes with 19, 11 and 8% respectively at the phylum level. Likewise, the most abundant genera associated with the native microbiota of the adult nematode were identified as Pseudomonas, Flavobacterium and Chitinophaga at 82.5, 15 and 2%, respectively. In infected females, Paenibacillus, Pasteuria, Pseudomonas and Streptomyces were recorded with 45, 7, 6 and 5% respectively, the most abundant. Implications: The results suggest the existence of bacterial genera in infected M. javanica females involved in the in vivo development of P. penetrans endospores. Conclusions: This would reveal a reduction of Pseudomonas dominance favoring the colonization of different bacteria that cohabit with P. penetrans, being this change in the microbial composition a possible factor that favors the multiplication of P. penetrans endospores within the host.


High throughput sequencing; root-knot nematode; biological control; bacteria.

Full Text:



Anderson, J. M., Preston, J. F., Dickson, D. W., Hewlett, T. E., Williams, N. H., and Maruniak, J. E., 1999. Phylogenetic analysis of Pasteuria penetrans by 16S rRNA gene cloning and sequencing. Journal of Nematology. 31(3), pp. 319-25. https://pubmed.ncbi.nlm.nih.gov/19270903/

Atibalentja, N., Noel, G. R., and Domier, L. L., 2000. Phylogenetic position of the North American isolate of Pasteuria that parasitizes the soybean cyst nematode, Heterodera glycines, as inferred from 16S rDNA sequence analysis. International Journal of Systematic and Evolutionary Microbiology, 50(2), pp. 605-613. http://doi.org/10.1099/00207713-50-2-605

Baquiran, J. P., Thater, B., Sedky, S., De Ley, P., Crowley, D., and Orwin, P. M., 2013. Culture-independent investigation of the microbiome associated with the nematode Acrobeloides maximus. PLoS One, 8(7), pp. e67425. http://doi.org/10.1371/journal.pone.0067425

Barker, K. R., and Hussey, R. S., 1976. Histopathology of nodular tissues of legumes infected with certain nematodes. Phytopathology, 66(7), pp. 851-855. http://doi.org/10.1094/Phyto-66-851

Bekal, S., Borneman, J., Springer, M. S., Giblin-Davis, R. M., and Becker, J. O., 2001. Phenotypic and molecular analysis of a Pasteuria strain parasitic to the sting nematode. Journal of Nematology, 33(2-3), pp. 110. https://pubmed.ncbi.nlm.nih.gov/19266005/

Bishop, A. H., and Ellar, D. J., 1991. Attempts to culture Pasteuria penetrans in vitro. Biocontrol Science and Technology, 1(2), pp. 101-114. http://doi.org/10.1080/09583159109355190

Bokulich, N. A., Subramanian, S., Faith, J. J., Gevers, D., Gordon, J. I., Knight R., Mills D.A. and Caporaso, J.G., 2013. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nature Methods. Enero de 2013; 10(1), pp. 57-59. http://doi.org/10.1038/nmeth.2276

Brown, A. M., 2018. Endosymbionts of plant-parasitic nematodes. Annual Review of Phytopathology, 56, pp. 225-242. http://doi.org/10.1146/annurev-phyto-080417-045824

Brown, S. M., and Smart Jr, G. C., 1985. Root penetration by Meloidogyne incognita juveniles infected with Bacillus penetrans. Journal of Nematology, 17(2), pp. 123. https://pubmed.ncbi.nlm.nih.gov/19294069/

Cao, Y., Tian, B., Ji, X., Shang, S., Lu, C., and Zhang, K., 2015. Associated bacteria of different life stages of Meloidogyne incognita using pyrosequencing?based analysis. Journal of Basic Microbiology, 55(8), pp. 950-960. http://doi.org/10.1002/jobm.201400816

Caporaso, J. G., Lauber, C. L., Walters, W. A., Berg-Lyons, D., Lozupone, C. A., Turnbaugh, P. J., Fierer N., and Knight, R., 2011. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proceedings of the National Academy of Sciences, 108(1), pp. 4516-4522. http://doi.org/10.1073/pnas.1000080107

Chen, S. Y., Charnecki, J., Preston, J. F., and Dickson, D. W., 2000. Extraction and Purification of Pasteuria spp. endospores. Journal of Nematology, 32(1), pp. 78-84. https://pubmed.ncbi.nlm.nih.gov/19270952/

Chen, Z. X., and Dickson, D., 1998. Review of Pasteuria penetrans: biology, ecology, and biological control potential. Journal of Nematology, 30(3), pp. 313. https://pubmed.ncbi.nlm.nih.gov/19274225/

Chen, Z. X., Dickson, D. W., Mitchell, D. J., McSorley, R., and Hewlett, T., 1997. Suppression mechanisms of Meloidogyne arenaria race 1 by Pasteuria penetrans. Journal of Nematology, 29(1), pp. 1. https://pubmed.ncbi.nlm.nih.gov/19274127/

Condemarín Montealegre, C., Oyola Medina, M., Mialhe, E., Quimi Mujica, J., Astudillo Urbina, S., Gutierrez Calle, S., ... and León Temple, G., 2018. Efecto de bacterias nativas del suelo cultivado y prístino sobre el control del nematodo agallador radicular, Meloidogyne javanica. en condiciones in vitro y producción de biomasa. Arnaldoa, 25(2), pp. 515-528. http://doi.org/10.22497/arnaldoa.252.25211

Daisley, B. A., Pitek, A. P., Chmiel, J. A., Al, K. F., Chernyshova, A. M., Faragalla, K. M., ... and Reid, G., 2020. Novel probiotic approach to counter Paenibacillus larvae infection in honey bees. The ISME Journal, 14(2), pp. 476-491. http://doi.org/10.1038/s41396-019-0541-6

Davies, K. G., 2009. Understanding the Interaction Between an Obligate Hyperparasitic Bacterium, Pasteuria penetrans and its Obligate Plant?Parasitic Nematode Host, Meloidogyne spp. Advances in parasitology, 68, pp. 211-245. http://doi.org/10.1016/S0065-308X(08)00609-X

Davies, K. G., and Redden, M., 1997. Diversity and partial characterization of putative virulence determinants in Pasteuria penetrans, the hyperparasitic bacterium of root?knot nematodes (Meloidogyne spp.). Journal of Applied Microbiology, 83(2), pp. 227-235. http://doi.org/10.1046/j.1365-2672.1997.00223.x

Davies, K. G., Kerry, B. R., and Flynn, C. A., 1988. Observations on the pathogenicity of Pasteuria penetrans, a parasite of root?knot nematodes. Annals of Applied Biology, 112(3), pp. 491-501. http://doi.org/10.1111/jam.13345

Dirksen, P., Marsh, S. A., Braker, I., Heitland, N., Wagner, S., Nakad, R., and Schulenburg, H., 2016. The native microbiome of the nematode Caenorhabditis elegans: gateway to a new host-microbiome model. BMC biology, 14(1), pp. 14:38. http://doi.org/10.1186/s12915-016-0258-1

Duan, Y. P., Castro, H. F., Hewlett, T. E., White, J. H., and Ogram, A. V., 2003. Detection and characterization of Pasteuria 16S rRNA gene sequences from nematodes and soils. International Journal of Systematic and Evolutionary Microbiology, 53(1), pp. 105-112. http://doi.org/10.1099/ijs.0.02303-0

Duponnois, R., and Mateille T., 1999. Beneficial effects of Enterobacter cloacae and Pseudomonas mendocina for biocontrol of Meloidogyne incognita with the endospore-forming bacterium Pasteuria penetrans. Nematology, 1(1), pp. 95-101. http://doi.org/10.1163/156854199507901

Eberlein, C., Heuer, H., Vidal, S., and Westphal, A., 2016. Microbial communities in Globodera pallida females raised in potato monoculture soil. Phytopathology, 106(6), pp. 581-590. http://doi.org/10.1094/PHYTO-07-15-0180-R

Ebert, D., Rainey, P., Embley, T. M., and Scholz, D., 1996. Development, life cycle, ultrastructure and phylogenetic position of Pasteuria ramosa Metchnikoff 1888: rediscovery of an obligate endoparasite of Daphnia magna Straus. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 351(1348), pp. 1689-1701. http://doi.org/10.1098/rstb.1996.0151

Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C., and Knight, R., 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics, 27(16), 2194-2200.38. http://doi.org/10.1093/bioinformatics/btr381

Elhady, A., Giné, A., Topalovic, O., Jacquiod, S., Sørensen, S. J., Sorribas, F. J., and Heuer, H., 2017. Microbiomes associated with infective stages of root-knot and lesion nematodes in soil. PloS One, 12(5), pp. e0177145. http://doi.org/10.1371/journal.pone.0177145

Félix, M. A., and Braendle, C., 2010. The natural history of Caenorhabditis elegans. Current biology, 20(22), pp. R965-R969. http://doi.org/10.1016/j.cub.2010.09.050

Giannakou, I. O., Pembroke, B., Gowen, S. R., and Douloumpaka, S., 1999. Effects of fluctuating temperatures and different host plants on development of Pasteuria penetrans in Meloidogyne javanica. Journal of Nematology, 31(3), pp. 312. https://pubmed.ncbi.nlm.nih.gov/19270902/

Haegeman, A., Vanholme, B., and Gheysen, G., 2009. Characterization of a putative endoxylanase in the migratory plant?parasitic nematode Radopholus similis. Molecular Plant Pathology, 10(3), pp. 389-401. http://doi.org/10.1111/j.1364-3703.2009.00539.x

He, L. X., Wu, X. Q., Xue, Q., and Qiu, X. W., 2016. Effects of endobacterium (Stenotrophomonas maltophilia) on pathogenesis-related gene expression of pine wood nematode (Bursaphelenchus xylophilus) and pine wilt disease. International Journal of Molecular Sciences, 17(6), pp. 778. http://doi.org/10.3390/ijms17060778

Hewlett, T. E., and Dickson, D., 1993. A centrifugation method for attaching endospores of Pasteuria spp. to nematodes. Journal of Nematology, 25(4S), pp. 785. https://pubmed.ncbi.nlm.nih.gov/19279840/

Jones, J. T., Haegeman, A., Danchin, E. G., Gaur, H. S., Helder, J., Jones, M. G., and Perry, R. N., 2013. Top 10 plant?parasitic nematodes in molecular plant pathology. Molecular Plant Pathology, 14(9), pp. 946-961. http://doi.org/10.1111/mpp.12057

Kokalis-Burelle, N., 2015. Pasteuria penetrans for control of Meloidogyne incognita on tomato and cucumber, and M. arenaria on snapdragon. Journal of Nematology, 47(3), pp. 207. https://pubmed.ncbi.nlm.nih.gov/26527842/

Li, J., Zou, C., Xu, J., Ji, X., Niu, X., Yang, J., Huang, Z. and Zhang, K. Q., 2015. Molecular mechanisms of nematode-nematophagous microbe interactions: basis for biological control of plant-parasitic nematodes. Annual Review Phytopathology, pp. 53, pp. 67-95. https://doi.org/10.1146/annurev-phyto-080614-120336

Luc, J. E., Crow, W. T., McSorley, R., and Giblin-Davis, R. M., 2010. Suppression of Belonolaimus longicaudatus with in vitro produced Pasteuria sp. Endospores. Nematropica, pp. 217-225. https://journals.flvc.org/nematropica/article/view/76260

Mauchline, T. H., Knox, R., Mohan, S., Powers, S. J., Kerry, B. R., Davies, K. G., and Hirsch, P. R., 2011. Identification of new single nucleotide polymorphism-based markers for inter-and intraspecies discrimination of obligate bacterial parasites (Pasteuria spp.) of invertebrates. Applied and environmental microbiology, 77(18), pp. 6388-6394. http://doi.org/10.1128/AEM.05185-11

Morales-Pizarro, A., Javier-Alva, J., Álvarez, L., and Lindo-Seminario, D., 2022. Isolation, identification and in vitro evaluation of native isolates of Bacillus, Trichoderma and Streptomyces with potential for the biocontrol of grapevine trunk fungi. Tropical and Subtropical Agroecosystems, 25(2). http://doi.org/10.56369/tsaes.4206

Murfin, K. E., Chaston, J., and Goodrich-Blair, H., 2012. Visualizing bacteria in nematodes using fluorescent microscopy. JoVE (Journal of Visualized Experiments), 68, pp. 4298. http://doi.org/10.3791/4298

Niu, Q., Zhang, L., Zhang, K., Huang, X., Hui, F., Kan, Y., and Yao, L., 2016. Changes in intestinal microflora of Caenorhabditis elegans following Bacillus nematocida B16 infection. Scientific Reports, 6(1), pp. 1-11. http://doi.org/10.1038/srep20178

Noel, G. R., Atibalentja, N. D. E. M. E., and Domier, L. L., 2005. Emended description of Pasteuria nishizawae. International Journal of Systematic and Evolutionary Microbiology, 55(4), pp. 1681-1685. http://doi.org/10.1099/ijs.0.63174-0

Nong, G., Chow, V., Schmidt, L. M., Dickson, D. W., and Preston, J. F., 2007. Multiple-strand displacement and identification of single nucleotide polymorphisms as markers of genotypic variation of Pasteuria penetrans biotypes infecting root-knot nematodes. FEMS microbiology ecology, 61(2), pp. 327-336. http://doi.org/10.1111/j.1574-6941.2007.00340.x

Nour, S. M., Lawrence, J. R., Zhu, H., Swerhone, G. D., Welsh, M., Welacky, T. W., and Topp, E., 2003. Bacteria associated with cysts of the soybean cyst nematode (Heterodera glycines). Applied and Environmental Microbiology, 69(1), pp. 607-615. http://doi.org/10.1128/AEM.69.1.607-615.2003

Orlando, V., Chitambar, J. J., Dong, K., Chizhov, V. N., Mollov, D., Bert, W., and Subbotin, S. A., 2016. Molecular and morphological characterisation of Xiphinema americanum-group species (Nematoda: Dorylaimida) from California, USA, and other regions, and co-evolution of bacteria from the genus Candidatus Xiphinematobacter with nematodes. Nematology, 18(9), pp. 1015-1043. http://doi.org/10.1163/15685411-00003012

Oro, V., Knezevic, M., Dinic, Z., and Delic, D., 2020. Bacterial microbiota isolated from cysts of Globodera rostochiensis (Nematoda: Heteroderidae). Plants, 9(9), pp. 1146. http://doi.org/10.3390/plants9091146

Phani, V., Shivakumara, T. N., Davies, K. G., and Rao, U., 2018. Knockdown of a mucin?like gene in Meloidogyne incognita (Nematoda) decreases attachment of endospores of Pasteuria penetrans to the infective juveniles and reduces nematode fecundity. Molecular plant pathology, 19(11), pp. 2370-2383. http://doi.org/10.1111/mpp.12704

Rojas-Jaimes, J., Lindo-Seminario, D., Correa-Núñez, G., Diringer, B., 2021. Characterization of the bacterial microbiome of Rhipicephalus (Boophilus) microplus collected from Pecari tajacu “Sajino” Madre de Dios, Peru. Scientific Reports - Nature. http://doi.org/10.1038/s41598-021-86177-3

Rojas-Jaimes, J., Lindo-Seminario, D., Correa-Núñez, G., Diringer, B., 2022. Characterization of the bacterial microbiome of Amblyomma scalpturatum and Amblyomma ovale collected from Tapirus terrestris “Tapir” and Amblyomma sabanerae collected from Chelonoidis denticulate “Motelo”, Madre de Dios-Peru. BMC Microbiology. http://doi.org/10.21203/rs.3.rs-1466428/v2

RStudio Team. RStudio: Integrated Development Environment for R [Internet]. Boston, MA., 2015. Available from: http://www.rstudio.com/

Schaff, JE., Mauchline, TH., Opperman, CH., and Davies KG., 2011. Exploiting Genomics to Understand the Interactions Between Root-Knot Nematodes and Pasteuria penetrans. En: Davies K, Spiegel Y, editores. Biological Control of Plant-Parasitic Nematodes: Building Coherence between Microbial Ecology and Molecular Mechanisms [Internet]. Dordrecht: Springer Netherlands, pp. 91-113. (Progress in Biological Control). http://doi.org/10.1007/978-1-4020-9648-8_4

Schmidt, L. M., Preston, J. F., Nong, G., Dickson, D. W., and Aldrich, H. C., 2004. Detection of Pasteuria penetrans infection in Meloidogyne arenaria race 1 in planta by polymerase chain reaction. FEMS microbiology ecology, 48(3), pp. 457-464. http://doi.org/10.1016/j.femsec.2004.03.011

Tian, X. J., Wu, X. Q., Xiang, Y., Fang, X., and Ye, J. R., 2015. The effect of endobacteria on the development and virulence of the pine wood nematode, Bursaphelenchus xylophilus. Nematology, 17(5), pp. 581-589. http://doi.org/10.1163/15685411-00002892

Timper, P., Liu, C., Davis, R. F., and Wu, T., 2016. Influence of crop production practices on Pasteuria penetrans and suppression of Meloidogyne incognita. Biological control, 99, pp. 64-71. http://doi.org/10.1016/j.biocontrol.2016.04.013

Walker, A. W., Duncan, S. H., Louis, P., and Flint, H. J., 2014. Phylogeny, culturing, and metagenomics of the human gut microbiota. Trends in microbiology, 22(5), pp. 267-274. http://doi.org/10.1016/j.tim.2014.03.001

Xiang, Y., Wu, X. Q., and Zhou, A. D., 2015. Bacterial diversity and community structure in the pine wood nematode Bursaphelenchus xylophilus and B. mucronatus with different virulence by high-throughput sequencing of the 16S rDNA. PLoS One, 10(9), pp. e0137386. http://doi.org/10.1371/journal.pone.0137386

Zhang, F., Berg, M., Dierking, K., Félix, M. A., Shapira, M., Samuel, B. S., and Schulenburg, H., 2017. Caenorhabditis elegans as a model for microbiome research. Frontiers in microbiology, 8, pp. 485. http://doi.org/10.3389/fmicb.2017.00485

URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v25i3.43416

DOI: http://dx.doi.org/10.56369/tsaes.4341

Copyright (c) 2022 David Enrique Lindo Seminario, Sandra Mendez Farroñan, Jorge Canta Ventura, José Córdova Campos, Carlos Condemarín Montealegre, Savina Gutiérrez Calle, Eric Mialhe Matonnier, Arturo Morales Pizarro

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.