DIFFERENTIAL EXPRESSION OF CesA GENES AND THE RELATIONSHIP WITH FIBER CONTENT IN HENEQUEN
Abstract
Keywords
Full Text:
PDFReferences
Abraham, P.E., Yin, H.; Borland, A.M., Weighill, D., Lim, S.D.; De Paoli, H.C., Engle, N., Jones, P.C., Agh, R. and Weston, D.J., 2016. Transcript, protein and metabolite temporal dynamics in the CAM plant Agave. Nature Plants, 2, pp.16178. https://doi.org/10.1038/nplants.2016.178
Appenzeller, L., Doblin, M., Barreiro, R., Wang, H., Niu, X., Kollipara, K. and Dhugga, K. S., 2004. Cellulose synthesis in maize: isolation and expression analysis of the cellulose synthase (CesA) gene family. Cellulose, 11(3), pp. 287-299. https://doi.org/10.1023/B:CELL.0000046417.84715.27
Arioli, T., Peng, L., Betzner, A. S., Burn, J., Wittke, W., Herth, W. and Cork, A., 1998. Molecular analysis of cellulose biosynthesis in Arabidopsis. Science, 279(5351), pp. 717-720. https://doi.org/10.1126/science.279.5351.717
ASTM (American Society for Testing and Materials)., 2000. Standard test methods for direct moisture content measurement of Wood and Wood-base materials. Designation: D4442-92 (reapproved 1997)-Primary methods. U.S.A. 6 p.
Atanassov, I.I., Pittman, J.K. and Turner, S.R., 2009. Elucidating the mechanisms of assembly and subunit-interaction of the cellulose synthase complex of Arabidopsis secondary cell walls. Journal Biological Chemistry, 284, pp. 3833–3841. https://doi.org/10.1074/jbc.M807456200
Bacic, A., Harris, P. and Stone, B., 1988. Structure and function of plant cell walls. In The Biochemistry of Plants, J. Priess, ed (New York/London/San Francisco: Academic Press), pp. 297? 371.
Brown, D. M., Zeef, L. A. H., Ellis, J., Goodacre, R. and Turner, S. R., 2005. Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics. Plant Cell 17, pp. 2281–2295. https://doi.org/10.1105/tpc.105.031542
Burton, R. A., Shirley, N. J., King, B. J., Harvey, A. J. and Fincher, G. B. 2004. The CesA gene family of barley. Quantitative analysis of transcripts reveals two groups of co-expressed genes. Plant Physiology, 134(1), pp. 224-236. https://doi.org/10.1104/pp.103.032904
Carpita, N.C. and Gibeaut, D.M., 1993. Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. The Plant Journal, 3: pp. 1? 30. https://doi.org/10.1111/j.1365-313X.1993.tb00007.x
Chávez-Sifontes, M. and Domine, M. E., 2013. Lignina, estructura y aplicaciones: métodos de despolimerización para la obtención de derivados aromáticos de interés industrial. Avances en Ciencias e Ingeniería, 4(4), pp. 15-46.
Cordeiro LG, El-Aouar AA. and de Araujo BCV., 2012. Energetic characterization of malt bagasse by calorimetry and thermal analysis. Journal of Thermal Analysis and Calorimetry. https://doi.org/10.1007/s109730122630x
Cosgrove D.J., 2005. Growth of plant cell wall. Nature Reviews Molecular Cell Biology. 6: pp. 850–861. https://doi.org/10.1038/nrm1746
Desprez, T., Juraniec, M., Crowell, E. F., Jouy, H., Pochylova, Z., Parcy, F. and Vernhettes, S., 2007. Organization of cellulose synthase complexes involved in primary cell wall synthesis in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 104(39), pp. 15572-15577. https://doi.org/10.1073/pnas.0706569104
Djerbi, S., Lindskog, M., Arvestad, L., Sterky, F., and Teeri, T. T., 2005. The genome sequence of black cottonwood (Populus trichocarpa) reveals 18 conserved cellulose synthase (CesA) genes. Planta, 221(5), pp. 739-746. https://doi.org/10.1007/s00425-005-1498-4
Espino, E., Cakir, M., Domenek, S., Román-Gutiérrez, A. D., Belgacem, N., and Bras, J., 2014. Isolation and characterization of cellulose nanocrystals from industrial by-products of Agave tequilana and barley. Industrial Crops and Products, 62, pp. 552-559. https://doi.org/10.1016/j.indcrop.2014.09.017
Galinousky, D. V., Anisimova, N. V., Raiski, A. P., Leontiev, V. N., Titok, V. V. and Khotyleva, L. V., 2014. Cellulose synthase genes that control the fiber formation of flax (Linum usitatissimum L.). Russian Journal of Genetics, 50(1), pp. 20-27. https://doi.org/10.1134/S1022795414010050
García, F. P., Méndez, J. P., Muñóz, E. J., Sandoval, O. A. A. and Laguna, R. R., 2022. Taxonomic, physical and morphological characterization of four species of agave with potential for the production of cellulose fibers from the leaves. South Florida Journal of Development, 3(1), pp. 1277-1301. https://doi.org/10.46932/sfjdv3n1-099
Gross, S.M., Martin, J.A.; Simpson, J., Abraham-Juarez, M.J., Wang. and Z., Visel, A., 2013. De novo transcriptome assembly of drought tolerant CAM plants, Agave deserti and Agave tequilana. BMC Genomics. 14, pp. 1-14. https://doi.org/10.1186/1471-2164-14-563
Hazen, S. P., Scott-Craig, J. S. and Walton, J. D., 2002. Cellulose synthase-like genes of rice. Plant Physiology, 128(2), pp. 336-340. https://doi.org/10.1104/pp.010875
Heidari, P., Ahmadizadeh, M., Izanlo, F. and Nussbaumer, T., 2019. In silico study of the CESA and CSL gene family in Arabidopsis thaliana and Oryza sativa: Focus on post-translation modifications. Plant Gene, 19, pp. 100189. https://doi.org/10.1016/j.plgene.2019.100189
Hu H.Z., Zhang R., Feng S.Q., Wang Y.M., Wang Y.T. andFan C.F., 2018. Three AtCesA6-like members enhance biomass production by distinctively promoting cell growth in Arabidopsis. Plant Biotechnology Journal, 16, pp.976–988. https://doi.org/10.1111/pbi.12842
Huang, X., Xiao, M., Xi, J., He, C., Zheng, J., Chen, H. and Yi, K., 2019. De novo transcriptome assembly of Agave H11648 by Illumina sequencing and identification of cellulose synthase genes in Agave species. Genes, 10(2), pp. 103. https://doi.org/10.3390/genes10020103
Hulle, A., Kadole, P.and Katkar, P.,2015. Agave Americana leaf fibers. Fibers, 3(1), pp. 64-75. https://doi.org/10.3390/fib3010064
Jiménez-Muñóz, E. J., Prieto-García, F., Prieto-Méndez, J. P., Acevedo-Sandoval, O. A. A. and Rodríguez-Laguna, R. R., 2016. Caracterización fisicoquímica de cuatro especies de agaves con potencialidad en la obtención de pulpa de celulosa para elaboración de papel. Dyna, 83(197), pp. 232-242. https://doi.org/10.15446/dyna.v83n197.52243
Joshi, C. P., Thammannagowda, S., Fujino, T., Gou, J. Q., Avci, U., Haigler, C. H. and Peter, G. F., 2011. Perturbation of wood cellulose synthesis causes pleiotropic effects in transgenic aspen. Molecular Plant, 4(2), pp. 331-345. https://doi.org/10.1093/mp/ssq081
Kasirajan, L., Hoang, N. V., Furtado, A., Botha, F. C. and Henry, R. J., 2018. Transcriptome analysis highlights key differentially expressed genes involved in cellulose and lignin biosynthesis of sugarcane genotypes varying in fiber content. Scientific Reports, 8(1), pp.1-16. https://doi.org/10.1038/s41598-018-30033-4
Keegstra K., 2010. Plant cell walls. Plant Physiology. 154, pp. 483–486. https://doi.org/10.1104/pp.110.161240
Kumar, A., Wang, L., Dzenis, Y. A., Jones, D. D. and Hanna, M. A., 2008. Thermogravimetric characterization of corn stover as gasification and pyrolysis feedstock. Biomass and Bioenergy, 32(5), pp. 460-467. https://doi.org/10.1016/j.biombioe.2007.11.004
Kumar R, Mago G, Balan V. andWyman CE., 2009. Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies. Bioresource Technology 00, pp. 3948–3962. https://doi.org/10.1016/j.biortech.2009.01.075
Li, F., Xie, G., Huang, J., Zhang, R., Li, Y. and Zhang, M., 2017. OsCESA9 conserved-site mutation leads to largely enhanced plant lodging resistance and biomass enzymatic saccharification by reducing cellulose DP and crystallinity in rice. Plant Biotechnology Journal, 15, pp. 1093–1104. https://doi.org/10.1111/pbi.12700
Li, A., Xia, T., Xu, W., Chen, T., Li, X., Fan, J., and Peng, L., 2013. An integrative analysisof four CESA isoforms specific for fiber cellulose production between Gossypium hirsutum and Gossypium barbadense. Planta, 237(6), pp. 1585-1597. https://doi.org/10.1007/s00425-013-1868-2
Li, M., Bahn, S. C., Guo, L., Musgrave, W., Berg, H., Welti, R., and Wang, X., 2011. Patatin-related phospholipase pPLAIII?-induced changes in lipid metabolism alter cellulose content and cell elongation in Arabidopsis. The Plant Cell, 23(3), pp. 1107-1123. https://doi.org/10.1105/tpc.110.081240
Liñán-Montes, A., de la Parra-Arciniega, S.M. and Garza-González, M.T., 2014. Characterization and thermal analysis of agave bagasse and malt spent grain. Journal Thermal Analysis and Calorimetry,115, pp. 751–758. https://doi.org/10.1007/s10973-013-3321-y
Liu, T., Zhu, S., Tang, Q., Chen, P., Yu, Y. and Tang, S., 2013. De novo assembly and characterization of transcriptome using Illumina paired-end sequencing and identification of CesA gene in ramie (Boehmeria nivea L. Gaud). BMC Genomics, 14(1), pp. 1-11. https://doi.org/10.1186/1471-2164-14-125
Liu Z.Y., Schneider R., Kesten C., Zhang Y. and Somssich M., Fernie A.R., 2016. Cellulose–microtubule uncoupling proteins prevent lateral displacement of microtubules during cellulose synthesis in Arabidopsis. Develomental Cell, 38, pp. 305–315. https://doi.org/10.1016/j.devcel.2016.06.032
Manikandan, K.C., Diwan, S.M. and Sabu, T., 1996. Tensile properties of short sisal fiber reinforced polystyrene composites. Journal Applied Polymer Science, pp. 1483–1497. https://doi.org/10.1002/(SICI)1097-4628(19960531)60:9<1483::AID-APP23>3.0.CO;2-1
Maroufi, A., Van Bockstaele, E., and De Loose, M., 2010. Validation of reference genes for gene expression analysis in chicory (Cichorium intybus) using quantitative real-time PCR. BMC Molecular Biology, 11(1), pp. 1-12. https://doi.org/10.1186/1471-2199-11-15
McFarlane, H. E., Döring, A., and Persson, S., 2014. The cell biology of cellulose synthesis. Annual Review of Plant Biology, 65, pp. 69-94. https://doi.org/10.1146/annurev-arplant-050213-040240
Mueller S.C. and Brown R.M., 1980. Evidence for an intramembrane component associated with a cellulose microfibril-synthesizing complex in higher plants. Journal of Cell Biology. 84, pp. 315–326. https://doi.org/10.1083/jcb.84.2.315
Myslami, K. and Rajendran, I., 2011. The mechanical properties, deformation and thermomechanical properties of alkali treated and untreated Agave continuous fibre reinforced epoxy composites. Materials & Design, 32(5), pp. 3076-3084. https://doi.org/10.1016/j.matdes.2010.12.051
Nava-Cruz, N. Y., Medina-Morales, M. A., Martinez, J. L., Rodriguez, R. and Aguilar, C. N., 2015. Agave biotechnology: an overview. Critical Reviews in Biotechnology, 35(4), pp. 546-559. https://doi.org/10.3109/07388551.2014.923813
Negrete, L. A. P., 2010. Extracción de fibras de agave para elaborar papel y artesanías. Acta universitaria. Guanajuato 3 de diciembre del 2010. Universidad de Guanajuato. http://repositorio.ugto.mx/handle/20.500.12059/2055 p.p. 77-83.
Nicot, N., Hausman, J. F., Hoffmann, L., and Evers, D., 2005. Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. Journal of Experimental Botany, 56(421), pp. 2907-2914. https://doi.org/10.1093/jxb/eri285
Pauly, M., Gille, S. andLiu, L., 2013. Hemicellulose biosynthesis. Planta, 238, pp. 627–642. https://doi.org/10.1007/s00425-013-1921-1.
Persson, S., Wei, H., Milne, J., Page, G. P. and Somerville, C. R., 2005. Identification of genes required for cellulose synthesis by regression analysis of public microarray data sets. Proceedings of the National Academy of Sciences. 102(24), pp. 8633–8638. https://doi.org/10.1073/pnas.0503392102
Pfaffl, M. W., 2001. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic acids research, 29(9), pp. e45. https://doi.org/10.1093/nar/29.9.e45
Ranik, M. and Myburg, A. A., 2006. Six new cellulose synthase genes from Eucalyptus are associated with primary and secondary cell wall biosynthesis. Tree Physiology, 26(5), 545-556. https://doi.org/10.1093/treephys/26.5.545
Ren, J., Yin, Y., Chen, D.,and Wang, Y., 2018. Cloning and analysis of cellulose synthase genes (CesA) in Acacia mangium. Tree Genetics & Genomes 14, pp. 85. https://doi.org/10.1007/s11295-018-1299-0
Richmond, T. A., and Somerville, C. R., 2000. The cellulose synthase superfamily. Plant Physiology, 124(2), pp. 495-498. https://doi.org/10.1104/pp.124.2.495
Robert, M. L., Herrera, J. L., Contreras, F., and Scorer, K. N., 1987. In vitro propagation of Agave fourcroydes Lem. (Henequen). Plant Cell, Tissue and Organ Culture, 8(1), pp. 37-48. https://doi.org/10.1007/BF00040731
Schuetz M., Smith R. and Ellis B., 2013. Xylem tissue specification, patterning, and differentiation mechanisms. Journal of Experimental Botany. 64, pp.11–31. https://doi.org/10.1093/jxb/ers287
Syafri, E., Sari, N. H., Mahardika, M., Amanda, P. and Ilyas, R. A., 2022. Isolation and characterization of cellulose nanofibers from Agave gigantea by chemical-mechanical treatment. International Journal of Biological Macromolecules, 200, pp.25-33. https://doi.org/10.1016/j.ijbiomac.2021.12.111
Stuart, J. M., Segal, E., Koller, D. and Kim, S. K. 2003. A gene-coexpression network for global discovery of conserved genetic modules. Science, 302, pp. 249–255. https://doi.org/10.1126/science.1087447
Schneider R., Hanak T., Persson S. andVoigt C.A.,2016. Cellulose and callose synthesis and organization in focus, what’s new? Current Opinion Plant Biology. 34, pp. 9–16. https://doi.org/10.1016/j.pbi.2016.07.007
Shahzad, S., Hussain, M., Arfan, M. and Munir, H., 2022. physiological and biochemical attributes of Agave sisalana resilient adaptation to climatic and spatio-temporal conditions. Pakistan Journal Botany, 54(1), pp. 169-178. http://doi.org/10.30848/PJB2022-1(15)
Somerville, C., Bauer, S., Brininstool, G., Facette, M., Hamann, T., Milne, J., Osborne, E., Paredez, A., Persson, S., Raab, T., Vorwerk, S., and Youngs, H., 2004. Toward a systems approach to understanding plant cell walls. Science ,306, pp. 2206? 2211. https://doi.org/10.1126/science.1102765
Sydenstricker, T.H., Mochnaz, S. M. and Amico S.C., 2003. Pull-out and other evaluations in sisal-reinforced polyester biocomposites. Polymer Testing, Vol. 22(4), pp.375-380. https://doi.org/10.1016/S0142-9418(02)00116-2
Richmond, T. A. and Somerville, C. R., 2000. The cellulose synthase superfamily. Plant Physiology, 124(2), pp. 495-498. https://doi.org/10.1104/pp.124.2.495
Tamayo-Ordóñez, Y. J., Narvaez-Zapata, J. A. and Sánchez-Teyer, L. F. ,2015. Comparative characterization of ribosomal DNA regions in different Agave accessions with economical importance. Plant Molecular Biology Reporter, 33(6), pp. 2014-2029. https://doi.org/10.1007/s11105-015-0895-5
Taylor, N. G., Howells, R. M., Huttly, A. K., Vickers, K. and Turner, S. R., 2003. Interactions among three distinct CesA proteins essential for cellulose synthesis. Proceedings of the National Academy of Sciences, 100(3), pp. 1450-1455. https://doi.org/10.1073/pnas.0337628100
Taylor, N. G., Gardiner, J. C., Whiteman, R. and Turner, S. R., 2004. Cellulose synthesis in the Arabidopsis secondary cell wall. Cellulose, 11(3), pp. 329-338. https://doi.org/10.1023/B:CELL.0000046405.11326.a8
Timmers, J., Vernhettes, S., Desprez, T., Vincken, J. P., Visser, R. G. and Trindade, L. M., 2009. Interactions between membrane-bound cellulose synthases involved in the synthesis of the secondary cell wall. FEBS Letters, 583(6), pp. 978-982. https://doi.org/10.1016/j.febslet.2009.02.035
Toriz, G., Denes, F. and Young, R. A., 2002. Lignin?polypropylene composites. Part 1: Composites from unmodified lignin and polypropylene. Polymer Composites, 23(5), pp. 806-813. https://doi.org/10.1002/pc.10478
Vieira, M. C., Heinze, T., Antonio-Cruz, R. and Mendoza-Martinez, A. M., 2002. Cellulose derivatives from cellulosic material isolated from Agave lechuguilla and Agave fourcroydes. Cellulose, 9(2), pp. 203-212. https://doi.org/10.1023/A:1020158128506
Wang, L., Guo, K., Li, Y., Tu, Y., Hu, H., Wang, B. and Peng, L., 2010. Expression profiling and integrative analysis of the CESA/CSL superfamily in rice. BMC Plant Biology, 10(1), pp. 1-16. https://doi.org/10.1186/1471-2229-10-282
Watanabe, Y., Meents, M. J., McDonnell, L. M., Barkwill, S., Sampathkumar, A., Cartwright, H. N. and Mansfield, S. D., 2015. Visualization of cellulose synthases in Arabidopsis secondary cell walls. Science, 350(6257), pp. 198-203. https://doi.org/10.1016/j.devcel.2021.03.004
URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v25i3.43286
DOI: http://dx.doi.org/10.56369/tsaes.4328
Copyright (c) 2022 Luis Carlos Rodríguez-Zapata, María José García-Castillo, Lorenzo Felipe Sanchez Teyer
This work is licensed under a Creative Commons Attribution 4.0 International License.