María José García-Castillo, Luis Carlos Rodríguez-Zapata, Lorenzo Felipe Sanchez Teyer


Background: Cellulose synthase is a superfamily where genes involved in the synthesis of the primary and secondary cell wall and their relationship with plant fibers have been reported. In recent years, vegetable fiber has been the subject of considerable interest, due to its quality and the ability to be biodegradable, and it has been reported that the cellulose content is related to the quality of the fiber. Objective: To determine the relationship of CesA genes with fiber content in Agave fourcroydes Lem. Methodology: The relative expression of the CesA3, CesA4 and CesA5 genes involved in the primary and secondary cell wall will be prolonged and their relationship with fiber content will be evaluated in plants of different heights in a henequen plantation. The content of the fiber components was evaluated using the TAPPI methods and an analysis of variance (ANOVA) was performed, the means were compared using the Tukey test (p≤ 0.05). Results: Plants with greater height, have longer leaves, with higher cellulose content (48%) and low content of hemicellulose (3%) and lignin (8%), these characteristics are related to high levels of relative expression of the CesA3 and CesA4 genes and low relative expression level of the CesA5 gene. Implications: A direct connection of higher expression of CesA3 and CesA4 genes with the length of the leaves, the height of the plant and the cellulose content is presented. Conclusions: In this research, the exploration between the expression and the length of the leaves serves as a basis for future research focused on the early selection of individuals with high cellulose content, which through plant tissue culture represents an option for genetic improvement for the benefit of crop producers.


Agave fourcroydes; diferential expression CesA; fiber; TAPPI methods; cellulose.

Full Text:



Abraham, P.E., Yin, H.; Borland, A.M., Weighill, D., Lim, S.D.; De Paoli, H.C., Engle, N., Jones, P.C., Agh, R. and Weston, D.J., 2016. Transcript, protein and metabolite temporal dynamics in the CAM plant Agave. Nature Plants, 2, pp.16178. https://doi.org/10.1038/nplants.2016.178

Appenzeller, L., Doblin, M., Barreiro, R., Wang, H., Niu, X., Kollipara, K. and Dhugga, K. S., 2004. Cellulose synthesis in maize: isolation and expression analysis of the cellulose synthase (CesA) gene family. Cellulose, 11(3), pp. 287-299. https://doi.org/10.1023/B:CELL.0000046417.84715.27

Arioli, T., Peng, L., Betzner, A. S., Burn, J., Wittke, W., Herth, W. and Cork, A., 1998. Molecular analysis of cellulose biosynthesis in Arabidopsis. Science, 279(5351), pp. 717-720. https://doi.org/10.1126/science.279.5351.717

ASTM (American Society for Testing and Materials)., 2000. Standard test methods for direct moisture content measurement of Wood and Wood-base materials. Designation: D4442-92 (reapproved 1997)-Primary methods. U.S.A. 6 p.

Atanassov, I.I., Pittman, J.K. and Turner, S.R., 2009. Elucidating the mechanisms of assembly and subunit-interaction of the cellulose synthase complex of Arabidopsis secondary cell walls. Journal Biological Chemistry, 284, pp. 3833–3841. https://doi.org/10.1074/jbc.M807456200

Bacic, A., Harris, P. and Stone, B., 1988. Structure and function of plant cell walls. In The Biochemistry of Plants, J. Priess, ed (New York/London/San Francisco: Academic Press), pp. 297? 371.

Brown, D. M., Zeef, L. A. H., Ellis, J., Goodacre, R. and Turner, S. R., 2005. Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics. Plant Cell 17, pp. 2281–2295. https://doi.org/10.1105/tpc.105.031542

Burton, R. A., Shirley, N. J., King, B. J., Harvey, A. J. and Fincher, G. B. 2004. The CesA gene family of barley. Quantitative analysis of transcripts reveals two groups of co-expressed genes. Plant Physiology, 134(1), pp. 224-236. https://doi.org/10.1104/pp.103.032904

Carpita, N.C. and Gibeaut, D.M., 1993. Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. The Plant Journal, 3: pp. 1? 30. https://doi.org/10.1111/j.1365-313X.1993.tb00007.x

Chávez-Sifontes, M. and Domine, M. E., 2013. Lignina, estructura y aplicaciones: métodos de despolimerización para la obtención de derivados aromáticos de interés industrial. Avances en Ciencias e Ingeniería, 4(4), pp. 15-46.

Cordeiro LG, El-Aouar AA. and de Araujo BCV., 2012. Energetic characterization of malt bagasse by calorimetry and thermal analysis. Journal of Thermal Analysis and Calorimetry. https://doi.org/10.1007/s109730122630x

Cosgrove D.J., 2005. Growth of plant cell wall. Nature Reviews Molecular Cell Biology. 6: pp. 850–861. https://doi.org/10.1038/nrm1746

Desprez, T., Juraniec, M., Crowell, E. F., Jouy, H., Pochylova, Z., Parcy, F. and Vernhettes, S., 2007. Organization of cellulose synthase complexes involved in primary cell wall synthesis in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 104(39), pp. 15572-15577. https://doi.org/10.1073/pnas.0706569104

Djerbi, S., Lindskog, M., Arvestad, L., Sterky, F., and Teeri, T. T., 2005. The genome sequence of black cottonwood (Populus trichocarpa) reveals 18 conserved cellulose synthase (CesA) genes. Planta, 221(5), pp. 739-746. https://doi.org/10.1007/s00425-005-1498-4

Espino, E., Cakir, M., Domenek, S., Román-Gutiérrez, A. D., Belgacem, N., and Bras, J., 2014. Isolation and characterization of cellulose nanocrystals from industrial by-products of Agave tequilana and barley. Industrial Crops and Products, 62, pp. 552-559. https://doi.org/10.1016/j.indcrop.2014.09.017

Galinousky, D. V., Anisimova, N. V., Raiski, A. P., Leontiev, V. N., Titok, V. V. and Khotyleva, L. V., 2014. Cellulose synthase genes that control the fiber formation of flax (Linum usitatissimum L.). Russian Journal of Genetics, 50(1), pp. 20-27. https://doi.org/10.1134/S1022795414010050

García, F. P., Méndez, J. P., Muñóz, E. J., Sandoval, O. A. A. and Laguna, R. R., 2022. Taxonomic, physical and morphological characterization of four species of agave with potential for the production of cellulose fibers from the leaves. South Florida Journal of Development, 3(1), pp. 1277-1301. https://doi.org/10.46932/sfjdv3n1-099

Gross, S.M., Martin, J.A.; Simpson, J., Abraham-Juarez, M.J., Wang. and Z., Visel, A., 2013. De novo transcriptome assembly of drought tolerant CAM plants, Agave deserti and Agave tequilana. BMC Genomics. 14, pp. 1-14. https://doi.org/10.1186/1471-2164-14-563

Hazen, S. P., Scott-Craig, J. S. and Walton, J. D., 2002. Cellulose synthase-like genes of rice. Plant Physiology, 128(2), pp. 336-340. https://doi.org/10.1104/pp.010875

Heidari, P., Ahmadizadeh, M., Izanlo, F. and Nussbaumer, T., 2019. In silico study of the CESA and CSL gene family in Arabidopsis thaliana and Oryza sativa: Focus on post-translation modifications. Plant Gene, 19, pp. 100189. https://doi.org/10.1016/j.plgene.2019.100189

Hu H.Z., Zhang R., Feng S.Q., Wang Y.M., Wang Y.T. andFan C.F., 2018. Three AtCesA6-like members enhance biomass production by distinctively promoting cell growth in Arabidopsis. Plant Biotechnology Journal, 16, pp.976–988. https://doi.org/10.1111/pbi.12842

Huang, X., Xiao, M., Xi, J., He, C., Zheng, J., Chen, H. and Yi, K., 2019. De novo transcriptome assembly of Agave H11648 by Illumina sequencing and identification of cellulose synthase genes in Agave species. Genes, 10(2), pp. 103. https://doi.org/10.3390/genes10020103

Hulle, A., Kadole, P.and Katkar, P.,2015. Agave Americana leaf fibers. Fibers, 3(1), pp. 64-75. https://doi.org/10.3390/fib3010064

Jiménez-Muñóz, E. J., Prieto-García, F., Prieto-Méndez, J. P., Acevedo-Sandoval, O. A. A. and Rodríguez-Laguna, R. R., 2016. Caracterización fisicoquímica de cuatro especies de agaves con potencialidad en la obtención de pulpa de celulosa para elaboración de papel. Dyna, 83(197), pp. 232-242. https://doi.org/10.15446/dyna.v83n197.52243

Joshi, C. P., Thammannagowda, S., Fujino, T., Gou, J. Q., Avci, U., Haigler, C. H. and Peter, G. F., 2011. Perturbation of wood cellulose synthesis causes pleiotropic effects in transgenic aspen. Molecular Plant, 4(2), pp. 331-345. https://doi.org/10.1093/mp/ssq081

Kasirajan, L., Hoang, N. V., Furtado, A., Botha, F. C. and Henry, R. J., 2018. Transcriptome analysis highlights key differentially expressed genes involved in cellulose and lignin biosynthesis of sugarcane genotypes varying in fiber content. Scientific Reports, 8(1), pp.1-16. https://doi.org/10.1038/s41598-018-30033-4

Keegstra K., 2010. Plant cell walls. Plant Physiology. 154, pp. 483–486. https://doi.org/10.1104/pp.110.161240

Kumar, A., Wang, L., Dzenis, Y. A., Jones, D. D. and Hanna, M. A., 2008. Thermogravimetric characterization of corn stover as gasification and pyrolysis feedstock. Biomass and Bioenergy, 32(5), pp. 460-467. https://doi.org/10.1016/j.biombioe.2007.11.004

Kumar R, Mago G, Balan V. andWyman CE., 2009. Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies. Bioresource Technology 00, pp. 3948–3962. https://doi.org/10.1016/j.biortech.2009.01.075

Li, F., Xie, G., Huang, J., Zhang, R., Li, Y. and Zhang, M., 2017. OsCESA9 conserved-site mutation leads to largely enhanced plant lodging resistance and biomass enzymatic saccharification by reducing cellulose DP and crystallinity in rice. Plant Biotechnology Journal, 15, pp. 1093–1104. https://doi.org/10.1111/pbi.12700

Li, A., Xia, T., Xu, W., Chen, T., Li, X., Fan, J., and Peng, L., 2013. An integrative analysisof four CESA isoforms specific for fiber cellulose production between Gossypium hirsutum and Gossypium barbadense. Planta, 237(6), pp. 1585-1597. https://doi.org/10.1007/s00425-013-1868-2

Li, M., Bahn, S. C., Guo, L., Musgrave, W., Berg, H., Welti, R., and Wang, X., 2011. Patatin-related phospholipase pPLAIII?-induced changes in lipid metabolism alter cellulose content and cell elongation in Arabidopsis. The Plant Cell, 23(3), pp. 1107-1123. https://doi.org/10.1105/tpc.110.081240

Liñán-Montes, A., de la Parra-Arciniega, S.M. and Garza-González, M.T., 2014. Characterization and thermal analysis of agave bagasse and malt spent grain. Journal Thermal Analysis and Calorimetry,115, pp. 751–758. https://doi.org/10.1007/s10973-013-3321-y

Liu, T., Zhu, S., Tang, Q., Chen, P., Yu, Y. and Tang, S., 2013. De novo assembly and characterization of transcriptome using Illumina paired-end sequencing and identification of CesA gene in ramie (Boehmeria nivea L. Gaud). BMC Genomics, 14(1), pp. 1-11. https://doi.org/10.1186/1471-2164-14-125

Liu Z.Y., Schneider R., Kesten C., Zhang Y. and Somssich M., Fernie A.R., 2016. Cellulose–microtubule uncoupling proteins prevent lateral displacement of microtubules during cellulose synthesis in Arabidopsis. Develomental Cell, 38, pp. 305–315. https://doi.org/10.1016/j.devcel.2016.06.032

Manikandan, K.C., Diwan, S.M. and Sabu, T., 1996. Tensile properties of short sisal fiber reinforced polystyrene composites. Journal Applied Polymer Science, pp. 1483–1497. https://doi.org/10.1002/(SICI)1097-4628(19960531)60:9<1483::AID-APP23>3.0.CO;2-1

Maroufi, A., Van Bockstaele, E., and De Loose, M., 2010. Validation of reference genes for gene expression analysis in chicory (Cichorium intybus) using quantitative real-time PCR. BMC Molecular Biology, 11(1), pp. 1-12. https://doi.org/10.1186/1471-2199-11-15

McFarlane, H. E., Döring, A., and Persson, S., 2014. The cell biology of cellulose synthesis. Annual Review of Plant Biology, 65, pp. 69-94. https://doi.org/10.1146/annurev-arplant-050213-040240

Mueller S.C. and Brown R.M., 1980. Evidence for an intramembrane component associated with a cellulose microfibril-synthesizing complex in higher plants. Journal of Cell Biology. 84, pp. 315–326. https://doi.org/10.1083/jcb.84.2.315

Myslami, K. and Rajendran, I., 2011. The mechanical properties, deformation and thermomechanical properties of alkali treated and untreated Agave continuous fibre reinforced epoxy composites. Materials & Design, 32(5), pp. 3076-3084. https://doi.org/10.1016/j.matdes.2010.12.051

Nava-Cruz, N. Y., Medina-Morales, M. A., Martinez, J. L., Rodriguez, R. and Aguilar, C. N., 2015. Agave biotechnology: an overview. Critical Reviews in Biotechnology, 35(4), pp. 546-559. https://doi.org/10.3109/07388551.2014.923813

Negrete, L. A. P., 2010. Extracción de fibras de agave para elaborar papel y artesanías. Acta universitaria. Guanajuato 3 de diciembre del 2010. Universidad de Guanajuato. http://repositorio.ugto.mx/handle/20.500.12059/2055 p.p. 77-83.

Nicot, N., Hausman, J. F., Hoffmann, L., and Evers, D., 2005. Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. Journal of Experimental Botany, 56(421), pp. 2907-2914. https://doi.org/10.1093/jxb/eri285

Pauly, M., Gille, S. andLiu, L., 2013. Hemicellulose biosynthesis. Planta, 238, pp. 627–642. https://doi.org/10.1007/s00425-013-1921-1.

Persson, S., Wei, H., Milne, J., Page, G. P. and Somerville, C. R., 2005. Identification of genes required for cellulose synthesis by regression analysis of public microarray data sets. Proceedings of the National Academy of Sciences. 102(24), pp. 8633–8638. https://doi.org/10.1073/pnas.0503392102

Pfaffl, M. W., 2001. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic acids research, 29(9), pp. e45. https://doi.org/10.1093/nar/29.9.e45

Ranik, M. and Myburg, A. A., 2006. Six new cellulose synthase genes from Eucalyptus are associated with primary and secondary cell wall biosynthesis. Tree Physiology, 26(5), 545-556. https://doi.org/10.1093/treephys/26.5.545

Ren, J., Yin, Y., Chen, D.,and Wang, Y., 2018. Cloning and analysis of cellulose synthase genes (CesA) in Acacia mangium. Tree Genetics & Genomes 14, pp. 85. https://doi.org/10.1007/s11295-018-1299-0

Richmond, T. A., and Somerville, C. R., 2000. The cellulose synthase superfamily. Plant Physiology, 124(2), pp. 495-498. https://doi.org/10.1104/pp.124.2.495

Robert, M. L., Herrera, J. L., Contreras, F., and Scorer, K. N., 1987. In vitro propagation of Agave fourcroydes Lem. (Henequen). Plant Cell, Tissue and Organ Culture, 8(1), pp. 37-48. https://doi.org/10.1007/BF00040731

Schuetz M., Smith R. and Ellis B., 2013. Xylem tissue specification, patterning, and differentiation mechanisms. Journal of Experimental Botany. 64, pp.11–31. https://doi.org/10.1093/jxb/ers287

Syafri, E., Sari, N. H., Mahardika, M., Amanda, P. and Ilyas, R. A., 2022. Isolation and characterization of cellulose nanofibers from Agave gigantea by chemical-mechanical treatment. International Journal of Biological Macromolecules, 200, pp.25-33. https://doi.org/10.1016/j.ijbiomac.2021.12.111

Stuart, J. M., Segal, E., Koller, D. and Kim, S. K. 2003. A gene-coexpression network for global discovery of conserved genetic modules. Science, 302, pp. 249–255. https://doi.org/10.1126/science.1087447

Schneider R., Hanak T., Persson S. andVoigt C.A.,2016. Cellulose and callose synthesis and organization in focus, what’s new? Current Opinion Plant Biology. 34, pp. 9–16. https://doi.org/10.1016/j.pbi.2016.07.007

Shahzad, S., Hussain, M., Arfan, M. and Munir, H., 2022. physiological and biochemical attributes of Agave sisalana resilient adaptation to climatic and spatio-temporal conditions. Pakistan Journal Botany, 54(1), pp. 169-178. http://doi.org/10.30848/PJB2022-1(15)

Somerville, C., Bauer, S., Brininstool, G., Facette, M., Hamann, T., Milne, J., Osborne, E., Paredez, A., Persson, S., Raab, T., Vorwerk, S., and Youngs, H., 2004. Toward a systems approach to understanding plant cell walls. Science ,306, pp. 2206? 2211. https://doi.org/10.1126/science.1102765

Sydenstricker, T.H., Mochnaz, S. M. and Amico S.C., 2003. Pull-out and other evaluations in sisal-reinforced polyester biocomposites. Polymer Testing, Vol. 22(4), pp.375-380. https://doi.org/10.1016/S0142-9418(02)00116-2

Richmond, T. A. and Somerville, C. R., 2000. The cellulose synthase superfamily. Plant Physiology, 124(2), pp. 495-498. https://doi.org/10.1104/pp.124.2.495

Tamayo-Ordóñez, Y. J., Narvaez-Zapata, J. A. and Sánchez-Teyer, L. F. ,2015. Comparative characterization of ribosomal DNA regions in different Agave accessions with economical importance. Plant Molecular Biology Reporter, 33(6), pp. 2014-2029. https://doi.org/10.1007/s11105-015-0895-5

Taylor, N. G., Howells, R. M., Huttly, A. K., Vickers, K. and Turner, S. R., 2003. Interactions among three distinct CesA proteins essential for cellulose synthesis. Proceedings of the National Academy of Sciences, 100(3), pp. 1450-1455. https://doi.org/10.1073/pnas.0337628100

Taylor, N. G., Gardiner, J. C., Whiteman, R. and Turner, S. R., 2004. Cellulose synthesis in the Arabidopsis secondary cell wall. Cellulose, 11(3), pp. 329-338. https://doi.org/10.1023/B:CELL.0000046405.11326.a8

Timmers, J., Vernhettes, S., Desprez, T., Vincken, J. P., Visser, R. G. and Trindade, L. M., 2009. Interactions between membrane-bound cellulose synthases involved in the synthesis of the secondary cell wall. FEBS Letters, 583(6), pp. 978-982. https://doi.org/10.1016/j.febslet.2009.02.035

Toriz, G., Denes, F. and Young, R. A., 2002. Lignin?polypropylene composites. Part 1: Composites from unmodified lignin and polypropylene. Polymer Composites, 23(5), pp. 806-813. https://doi.org/10.1002/pc.10478

Vieira, M. C., Heinze, T., Antonio-Cruz, R. and Mendoza-Martinez, A. M., 2002. Cellulose derivatives from cellulosic material isolated from Agave lechuguilla and Agave fourcroydes. Cellulose, 9(2), pp. 203-212. https://doi.org/10.1023/A:1020158128506

Wang, L., Guo, K., Li, Y., Tu, Y., Hu, H., Wang, B. and Peng, L., 2010. Expression profiling and integrative analysis of the CESA/CSL superfamily in rice. BMC Plant Biology, 10(1), pp. 1-16. https://doi.org/10.1186/1471-2229-10-282

Watanabe, Y., Meents, M. J., McDonnell, L. M., Barkwill, S., Sampathkumar, A., Cartwright, H. N. and Mansfield, S. D., 2015. Visualization of cellulose synthases in Arabidopsis secondary cell walls. Science, 350(6257), pp. 198-203. https://doi.org/10.1016/j.devcel.2021.03.004

URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v25i3.43286

DOI: http://dx.doi.org/10.56369/tsaes.4328

Copyright (c) 2022 Luis Carlos Rodríguez-Zapata, María José García-Castillo, Lorenzo Felipe Sanchez Teyer

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.