Epigmenio Castillo-Gallegos, Jesús Jarillo-Rodríguez, Miguel Ángel Alonso- Díaz, Eliazar Ocaña-Zavaleta, Braulio Valles-de la Mora


Background. Pasture growth rate (PGR, kg/ha/day) depends on climatic and management practices. However, studies on the influence of the environment on pasture production and productivity of dry matter are scarce in tropical, hot, and humid regions of México. Objective. To estimate the pasture growth curve using time and climatic variables. Methodology. We related, through nonlinear models, the accumulated growth of a pasture composed of native grasses mixed with exotic grasses, using time and the variables temperature and day length as independent variables, the latter integrated into a single variable called thermal photo units (PTU). We estimated the daily growth rates of five divisions; from these, the forage yields for ten days until completing 29 periods. The best-fit models had the largest coefficients of determination and the lowest Akaike’s information criterion. Results. The model that best described the relationship between cumulative yield (Y) and cumulative growing days (X) was reciprocal-quadratic: y = x/(0.097535 – 0.0000881x + 0.0000006810x2) with R2Adj, of 0.9988 and an AICC of 222.6. The model that best described the relationship between the accumulated performance and the accumulated PTU was rational: y = (- 317.8 + 1.594x + 0.00001307x2)/(1 + 0.001059x + 0.00000001964x2), with R2Adjt.=0.9985 and AICC=233.4. Likewise, a two-segment model showed a close fit. The logarithmic model described the first segment: y1 = -2268 + 417.2*(ln(x)), when y2 =1079.3e0.00003932X, if x > 8415; with R2Adj. = 0.9975 and AICc = 245.1. The value 8415 PTU was when the first derivative of both models coincided. Implications. The information generated is useful because it allows grazing system adjustment concerning the correct stocking rate application and designing more efficient grazing rotations. Conclusions. The conversion of growth rates to accumulated yield for ten-day periods produced a smooth curve that allowed fitting high-precision nonlinear models to predict forage accumulation from time and climatic variables.


Tropics; nonlinear models; grasses; forage inventory.

Full Text:



Almeida, A.C.D.S., Mingoti, R., Coelho, R.D. and Lourenço, L.F., 2011. Simulation of irrigated Tanzania grass growth based on photothermal units, nitrogen fertilization and water availability. Acta Scientiarum- Agronomy, 33(2), pp. 215-222.

Andrade, A.S., Santos, P.M., Pezzopane, J.R.M., de Araujo, L.C., Pedreira, B.C., Pedreira, C.G.S., Marin F.R. and Lara, M.A.S., 2016. Simulating tropical forage growth and biomass accumulation: an overview of model development and application. Grass and forage science, 71(1), pp. 54-65.

Araujo, L.C., Santos, P.M., Rodriguez, D., Pezzopane, J.R.M., Oliveira, P.P. and Cruz, P. G., 2013. Simulating Guinea grass production: empirical and mechanistic approaches. Agronomy Journal, 105(1), pp. 61-69.

Brougham, R.W., 1955. A study in rate of pasture growth. Australian Journal of Agricultural Research, 6, pp. 804-12.

Castillo, G.E., Valles M.B. and Schunemann, A.A., 2005. Efecto de introducir Arachis pintoi sobre variables del suelo de pasturas de grama nativa del trópico húmedo mexicano. Técnica Pecuaria en México, 43(2), pp. 287-295.

Castillo, G.E., Valles, M.B. and Jarillo, R. J. (2009). Relación entre materia seca presente y altura en gramas nativas del trópico mexicano. Técnica Pecuaria en México, 47(1), pp. 79-92.

Castillo-Gallegos, E. and Marín-Mejía, B.J., 2019. Segmented regression to describe cumulative milk production of grazing dual-purpose Holstein-Zebu cows. Tropical Animal Health and Production, 51(4), pp. 809-818.

Espinosa, G.J.A., Vélez, I.A., Góngora, G.S.F., Cuevas, R.V., Vázquez G.R. and Rivera, M.J.A., 2018. Evaluation of impact on productivity and profitability of technology in the bovine system of double purpose of the Mexican tropic. Tropical and Subtropical Agroecosystems, 21, pp. 261-272.

Forsythe, W.C., Rykiel Jr, E.J., Stahl, R.S., Wu, H.I. and Schoolfield, R.M., 1995. A model comparison for daylength as a function of latitude and day of year. Ecological Modelling, 80(1), pp. 87-95.

French, M. H. and Rodríguez, G.S., 1960. Variations in the yields of different forage species in the tropics. Agronomía Tropical, Maracay, 10(2), pp. 77-86.

García, E. 2004. Modificaciones al Sistema de Clasificación Climática de Köeppen (Para Adaptarlo a las Condiciones de la República Mexicana). Serie Libros: Número 6. Quinta edición: corregida y aumentada. Instituto de Geografía, UNAM. Ciudad de México. Pp 98.

Hilliard, J.H. and West, S.H., 1970. Starch accumulation associated with growth reduction at low temperatures in a tropical plant. Science, 168(3930), pp. 494-496. DOI: http://doi/10.1126/science.168.3930.494

Hyams, D.G. 2022. Chapter 8. Curvefinder. In: CurveExpert Professional Documentation Release 2.7.3. Accessed on 3 March 2022.

Kamidi, R.E., 2005. A parametric measure of lactation persistency in dairy cattle. Livestock Production Science, 96(2-3), 141-148.

Landsberg, J.J., 1977. Some useful equations for biological studies. Experimental Agriculture, 13(3), pp. 273-286.

López, S., France, J., Odongo, N.E., McBride, R.A., Kebreab, E., AlZahal, O., ... and Dijkstra, J. 2015. On the analysis of Canadian Holstein dairy cow lactation curves using standard growth functions. Journal of Dairy Science, 98(4), pp. 2701-2712.

Magaña M.J.G., Ríos, A.G. and Martínez G.J.C., 2006. Dual purpose cattle production systems and the challenges of the tropics of Mexico. Archivos Latinoamericanos de Producción Animal, 14(3), pp. 105-114.

Mannetje ´t L. and Haydock, K.P., 1963. The dry-weight-rank method for the botanical analysis of pasture. Journal of the British Grassland Society, 18, pp. 268-275.

Moreno, L.S., Pedreira, C.G., Boote, K.J. and Alves, R.R., 2014. Base temperature determination of tropical Panicum spp. grasses and its effects on degree-day-based models. Agricultural and Forest Meteorology, 186, pp. 26-33.

Moser, L.E., Burson, B.L., Sollenberger, L.E., 2004. Warm-Season (C4) Grass Overview. In: Moser, L.E., Burson, B.L., Sollenberger, L.E. (Eds.) Warm?Season (C4) Grasses, Agronomy Monographs, Volume 45, Chapter 1. American Society of Agronomy, Inc., Crop Science Society of America, Inc., Soil Science Society of America, Inc. Madison, WI, USA. Pp. 1-14.

Motulsky, H.J. 2022. GraphPad Curve Fitting Guide. Accessed 26 February 2022.

Orantes-Zebadúa, M.Á., Platas-Rosado, D., Córdova-Avalos, V., los Santos-Lara, D., del Carmen, M. and Córdova-Avalos, A., 2014. Characterization of dual purpose livestock in a Region of Chiapas Mexico. Ecosistemas y Recursos Agropecuarios, 1(1), pp. 49-58.

Overman, A.R., Angley, E.A. and Wilkinson, S.R., 1989. A phenomenological model of coastal bermudagrass production. Agricultural Systems, 29(2), pp. 137-148.

Pollard, J.H., 1977. A handbook of numerical and statistical techniques. Cambridge University Press.

Santillán, R.A., Ocumpaugh, W.R. and Mott, G.O., 1979. Estimating forage yield with a disk meter. Agronomy Journal, 71(1), pp. 71-74.

Still, C.J., Riley, W.J., Biraud, S.C., Noone, D.C., Buenning, N.H., Randerson, J.T., Torn, M.S,. Welker J., White, J.W.C., Vachon, R., Farquhar, G.D. and Berry, J.A., 2009. Influence of clouds and diffuse radiation on ecosystem-atmosphere CO2 and CO18O exchanges, Journal of Geophysical Research, 114, pp. G01018,

Valles, B., Castillo, E., Barragán, J., Jarillo, J. y Ocaña, E., 2010. Dinámica de una pastura mixta bajo apacentamiento intensivo en el trópico húmedo veracruzano. Avances en Investigación Agropecuaria, 14(1), pp. 3-22.

Villa Nova, N.A., Barioni, L.G., Pedreira, C.G.S. y Pereira, A.R., 1999. Modelo para previsão da produtividade do capim elefante em função de temperatura do ar, fotoperíodo e freqüência de desfolha. Revista Brasileira de Agrometeorologia, 7(1), pp. 75-79.

Villa Nova, N.A., Tonato, F., Pedreira, C.G.S. y Medeiros, H.R.D., 2007. Método alternativo para cálculo da temperatura base de gramíneas forrageiras. Ciência Rural, 37, pp. 545-549.



Copyright (c) 2023 Epigmenio Castillo Gallegos, Jesús Jarillo Rodríguez, Miguel Ángel Alonso Díaz, Eliazar Ocaña Zavaleta, Braulio Valles de la Mora

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.