INFLUENCE OF ESTRUS PRE-SYNCHRONIZATION ON REPRODUCTIVE VARIABLES IN KATAHDIN EWES CARRIERS OF THE GDF9 GENE

Dante J. Hernández-Rubio, María Del Carmen Navarro-Maldonado, Sergio S. González-Muñoz, Martha Hernández-Rodríguez, Miguel P. Conde-Hinojosa, César Cortez-Romero

Abstract


Background: Genetic improvement in the sheep species focuses on increasing the number of offspring per sheep. Heritable characteristics such as ovulation rate, fertility, and prolificacy are desirable. Objective: To evaluate the influence of estrus pre-synchronization with PGF2α on the manifestation of estrus, onset and return to estrus (1st and 2nd), pregnancy, lambing, prolificacy, and fertility in Katahdin ewes carrying exon 2 of the gene Factor Growth and Differentiation 9 (GDF9). Methodology: Seventy-two ewes were randomized into four treatments (T): T1 (n = 18), ewes without GDF9 gene and without estrus pre-synchronization; T2 (n = 17), ewes without GDF9 gene and with estrus pre-synchronization; T3 (n = 19) ewes with the GDF9 gene and without estrus pre-synchronization, and T4 (n = 18), ewes with the GDF9 gene and with estrus pre-synchronization. Results: The presence of estrus, the onset of estrus, and returns to estrus, pregnancy, and lambing percentages were not different between treatments (p>0.05). The average pregnancy and lambing in both cases were 86.2% and the average general prolificacy was 1.4 lambs per ewe for all four treatments. There were also no significant differences for the prolificacy or fertility rate (p>0.05). Implications: The present study contributes to the understanding of the use of presynchronization with PGF2α and the effect of the presence of exon 2 of the GDF9 gene on reproductive variables. Conclusions: The presynchronization of estrus with PGF2α and the presence of exon 2 of the GDF9 gene in ewes of the Katahdin breed did not have a significant effect on the reproductive variables evaluated.

Keywords


fecundity gene; synchronization; estrus; prolificacy; ewe.

Full Text:

PDF

References


Aké-López, J., Aké-Villanueva, J., Villanueva, N., Yerves, J. and Cuicas, R., 2015. Fertilidad y prolificidad de ovejas Pelibuey sincronizadas con esponjas intravaginales o implantes subcutáneos reciclados. Bioagrociencias, 8, pp. 44–49.

Aké-Villanueva, J.R., Aké-López, J.R., Segura-Correa, J. C., Magaña-Monforte, J. G. and Aké-Villanueva, N. Y., 2017. Factors affecting conception rate of hair ewes after laparoscopic insemination with chilled semen under tropical conditions. Small Ruminant Research, 153, pp. 114–117. https://doi.org/10.1016/j.smallrumres.2017.06.006

Alavez Ramírez, A., Arroyo Ledezma, J., Montes Pérez, R., Zamora Bustillos, R., Navarrete Sierra, L. F. and Magaña Sevilla, H., 2014. Short communication: Estrus synchronization using progestogens or cloprostenol in tropical hair sheep. Tropical Animal Health and Production, 46(8), pp. 1515–1518. https://doi.org/10.1007/s11250-014-0660-z

Arroyo, J., Torre-Barrera, J. D. L. and Ávila-Serrano, N. Y., 2013. Reproductive response in hair sheep synchronized with progesterone or prostaglandins. Agrociencia, 47, pp. 661–670. https://www.scielo.org.mx/scielo.php?pid=S1405-31952013000700003&script=sci_abstract&tlng=en

Bartlewski, P. M., Sohal, J., Paravinja, V., Baby, T., Oliveira, M. E. F., Murawski, M., Schwarz, T., Zieba, D. A. and Keisler, D. H., 2017. Is progesterone the key regulatory factor behind ovulation rate in sheep? Domestic Animal Endocrinology, 58, pp. 30–38. https://doi.org/10.1016/j.domaniend.2016.06.006

Besufkad, S., Betsha, S., Demis, C., Zewude, T., Rouatbi, M., Getachew, T., Haile, A., Rischkowsky, B. and Rekik, M., 2020. Field synchronization of Ethiopian Highland sheep for fixed time artificial insemination: Improvement of conception rate with a double injection of prostaglandin at 11 days. Journal of Applied Animal Research, 48(1), pp. 413–418. https://doi.org/10.1080/09712119.2020.1815752

Bodensteiner, K. J., Clay, C. M., Moeller, C. L. and Sawyer, H. R., 1999. Molecular Cloning of the Ovine Growth/Differentiation Factor-9 Gene and Expression of Growth/Differentiation Factor-9 in Ovine and Bovine Ovaries1. Biology of Reproduction, 60(2), pp. 381–386. https://doi.org/10.1095/biolreprod60.2.381

Chay-Canul, A. J., 2019. Productividad de ovejas Pelibuey y Katahdin en el trópico húmedo. Ecosistemas y Recursos Agropecuarios, 6(16), pp. 159–165. https://doi.org/10.19136/era.a6n16.1872

COLPOS (Colegio de Postgraduados). Reglamento para el uso y cuidado de animales destinados a la investigación en el Colegio de Postgraduados. Dirección de Investigación: Colegio de Posgraduados, México, 2019. https://www.colpos.mx/wb_pdf/norma_interna/reglamento_usoycuidadoanimales_050819.pdf

Dash, H. R., Shrivastava, P. and Das, S., 2020. Principles and practices of DNA analysis: A laboratory manual for forensic DNA typing. Humana Press. https://link.springer.com/book/10.1007/978-1-0716-0274-4

De, K., Kumar, D., Sethi, D., Gulyani, R. and Naqvi, S. M. K., 2015. Estrus synchronization and fixed-time artificial insemination in sheep under field conditions of a semi-arid tropical region. Tropical Animal Health and Production, 47(2), pp. 469–472. https://doi.org/10.1007/s11250-014-0735-x

Fierro, S., Gil, J., Viñoles, C. and Olivera-Muzante, J., 2013. The use of prostaglandins in controlling estrous cycle of the ewe: A review. Theriogenology, 79(3), pp. 399–408. https://doi.org/10.1016/j.theriogenology.2012.10.022

García, E., 2004. Modificaciones al sistema de clasificación climática de Köppen: Para adaptarlo a las condiciones de la República Mexicana (Quinta, Vol. 1–cinco). Universidad Autonoma de Mexico. http://www.publicaciones.igg.unam.mx/index.php/ig/catalog/book/83

Godfrey, R. W., Collins, J. R., Hensley, E. L. and Wheaton, J. E., 1999. Estrus synchronization and artificial insemination of hair sheep ewes in the tropics. Theriogenology, 51(5), pp. 985–997. https://doi.org/10.1016/S0093-691X(99)00044-8

Gonzalez-Bulnes, A., Menchaca, A., Martin, G. B., and Martinez-Ros, P., 2020. Seventy years of progestagen treatments for management of the sheep oestrous cycle: Where we are and where we should go. Reproduction, Fertility and Development, 32(5), pp. 441. https://doi.org/10.1071/RD18477

González-Godínez, A., Urrutia-Morales, J., and Gámez-Vázquez, H. G., 2014. Comportamiento reproductivo de ovejas Dorper y Katahdin empadradas en primavera en el norte de México. pp. 123–127. https://www.redalyc.org/pdf/939/93930735010.pdf

Gündo?an, M., Baki, D. and Yeni, D., 2003. Reproductive Seasonality in Sheep. Acta Agriculturae Scandinavica, Section A - Animal Science, 53(4), pp. 175–179. https://doi.org/10.1080/09064700310014960

Habeeb, H. M. H. and Anne Kutzler, M., 2021. Estrus Synchronization in the Sheep and Goat. Veterinary Clinics of North America: Food Animal Practice, 37(1), 125–137. https://doi.org/10.1016/j.cvfa.2020.10.007

Hanrahan, J. P., Gregan, S. M., Mulsant, P., Mullen, M., Davis, G. H., Powell, R. and Galloway, S. M., 2004. Mutations in the Genes for Oocyte-Derived Growth Factors GDF9 and BMP15 Are Associated with Both Increased Ovulation Rate and Sterility in Cambridge and Belclare Sheep (Ovis aries)1. Biology of Reproduction, 70(4), pp. 900–909. https://doi.org/10.1095/biolreprod.103.023093

Juengel, J. L., Davis, G. H. and McNatty, K. P., 2013. Using sheep lines with mutations in single genes to better understand ovarian function. Reproduction, 146(4), pp. R111–R123. https://doi.org/10.1530/REP-12-0509

Kona, S. S. R., Praveen Chakravarthi, V., Siva Kumar, A. V. N., Srividya, D., Padmaja, K. and Rao, V. H., 2016. Quantitative expression patterns of GDF9 and BMP15 genes in sheep ovarian follicles grown in vivo or cultured in vitro. Theriogenology, 85(2), pp. 315–322. https://doi.org/10.1016/j.theriogenology.2015.09.022

Martínez-Ros, P., Rios-Abellan, A. and Gonzalez-Bulnes, A., 2018. Influence of Progesterone-Treatment Length and eCG Administration on Appearance of Estrus Behavior, Ovulatory Success and Fertility in Sheep. Animals, 9(1), pp. 9. https://doi.org/10.3390/ani9010009

Masoumi, R., Badiei, A., Shahneh, A. Z., Kohram, H., Dirandeh, E. and Colazo, M. G., 2017. A Short Presynchronization with PGF2? and GnRH Improves Ovarian Response and Fertility in Lactating Holstein Cows Subjected to a Heatsynch Protocol. Annals of Animal Science, 17(1), pp. 169–177. https://doi.org/10.1515/aoas-2016-0044

McKelvey, W. A. C., Robinson, J. J., Aitken, R. P. and Henderson, G., 1985. The evaluation of a laparoscopic insemination technique in ewes. Theriogenology, 24(5), pp. 519–535. https://doi.org/10.1016/0093-691X(85)90059-7

Mekuriaw, Z., Assefa, H., Tegegne, A. and Muluneh, D., 2016. Estrus response and fertility of Menz and crossbred ewes to single prostaglandin injection protocol. Tropical Animal Health and Production, 48(1), pp. 53–57. https://doi.org/10.1007/s11250-015-0919-z

Muñoz-García, C., Vaquera-Huerta, H., Gallegos-Sánchez, J., Becerril-Pérez, C. M., Tarango-Arámbula, L. A., Bravo-Vinaja, Á. and Cortez-Romero, C., 2021. Influence of FecGE mutation on the reproductive variables of Pelibuey ewes in the anestrus period. Tropical Animal Health and Production, 53(2), pp. 328. https://doi.org/10.1007/s11250-021-02755-7

Mullen, M. P. and Hanrahan, J. P., 2014. Direct evidence on the contribution of a missense mutation in GDF9 to variation in ovulation rate of Finnsheep. PLoS ONE, 9(4). https://doi.org/10.1371/journal.pone.0095251

Nicol, L., Bishop, S. C., Pong-Wong, R., Bendixen, C., Holm, L.-E., Rhind, S. M. and McNeilly, A. S., 2009. Homozygosity for a single base-pair mutation in the oocyte-specific GDF9 gene results in sterility in Thoka sheep. Reproduction, 138(6), pp. 921–933. https://doi.org/10.1530/REP-09-0193

Notter, D. R., 2000. Potential for Hair Sheep in the United States. Journal of Animal Science, 77(E-Suppl), pp. 1. https://doi.org/10.2527/jas2000.77E-Suppl1h

Olivera-Muzante, J., Gil, J., Fierro, S., Menchaca, A. and Rubianes, E., 2011. Alternatives to improve a prostaglandin-based protocol for timed artificial insemination in sheep. Theriogenology, 76(8), pp. 1501–1507. https://doi.org/10.1016/j.theriogenology.2011.06.020

Prontuario de Información Geográfica Municipal., 2005. 3, 9. http://www.cegaipslp.org.mx/HV2020Dos.nsf/nombre_de_la_vista/8E2BFADF99CFFBAA86258613006ED2E3/$File/prontuario.pdf

Ramírez-Ordóñes, S., Domínguez-Díaz, D., Salmerón-Zamora, J. J. and Villalobos-Villalobos, G., 2013. Produccion y calidad del forraje de variedades de avena en función del sistema de siembra y de la etapa de madurez al corte. 36, 9. https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0187-73802013000400005

Russel, A., 1984. Body condition scoring of sheep. In Practice, 6(3), pp. 91–93. https://doi.org/10.1136/inpract.6.3.91

Sadighi, M., Bodensteiner, K. J., Beattie, A. E. and Galloway, S. M., 2002. Genetic mapping of ovine growth differentiation factor 9 (GDF9) to sheep chromosome 5. Animal Genetics, 33(3), pp. 244–245. https://doi.org/10.1046/j.1365-2052.2002.t01-11-00876.x

SAGARPA (Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca, y Alimentación,)., 2001. Norma oficial Mexicana NOM-062-ZOO-1999, Especificaciones técnicas para la producción, cuidado y uso de los animales de laboratorio. Diario Oficial de La Federación, 22 Agosto, pp. 107–165. Retrieved from https://www.gob.mx/cms/uploads/attachment/file/203498/NOM-062-ZOO-1999_220801.pdf

SAS Institute Inc., Cary, NC, U., 2013. SAS 9.4 Statements ®. (S. Institute, Ed.) (9.4 Statem).

Silva, B. D. M., Castro, E. A., Souza, C. J. H., Paiva, S. R., Sartori, R., Franco, M. M., Azevedo, H. C., Silva, T. A. S. N., Vieira, A. M. C., Neves, J. P. and Melo, E. O., 2011. A new polymorphism in the Growth and Differentiation Factor 9 (GDF9) gene is associated with increased ovulation rate and prolificacy in homozygous sheep: New polymorphism in GDF9 and prolificacy. Animal Genetics, 42(1), pp. 89–92. https://doi.org/10.1111/j.1365-2052.2010.02078.x

Souza, C. J. H., McNeilly, A. S., Benavides, M. V., Melo, E. O. and Moraes, J. C. F., 2014. Mutation in the protease cleavage site of GDF9 increases ovulation rate and litter size in heterozygous ewes and causes infertility in homozygous ewes. Animal Genetics, 45(5), pp. 732–739. https://doi.org/10.1111/age.12190

Strauss, J. F. and Williams, C. J., 2019. Ovarian Life Cycle. En Yen and Jaffe’s Reproductive Endocrinology pp. 167-205.e9. Elsevier. https://doi.org/10.1016/B978-0-323-47912-7.00008-1

Swelum, A. A.-A., Saadeldin, I. M., Moumen, A. F., Ali, M. A. and Alowaimer, A. N., 2018. Efficacy of controlled internal drug release (CIDR) treatment durations on the reproductive performance, hormone profiles, and economic profit of Awassi ewes. Small Ruminant Research, 166, pp. 47–52. https://doi.org/10.1016/j.smallrumres.2018.07.018

Våge, D. I., Husdal, M., Kent, M. P., Klemetsdal, G. and Boman, I. A., 2013. A missense mutation in growth differentiation factor 9 (GDF9) is strongly associated with litter size in sheep. BMC Genetics, 14(1), pp. 1. https://doi.org/10.1186/1471-2156-14-1

Vilariño, M., Cuadro, F., dos Santos-Neto, P. C., García-Pintos, C. and Menchaca, A., 2017. Time of ovulation and pregnancy outcomes obtained with the prostaglandin-based protocol Synchrovine for FTAI in sheep. Theriogenology, 90, pp. 163–168. https://doi.org/10.1016/j.theriogenology.2016.12.003

Yu, H., Wang, Y., Wang, M., Liu, Y., Cheng, J. and Zhang, Q., 2020. Growth differentiation factor 9 (gdf9) and bone morphogenetic protein 15 (bmp15) are potential intraovarian regulators of steroidogenesis in Japanese flounder (Paralichthys olivaceus). General and Comparative Endocrinology, 297, 113547. https://doi.org/10.1016/j.ygcen.2020.113547




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v26i2.42690

DOI: http://dx.doi.org/10.56369/tsaes.4269



Copyright (c) 2023 Dante J. Hernández-Rubio, Maria Del Carmen Navarro-Maldonado, Sergio S. González-Muñoz, Martha Hernández-Rodríguez, César Cortez-Romero, Miguel P. Conde-Hinojosa

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.