FOLIAR APPLICATION OF MICRONUTRIENTS PROMOTES GROWTH AND YIELD-RELATED ATTRIBUTES OF OKRA (Abelmoschus esculentus L.) IN A SLIGHTLY SALINIZED AREA

Md. Mostafijur Rahman, Akhinur Shila, Kawsar Hossen, Rayhan Ahmed, Kazi Ishrat Anjum, Sabia Khan, Mohammed Nuruzzaman

Abstract


Background: Micronutrients are required in trace amounts, but are importantly associated with plant growth and development. While soil salinity causes a frequent micronutrient deficiency in soil, the condition withholds plant growth, development, and eventually crop production. Since foliar application of micronutrient provides rapid nutrient absorption compared to soil amendments, it may confer straightforward mitigation of salinity stress. However, micronutrients availability to plants under saline conditions has drawn limited attention. Objective: To study the role of four micronutrients namely boron (B), zinc (Zn), chlorine (Cl), and silicon (Si) as well as their combinations as foliar application on growth, development, and yield responses of ‘okra cv. Nulok F1’ in a naturally very slightly salinized soil. Methodology: The research site belongs to Young Meghna Estuarine Flood Plain under the soil of Agro-ecological Zones (AEZ)-18. The area of EC dsm-1 2.39 is used for the cultivation of horticultural and cereal crops. The one-factor experiment was designed in a randomized complete block design with three replications and six treatments. The factor having six different micronutrients and their combinations under saline soil viz. T1 = control (untreated), T2 = 0.2 % B as solubor®, T3 = 0.2 % ZnSO4, T4 = 0.2 % KCl, T5 = 0.2% SiO2, and T6 = 0.2% solubor® B + 0.2% ZnSO4 + 0.2% SiO2 + 0.2% KCl. Result: A number of foliar treatments of micronutrients substantially improved plant height, stem diameter, leaf number, depth of root, fruit length, number of fruits, single fruit weight, yield plot-1, and total yield. Implication: Among the treatments, Si, and a mixture of solubor® B, Zn, Cl, and Si significantly uphold growth and yield-related attributes of okra indicating them as suitable micronutrients for okra production in salt-affected areas. Conclusion: The foliar application of Si and the mixtures of the four aforementioned micronutrients might enhance the growth and yield attributes of ‘okra cv. Nulok F1’ under salinity stress. 

Keywords


phonological stage; nulok; electrical conductivity; trace element; agroecological zone.

Full Text:

PDF

References


Alloway, B.J., 2008. Micronutrient deficiencies in global crop production. Heidelberg: Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6860-7

Adewole, M.B. and Ilesanmi, A.O., 2011. Effects of soil amendments on the nutritional quality of okra (Abelmoschus esculentus L). Journal of Soil Science and Plant Nutrition, 11, pp. 45-55. https://doi.org/10.4067/S0718-95162011000300004

Alexander, A., 2012. Foliar Fertilization: proceedings of the first international symposium on foliar fertilization, organized by schering agrochemical division, special fertilizer group, pp. 14-16, Berlin: 22. Springer Science and Business Media. https://doi.org/10.1007/978-94-009-4386-5

Ali, A., Perveen, S., Shah, S.N.M., Zhang, Z., Wahid, F., Shah, M. and Majid, A., 2014. Effect of foliar application of micronutrients on fruit quality of peach. American Journal of Plant Sciences, 5, p.7. http://dx.doi.org/10.4236/ajps.2014.59138

Abd-Alkarim E., Bayoumi Y., Metwally E. and Rakha M., 2017. Silicon supplements affect yield and fruit quality of cucumber (Cucumis sativus L.) grown in net houses. African Journal of Agricultural Research, 12, pp. 2518-2523. https://doi.org/10.5897/AJAR2017.12484

Alshaal, T., and El-Ramady, H. 2017. Foliar application: from plant nutrition to biofortification. Environment, Biodiversity and Soil Security, 1, pp. 71-83. https://doi.org/10.21608/jenvbs.2017.1089.1006

Alrawi, A.A.A., 2018. Effect of foliar application with potassium and zinc on growth, pod yield and seed production of okra. Iraqi Journal of Agricultural science, 49. https://doi.org/10.36103/ijas.v49i6.140

Abdelaal, K.A., Mazrou, Y.S. and Hafez Y.M., 2020. Silicon foliar application mitigates salt stress in sweet pepper plants by enhancing water status, photosynthesis, antioxidant enzyme activity and fruit yield. Plants, 9, pp. 733. https://doi.org/10.3390/plants9060733

Broyer, T.C, Carlton, A.B, Johnson, C.M. and Stout, P.R., 1954. Chlorine - a micronutrient element for higher plants. Plant Physiology, 29, pp. 526-532. https://doi.org/10.1104/pp.29.6.526

Bernstein, L., 1975. Effects of salinity and sodicity on plant growth. Annual Review of Phytopathology, 13, pp. 295-312. https://doi.org/10.1146/annurev.py.13.090175.001455

Bolaños, L., Lukaszewski, K., Bonilla I. and Blevins, D., 2004. Why boron? Plant Physiology and Biochemistry, 42, pp. 907-912. https://doi.org/10.1016/j.plaphy.2004.11.002

Brdar, J. M., 2020. Boron toxicity and deficiency in agricultural plants. International Journal of Molecular Sciences, 2, p. 1424. https://doi.org/10.3390/ijms21041424

Cakmak, I., 2002. Plant nutrition research: priorities to meet human needs for food in sustainable ways. Plant and Soil, 247, pp. 3-24. https://doi.org/10.1023/A:1021194511492

Creamer, R., Sanogo, S., El-Sebai, O.A., Carpenter, J. and Sanderson R., 2005. Kaolin-based foliar reflectant affects physiology and incidence of beet curly top virus but not yield of chile pepper. HortScience, 40, pp. 574-576. https://doi.org/10.21273/hortsci.40.3.574

Chen, W., He, Z.L., Yang, X.E., Mishra, S. and Stoffella, P.J., 2010. Chlorine nutrition of higher plants: progress and perspectives. Journal of Plant Nutrition, 33, pp. 943-952. https://doi.org/10.1080/01904160903242417

Chatzistathis, T., 2014. Micronutrient deficiency in soils and plants. Sharjah: Bentham Science Publishers. https://doi.org/10.2174/97816080593481140101

Chen, M., Yang, Z., Liu. J., Zhu, T., Wei, X., Fan, H. and Wang, B., 2018. Adaptation mechanism of salt excluders under saline conditions and its applications. International Journal of Molecular Sciences, 19, p. 3668. https://doi.org/10.3390/ijms19113668

Corwin, D.L., 2021. Climate change impacts on soil salinity in agricultural areas. European Journal of Soil Science, 72, pp. 842-862. https://doi.org/10.1111/ejss.13010

Darwish, T., Atallah, T., El Moujabber, M. and Khatib, N. 2005. Salinity evolution and crop response to secondary soil salinity in two agro-climatic zones in Lebanon. Agricultural water management, 78, pp. 152-164. https://doi.org/10.1016/j.agwat.2005.04.020

Dubey, P. and Mishra, S., 2017. A review on: Diabetes and okra (Abelmoschus esculentus). Journal of Medicinal Plants Studies, 5, pp. 23-26.

Duary, S., 2020. Seed priming: a comprehensive approach to alter the biotic and abiotic stresses of field crops. International Journal of Chemical Studies, 8, pp. 1705-1708. https://doi.org/10.22271/chemi.2020.v8.i5w.10545

Domingos, C.D.S., Besen, M.R., Esper Neto, M., Costa, E.J. O., Scapim, C.A., Inoue, T.T. and Braccini, A. L., 2021. Can calcium and boron leaf application increase soybean yield and seed quality? Acta Agriculturae Scandinavica, Section B-Soil & Plant Science, 71, pp. 171-181. https://doi.org/10.1080/09064710.2020.1869818

Elshaikh, N.A., Zhipeng, L., Dongli, S. and Timm, L.C., 2018. Increasing the okra salt threshold value with biochar amendments. Journal of plant interactions, 13, pp. 51-63. https://doi.org/10.1080/17429145.2017.1418914

Edrisi, S.A., Tripathi, V., Chaturvedi, R.K., Dubey, D.K., Patel, G. and Abhilash, P.C., 2021. Saline soil reclamation index as an efficient tool for assessing restoration progress of saline land. Land Degradation and Development, 32, pp. 123-138. https://doi.porg/10.1002/ldr.3641

Fischer, G., Shah, M., van Velthuizen, H. and Nachtergaele, F., 2006. Agro-ecological zones assessments. Oxford: Eolss Publishers.

Fageria, N.K., Filho, M.B., Moreira, A. and Guimarães, C.M. 2009. Foliar fertilization of crop plants. Journal of plant nutrition, 32, pp. 1044-1064. https://doi.org/10.1080/01904160902872826

Ferreira, J. F., Liu, X. and Suarez, D. L., 2019. Fruit yield and survival of five commercial strawberry cultivars under field cultivation and salinity stress. Scientia Horticulturae, 243, pp. 401-410. https://doi.org/10.1016/j.scienta.2018.07.016

Glenn, D.M., Prado, E., Erez, A., McFerson, J. and Puterka G.J., 2002. A reflective, processed-kaolin particle film affects fruit temperature, radiation reflection, and solar injury in apple. Journal of American Society for Horticulture Science, 127, pp. 188-193. https://doi.org/10.21273/jashs.127.2.188.

Goyal, R., Uike, V. and Verma, H., 2017. Effect of foliar application of micronutrients on growth and yield of onion (Allium cepa L.) c.v. agri found dark red. Agricultural Science Digest, 37 pp. 160-162. https://doi.org/10.18805/asd.v37i2.7995

Haleema, B., Rab, A. and Hussain, S.A., 2018. Effect of calcium, boron and zinc foliar application on growth and fruit production of tomato. Sarhad Journal of Agriculture, 34, pp. 19-30. https://dx.doi.org/10.17582/journal.sja/2018/34.1.19.30

Isayenkov, S.V. and Maathuis, F.J., 2019. Plant salinity stress: many unanswered questions remain. Frontiers in Plant Science, 10, p. 80. https://doi.org/10.3389/fpls.2019.00080

Jones, C. and Jacobsen, J., 2005. Plant nutrition and soil fertility. Nutrient management module, 2, pp. 1-11. https://doi.org/10.1.1.576.5603

Kumar, M. and Sen, N. L., 2005. Effect of zinc, boron and gibberellic acid on yield of okra (Abelmoschus esculentus L). Indian Journal of Horticulture, 62, pp. 308-309

Kartal, S.N., Hwang, W.J. and Imamura, Y., 2007. Water absorption of boron-treated and heat-modified wood. Journal of Wood Science, 53, pp. 454-457. https://doi.org/10.1007/s10086-007-0877-9

Kumar, S., Dagnoko, S., Haougui, A., Ratnadass, A., Pasternak, N. and Kouame, C., 2010. Okra (Abelmoschus spp.) in West and Central Africa: Potential and progress on its improvement. African Journal of Agricultural Research, 5, pp.3590-3598. https://doi.org/10.5897/AJAR10.839

Kumar, V., Deo, C., Sarma, P., Wangchu, L., Debnath, P., Singh, A.K. and Hazarika, B.N., 2021. Effect of foliar application zinc and boron on vegetative growth characters of okra. Journal of Pharmacognosy and Phytochemistry, 10, pp. 2084-2086. https://doi.org/10.22271/phyto.2021.v10.i1ac.13659

Lamont, W. J., 1999. Okra - a versatile vegetable crop. Horticulture Technology, 9, pp. 179-184. https://doi.org/10.21273/horttech.9.2.179

Li, S. X., Wang, Z.H., Malhi, S.S., Li, S Q., Gao, Y.J. and Tian, X.H., 2009. Nutrient and water management effects on crop production, and nutrient and water use efficiency in dryland areas of China. Advances in agronomy, 102, pp. 223-265. https://doi.org/10.1016/S0065-2113(09)01007-4

Liu, Y., Qi, J., Luo, J., Qin, W., Luo, Q., Zhang, Q., Chen, D. and Chen, H., 2021. Okra in food field: nutritional value, health benefits and effects of processing methods on quality. Food Review International, 37, pp. 67-90. https://doi.org/10.1080/87559129.2019.1695833

Mahmoud, A.W.M., Abdeldaym, E.A., Abdelaziz, S.M., El-Sawy, M.B. and Mottaleb, S.A., 2019. Synergetic effects of zinc, boron, silicon, and zeolite nanoparticles on confer tolerance in potato plants subjected to salinity. Agronomy, 10, p. 19. https://doi.org/10.3390/agronomy10010019

Maliha, M. B. J., Nuruzzaman, M., Hossain, B., Trina, F. A., Uddin, N. and Sarkar, A. K., 2022. Assessment of varietal attributes of okra under foliar application of Zinc and Boron. International Journal of Horticultural Science and Technology, 9, pp. 143-149. https://doi.org/10.22059/ijhst.2021.321763.459

Nadeem, S. M., Zahir, Z. A., Naveed, M. and Nawaz, S., 2013. Mitigation of salinity-induced negative impact on the growth and yield of wheat by plant growth-promoting rhizobacteria in naturally saline conditions. Annals of Microbiology, 63, pp. 225-232. https://doi.org/10.1007/s13213-012-0465-0

Noreen, S., Fatima, Z., Ahmad, S., Athar, HuR., Ashraf, M. 2018. Foliar Application of micronutrients in mitigating abiotic stress in crop plants. In: Hasanuzzaman, M., Fujita, M., Oku, H., Nahar, K., Hawrylak-Nowak, B. Plant nutrients and abiotic stress tolerance. Singapore, Springer, pp: 95-117. https://doi.org/10.1007/978-981-10-9044-8_3

Niu, J., Liu, C., Huang, M., Liu, K. and Yan, D. 2021. Effects of foliar fertilization: a review of current status and future perspectives. Journal of Soil Science and Plant Nutrition, 21, pp. 104-118. https://doi.org/10.1007/s42729-020-00346-3

Othmani, A., Ayed, S., Bezzin, O., Farooq, M., Ayed-Slama, O., Slim-Amara, H. and Ben Younes, M., 2021. Effect of silicon supply methods on durum wheat (Triticum durum Desf.) response to drought stress. Silicon, 13, pp. 3047-3057. https://doi.org/10.1007/s12633-020-00639-3

Römheld, V. and Marschner, H., 1991. Function of micronutrients in plants. In: Mortvedt J.J., Cox F.R, and Shuman L.M,eds. Forage Tree Legumes in Tropical Agriculture. Madison, Wisconsin, USA: Soil Society of America pp. 297-328. https://doi.org/10.2136/sssabookser4.2ed.c9

Ritzema, H.P., Satyanarayana, T.V., Raman, S. and Boonstra, J., 2008. Subsurface drainage to combat waterlogging and salinity in irrigated lands in India: lessons learned in farmers’ fields. Agricultural water management, 95, 179-189. https://doi.org/10.1016/j.agwat.2007.09.012

Reza, K. and Roosta, H.R., 2014. Evaluation of inter-specific hybrid of P. atlantica x P. vera cv. ‘Badami-riz-e-Zarand’ as pistachio rootstock to salinity stress according to some growth indices and eco-physiological and biochemical parameters. Journal of Stress Physiology and Biochemistry, 10, pp. 5–17.

Riaz, M., Yan, L., Wu, X., Hussain, S., Aziz, O. and Jiang, C., 2018. Boron increases root elongation by reducing aluminum induced disorganized distribution of HG epitopes and alterations in subcellular cell wall structure of trifoliate orange roots. Ecotoxicology and Environmental Safety, 165, pp. 202-210. https://doi.org/10.1016/j.ecoenv.2018.09.004

Salim, B. B., 2014. Effect of boron and silicon on alleviating salt stress in maize. Middle East Journal of Agriculture Research, 3, pp. 1196-1204.

Singh, P., Chauhan, V., Tiwari, B.K., Chauhan, S.S., Simon, S., Bilal, S. and Abidi, A.B., 2014. An overview on okra (Abelmoschus esculentus L.) and its importance as a nutritive vegetable in the world. International Journal of Pharmacy and Biological Sciences, 4, pp. 227-233

Singh, P., Patidar, D.K. and Prajapat, O.M., 2017. Role of foliar application of micronutrients (B, Zn and Fe) in vegetables. International Journal of Farm Sciences, 7, pp. 15-21. https://doi.org/10.31830/2348-7542.2022.052

Swain, R. and Rout, G. R., 2017. Silicon in agriculture. In: Lichtfouse, E., Sustainable Agriculture Reviews, Springer, Cham , pp.233-260. https://doi.org/10.1007/978-3-319-58679-3_8

Shafiqe, S.B., Ahmed, R., Hossen, K., Shila, A., Anjum, K.I., Khan, S. and Nuruzzaman, M., 2022. Foliar fertilization of micronutrients on the performance of zucchini squash (Cucurbita pepo) under the Old Meghna Estuarine Flood plain of Bangladesh. Research on Crops, 23, pp. 380-392. http://dx.doi.org/10.31830/2348-7542.2022.052

Trivedi, A.P. and Dhumal, K.N., 2013. Effect of soil and foliar applications of zinc and iron on the yield and quality of onion (Allium cepa L.). Bangladesh Journal of Agricultural Research, 38, pp. 41- 48. https://doi.org/10.3329/bjar.v38i1.15188.

Tantawy, A., Salama, Y.A.M., El-Nemr, M.A. and Abdel-Mawgoud, A.M.R., 2015. Nano silicon application improves salinity tolerance of sweet pepper plants. International Journal of ChemTech Research, 8, pp.11-17.

Tian, F., Hou, M., Qiu, Y., Zhang, T. and Yuan, Y., 2020. Salinity stress effects on transpiration and plant growth under different salinity soil levels based on thermal infrared remote (TIR) technique. Geoderma, 357, p. 113961. https://doi.org/10.1016/j.geoderma.2019.113961

Toor, M.D, Adnan, M., Javed, M.S, Habibah, U., Arshad. A., Din, M.M. and Ahmad, R., 2020. Foliar application of Zn: best way to mitigate drought stress in plants; a review. International Journal of Applied Research, 6, pp.16-20.

Umair, H.M, Aamer, M., Umer, M.C, Haiying, T., Babar, S., Lorenzo, B. and Nawaz, M., 2020. The critical role of zinc in plants facing the drought stress. Agriculture, 9, pp. 396. https://doi.org/10.3390/agriculture10090396

Uddin, R.M., Nuruzzaman, M., Briste, S.P., Islam, M.M., Bhuiyan, K.A., Hossain, I.J., Ahmed, S. and Amena, K., 2021. Boron facilitates rice growth, development, and related attributes under saline soil conditions. Acta Agrobotanica. pp. 74. https://doi.org/10.5586/aa.743

V??llora, G., Moreno, D. A., Pulgar, G. and Romero, L., 2000. Yield improvement in zucchini under salt stress: determining micronutrient balance. Scientia Horticulturae, 86, pp. 175-183. https://doi.org/10.1016/S0304-4238(00)00149-7

Wallace, A., Mueller, R. T., Cha, J. W. and Alexander, G. V., 1974. Soil pH, excess lime, and chelating agent on micronutrients in soybeans and bush beans. Agronomy Journal, 66, pp. 698-700. https://doi.org/10.2134/agronj1974.00021962006600050027x

Weisany, W., Sohrabi, Y., Heidari, G., Siosemardeh, A. and Badakhshan, H., 2014. Effects of zinc application on growth, absorption and distribution of mineral nutrients under salinity stress in soybean (Glycine max L.). Journal of Plant Nutrition, 37, pp. 2255-2269. https://doi.org/10.1080/01904167.2014.920386

Wang, M., Gao, L., Dong, S., Sun, Y., Shen, Q. and Guo S., 2017. Role of silicon on plant-pathogen interactions. Frontier in Plant Science, 8, pp. 701. https://doi.org/10.3389/fpls.2017.00701

Yadav, P.K., Singh, A. and Agrawal, S.B., 2020. An overview on management of micronutrients deficiency in plants through biofortification. In: K, Mishra, P.K, Tandon, S, Srivastava ed. A solution of hidden hunger. Sustainable solutions for elemental deficiency and excess in crop plants, Singapore, Springer, pp. 183-208. https://doi.org/10.1007/978-981-15-8636-1_8

Zayed, B.A., Salem, A.K.M., and El Sharkawy, H.M. 2011. Effect of different micronutrient treatments on rice (Oriza sativa L.) growth and yield under saline soil conditions. World Journal of Agricultural Sciences, 7, pp. 179-184. https://www.idosi.org/wjas/wjas7(2)/12

Zhang, Y., Yu, S.H.I., Gong, H.J., Zhao, H.L., Li, H.L., Hu, Y.H. and Wang, Y.C., 2018. Beneficial effects of silicon on photosynthesis of tomato seedlings under water stress. Journal of Integrative Agriculture, pp. 2151-2159. https://doi.org/10.1016/S2095-3119(18)62038-6

Zargar, M., Tumanyan, A., Ivanenko, E., Dronik, A., Tyutyuma, N. and Pakina, E., 2019. Impact of foliar fertilization on apple and pear trees in reconciling productivity and alleviation of environmental concerns under arid conditions. Communicative & Integrative Biology, 12, pp. 1-9. https://doi.org/10.1080/19420889.2019.1565252

Zhao, D., Gao, S., Zhang, X., Zhang, Z., Zheng, H., Rong, K. and Khan, S.A., 2021. Impact of saline stress on the uptake of various macro and micronutrients and their associations with plant biomass and root traits in wheat. Plant, Soil and Environment, 67, pp. 61-70. https://doi.org/10.17221/467/2020-PSE

Zafar, S., Hasnain, Z., Aslam, N., Mumtaz, S., Jaafar, H. Z., Wahab, P.E.M. and Ormenisan, A.N., 2021. Impact of Zn nanoparticles synthesized via green and chemical approach on okra (Abelmoschus esculentus L.) growth under salt stress. Sustainability, 13, p. 3694. https://doi.org/10.3390/su13073694.

Zafar, S., Perveen, S., Kamran Khan, M., Shaheen, M.R., Hussain, R., Sarwar, N. and Siddiqui, M. H., 2022. Effect of zinc nanoparticles seed priming and foliar application on the growth and physio-biochemical indices of spinach (Spinacia oleracea L.) under salt stress. PLoS One, 17, p. e0263194. https://doi.org/10.1371/journal.pone.0272431




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v27i1.42386

DOI: http://dx.doi.org/10.56369/tsaes.4238



Copyright (c) 2023 Mohammed Nuruzzaman, Md. Mostafijur Rahman1, Akhinur Shila, Kawser Hossen, Rayhan Ahmed, Kazi Ishrat Anjum, Sabia Khan

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.