IN VIVO CONTROL OF Phaeoacremonium parasiticum WITH NATIVE ANTAGONISTS Bacillus, Trichoderma AND actinomycetes AND THEIR GROWTH PROMOTING EFFECT IN GRAPEVINE
Abstract
Keywords
Full Text:
PDFReferences
Aguilar-Anccota, R., Arévalo-Quinde, C. G., Morales-Pizarro, A., and Galecio-Julca, M., 2021. Hongos asociados a la necrosis de haces vasculares en el cultivo de banano orgánico: síntomas, aislamiento e identificación, y alternativas de manejo integrado. Scientia Agropecuaria, 12(2), pp. 249-256. http://dx.doi.org/10.17268/sci.agropecu.2021.028.
Álvarez-Pérez, J. M., González-García, S., Cobos, R., Olego, M. Á., Ibañez, A., Díez-Galán, A., and Coque, J. J. R., 2017. Use of endophytic and rhizosphere actinobacteria from grapevine plants to reduce nursery fungal graft infections that lead to young grapevine decline. Applied and Environmental Microbiology, 83(24), pp. e01564-17. https://doi.org/10.1128/AEM.01564-17.
Armengol, J., and Gramaje, D., 2019. Adaptación del material vegetal y efectos sobre las enfermedades de la madera. https://www.researchgate.net/profile/David-Gramaje/publication/331547603_Adaptacion_del_material_vegetal_y_efectos_sobre_las_enfermedades_de_la_madera/links/5c7faced299bf1268d3d4d04/Adaptacion-del-material-vegetal-y-efectos-sobre-las-enfermedades-de-la-madera.pdf.
Battiston, E., Compant, S., Antonielli, L., Mondello, V., Clément, C., Simoni, A., and Fontaine, F., 2021. In planta Activity of Novel Copper (II)-Based Formulations to Inhibit the Esca-Associated Fungus Phaeoacremonium minimum in Grapevine Propagation Material. Frontiers in Plant Science, 12, pp. 3. https://doi.org/10.3389/fpls.2021.649694.
Bautista-Cruz, A., and Martínez-Gallegos, V., 2020. Promoción del crecimiento de Agave potatorum Zucc. por bacterias fijadoras de nitrógeno de vida libre. Terra Latinoamericana, 38(3), pp. 555-567. https://doi.org/10.28940/terra.v38i3.647.
Berbegal, M., Ramón?Albalat, A., León, M., and Armengol, J., 2020. Evaluation of long?term protection from nursery to vineyard provided by Trichoderma atroviride SC1 against fungal grapevine trunk pathogens. Pest Management Science, 76(3), pp. 967-977. https://doi.org/10.1002/ps.5605.
Carro-Huerga, G., Compant, S., Gorfer, M., Cardoza, RE, Schmoll, M., Gutiérrez, S. and Casquero, PA., 2020. Colonization of Vitis vinifera L. by the endophyte Trichoderma sp. Strain T154: Biocontrol activity against Phaeoacremonium minimum. Frontiers in Plant Science, 11, pp. 1170. https://doi.org/10.3389/fpls.2020.01170.
Condori-Pacsi, S. J., Fernández-Guzmán, P. R., and Valderrama-Valencia, M. R., 2019. Aislamiento y caracterización de Streptomyces spp rizosféricos promotores del crecimiento vegetal. Idesia (Arica), 37(2), pp. 109-116. http://dx.doi.org/10.4067/S0718-34292019000200109.
Delgado., J. and Javier., J., 1991. Ensayos en el control biológico de Macrophamina phaseolina, agente causal de la pudrición carbonosa de la raíz del algodonero en Piura. https://agris.fao.org/agris-search/search.do?recordID=PE19950135703
Dries, L., Hendgen, M., Schnell, S., Löhnertz, O., and Vortkamp, A., 2021. Rhizosphere engineering: leading towards a sustainable viticulture?. OENO One, 55(2), pp. 353-363. https://doi.org/10.20870/oeno-one.2021.55.2.4534
Esmaeel, Q., Miotto, L., Rondeau, M., Leclére, V., Clément, C., Jacquard, C., and Barka, E. A. 2018. Paraburkholderia phytofirmans PsJN-plants interaction: from perception to the induced mechanisms. Frontiers in Microbiology, 9, 2093. https://doi.org/10.3389/fmicb.2018.02093.
Gramaje, D., Urbez-Torres, JR and Sosnowski, MR., 2018. Management of grapevine trunk diseases with respect to etiology and epidemiology: current strategies and future prospects. Plant Disease, 102 (1), pp. 12-39. https://doi.org/10.1094/PDIS-04-17-0512-FE.
Guzmán Duchen, D., and Montero Torres, J., 2021. Interacción de bacterias y plantas en la fijación del nitrógeno. Revista de Investigación e Innovación Agropecuaria y de Recursos Naturales, 8(2), pp. 87-101. https://doi.org/10.53287/uyxf4027gf99e.
Hernández-Melchor, D. J., Ferrera-Cerrato, R., and Alarcón, A., 2019. Trichoderma: importancia agrícola, biotecnológica, y sistemas de fermentación para producir biomasa y enzimas de interés industrial. Chilean Journal of Agricultural and Animal Sciences, 35(1), pp. 98-112. http://dx.doi.org/10.4067/S0719-38902019005000205.
MIDAGRI (Ministerio de Desarrollo Agrario y Riego)., 2020. Informe de registro de productores de uva en las regiones de Ica, Arequipa, Moquegua, Tacna y Lima provincias. https://www.midagri.gob.pe/portal/download/pdf/herramientas/boletines/DocumentoFinalVid.pdf.
MINCETUR (Ministerio de Comercio Exterior y Turismo)., 2022. Perú se convierte en primer exportador mundial de uvas. https://www.gob.pe/institucion/mincetur/noticias/585846-peru-se-convierte-en-primer-exportador-mundial-de-uvas.
Morales-Pizarro, D. A., Javier-Alva, J., Álvarez, L. A., Mayta-Obos, R., Aguilar-Anccota., Peña-Castillo, R. and Lindo-Seminario, D., 2022. Isolation, identification and in vitro evaluation of native isolates of Bacillus, Trichoderma and Streptomyces with potential for the biocontrol of grapevine trunk fungi. Tropical and Subtropical Agroecosystems, 25(2) pp. 86. http://dx.doi.org/10.56369/tsaes.4206
Mostert, L., Groenewald, J. Z., Summerbell, R. C., Robert, V., Sutton, D. A., Padhye, A. A., and Crous, P. W., 2005. Species of Phaeoacremonium associated with infections in humans and environmental reservoirs in infected woody plants. Journal of Clinical Microbiology, 43(4), pp. 1752-1767. https://doi.org/10.1128/JCM.43.4.1752-1767.2005.
Reveglia, P., Raimondo, M. L., Masi, M., Cimmino, A., Nuzzo, G., Corso, G., and Evidente, A., 2022. Untargeted and Targeted LC-MS/MS Based Metabolomics Study on In Vitro Culture of Phaeoacremonium Species. Journal of Fungi, 8(1), pp. 55. https://doi.org/10.3390/jof8010055.
Romero-Rivas, L. C., Álvarez, L. A., Gramaje, D., Armengol, J., and Cadenas-Giraldo, C., 2009. First report of Phaeoacremonium parasiticum causing Petri disease of grapevine in Perú. Plant Disease, 93(2), pp. 200-200. https://doi.org/10.1094/PDIS-93-2-0200B.
Spies, C. F. J., Moyo, P., Halleen, F., and Mostert, L., 2018. Phaeoacremonium species diversity on woody hosts in the Western Cape Province of South Africa. Persoonia: Molecular Phylogeny and Evolution of Fungi, 40, pp. 26-62. https://doi.org/10.3767/persoonia.2018.40.02.
Stempien, E., Jean, R., Pierron, G., Adendorff, I., Van Jaarsveld, W. J., Halleen, F., and Mostert, L., 2020. Host defence activation and root colonization of grapevine rootstocks by the biological control fungus Trichoderma atroviride. Phytopathologia Mediterranea, 59(3), pp. 615-626. https://doi.org/10.14601/Phyto-11137.
Velásquez, A., Vega-Celedón, P., Fiaschi, G., Agnolucci, M., Avio, L., Giovannetti, M., and Seeger, M., 2020. Responses of Vitis vinifera cv. Cabernet Sauvignon roots to the arbuscular mycorrhizal fungus Funneliformis mosseae and the plant growth-promoting rhizobacterium Ensifer meliloti include changes in volatile organic compounds. Mycorrhiza, 30(1), pp. 161-170. https://link.springer.com/article/10.1007/s00572-020-00933-3.
Vurukonda, S. S. K. P., Vardharajula, S., Shrivastava, M., and SkZ, A., 2016. Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiological Research, 184, pp. 13-24. https://doi.org/10.1016/j.micres.2015.12.003.
URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v25i3.42320
DOI: http://dx.doi.org/10.56369/tsaes.4232
Copyright (c) 2022 Davies Arturo Morales Pizarro
This work is licensed under a Creative Commons Attribution 4.0 International License.