IN VIVO CONTROL OF Phaeoacremonium parasiticum WITH NATIVE ANTAGONISTS Bacillus, Trichoderma AND actinomycetes AND THEIR GROWTH PROMOTING EFFECT IN GRAPEVINE

Davies Arturo Morales Pizarro, Javier Javier Alva, Luis Armando Álvarez, Ricardo Peña Castillo, Roger Chanduví García, Carlos Granda Wong, Rocío Mayta Obos, David Lindo Seminario, Sandro Condori Pacsi

Abstract


Background: Phaeoacremonium parasiticum is a frequently species associated with "Petri's disease" in young plants of grapevine in Peru. One of the main limitations is the use of fungicides and the limited molecules for its control. In this scenario, biological control is an important alternative to integrate in the management of grapevine diseases. Objective: The objective of the research was to evaluate the in vivo efficacy of native antagonists to P. parasiticum and their growth promoting effect on grapevine. Methodology: Plant material from mother plants (R-110) underwent thermotherapy (52.5°C for 30 min). Subsequently, the antagonists (bacteria and fungi) were inoculated by partial immersion at a concentration of 1x106 cfu ml-1 (Colony forming units) for 3 h; 30 days later, P. parasiticum was inoculated, measuring shoot length before inoculation (SLBI). Seventy days after inoculation (DAI), shoot length (SL), length of necrotic stria (LNS), root dry weight (RDW) and root fresh weight (RFW) were measured. Results: Isolate Tr-5 (Trichoderma spp.) increased SLBI by 68%. Bacillus spp. (Bac-1, Bac-2), Trichoderma spp. (Tr-5) and T. harzianum (T-22) increase >40% SL 70 DDI. Tr-6 (Trichoderma spp.), T-22 and Act-2 (Actinomycete) reduce >50% LNS. Bacillus spp. (Bac-2: Bac-3) significantly increase RFW (59.29%: 49.39%) and RDW (60.41%: 55.08%). Implications: Biological control with native antagonists reduces the development of Petri disease and promotes grapevine growth. Conclusions: The native antagonists show growth-promoting effect and control of LEN caused by P. parasiticum at the nursery stage.

Keywords


Antagonist; biocontrol; Petri's disease; vegetative growth promoter; table grape.

Full Text:

PDF

References


Aguilar-Anccota, R., Arévalo-Quinde, C. G., Morales-Pizarro, A., and Galecio-Julca, M., 2021. Hongos asociados a la necrosis de haces vasculares en el cultivo de banano orgánico: síntomas, aislamiento e identificación, y alternativas de manejo integrado. Scientia Agropecuaria, 12(2), pp. 249-256. http://dx.doi.org/10.17268/sci.agropecu.2021.028.

Álvarez-Pérez, J. M., González-García, S., Cobos, R., Olego, M. Á., Ibañez, A., Díez-Galán, A., and Coque, J. J. R., 2017. Use of endophytic and rhizosphere actinobacteria from grapevine plants to reduce nursery fungal graft infections that lead to young grapevine decline. Applied and Environmental Microbiology, 83(24), pp. e01564-17. https://doi.org/10.1128/AEM.01564-17.

Armengol, J., and Gramaje, D., 2019. Adaptación del material vegetal y efectos sobre las enfermedades de la madera. https://www.researchgate.net/profile/David-Gramaje/publication/331547603_Adaptacion_del_material_vegetal_y_efectos_sobre_las_enfermedades_de_la_madera/links/5c7faced299bf1268d3d4d04/Adaptacion-del-material-vegetal-y-efectos-sobre-las-enfermedades-de-la-madera.pdf.

Battiston, E., Compant, S., Antonielli, L., Mondello, V., Clément, C., Simoni, A., and Fontaine, F., 2021. In planta Activity of Novel Copper (II)-Based Formulations to Inhibit the Esca-Associated Fungus Phaeoacremonium minimum in Grapevine Propagation Material. Frontiers in Plant Science, 12, pp. 3. https://doi.org/10.3389/fpls.2021.649694.

Bautista-Cruz, A., and Martínez-Gallegos, V., 2020. Promoción del crecimiento de Agave potatorum Zucc. por bacterias fijadoras de nitrógeno de vida libre. Terra Latinoamericana, 38(3), pp. 555-567. https://doi.org/10.28940/terra.v38i3.647.

Berbegal, M., Ramón?Albalat, A., León, M., and Armengol, J., 2020. Evaluation of long?term protection from nursery to vineyard provided by Trichoderma atroviride SC1 against fungal grapevine trunk pathogens. Pest Management Science, 76(3), pp. 967-977. https://doi.org/10.1002/ps.5605.

Carro-Huerga, G., Compant, S., Gorfer, M., Cardoza, RE, Schmoll, M., Gutiérrez, S. and Casquero, PA., 2020. Colonization of Vitis vinifera L. by the endophyte Trichoderma sp. Strain T154: Biocontrol activity against Phaeoacremonium minimum. Frontiers in Plant Science, 11, pp. 1170. https://doi.org/10.3389/fpls.2020.01170.

Condori-Pacsi, S. J., Fernández-Guzmán, P. R., and Valderrama-Valencia, M. R., 2019. Aislamiento y caracterización de Streptomyces spp rizosféricos promotores del crecimiento vegetal. Idesia (Arica), 37(2), pp. 109-116. http://dx.doi.org/10.4067/S0718-34292019000200109.

Delgado., J. and Javier., J., 1991. Ensayos en el control biológico de Macrophamina phaseolina, agente causal de la pudrición carbonosa de la raíz del algodonero en Piura. https://agris.fao.org/agris-search/search.do?recordID=PE19950135703

Dries, L., Hendgen, M., Schnell, S., Löhnertz, O., and Vortkamp, A., 2021. Rhizosphere engineering: leading towards a sustainable viticulture?. OENO One, 55(2), pp. 353-363. https://doi.org/10.20870/oeno-one.2021.55.2.4534

Esmaeel, Q., Miotto, L., Rondeau, M., Leclére, V., Clément, C., Jacquard, C., and Barka, E. A. 2018. Paraburkholderia phytofirmans PsJN-plants interaction: from perception to the induced mechanisms. Frontiers in Microbiology, 9, 2093. https://doi.org/10.3389/fmicb.2018.02093.

Gramaje, D., Urbez-Torres, JR and Sosnowski, MR., 2018. Management of grapevine trunk diseases with respect to etiology and epidemiology: current strategies and future prospects. Plant Disease, 102 (1), pp. 12-39. https://doi.org/10.1094/PDIS-04-17-0512-FE.

Guzmán Duchen, D., and Montero Torres, J., 2021. Interacción de bacterias y plantas en la fijación del nitrógeno. Revista de Investigación e Innovación Agropecuaria y de Recursos Naturales, 8(2), pp. 87-101. https://doi.org/10.53287/uyxf4027gf99e.

Hernández-Melchor, D. J., Ferrera-Cerrato, R., and Alarcón, A., 2019. Trichoderma: importancia agrícola, biotecnológica, y sistemas de fermentación para producir biomasa y enzimas de interés industrial. Chilean Journal of Agricultural and Animal Sciences, 35(1), pp. 98-112. http://dx.doi.org/10.4067/S0719-38902019005000205.

MIDAGRI (Ministerio de Desarrollo Agrario y Riego)., 2020. Informe de registro de productores de uva en las regiones de Ica, Arequipa, Moquegua, Tacna y Lima provincias. https://www.midagri.gob.pe/portal/download/pdf/herramientas/boletines/DocumentoFinalVid.pdf.

MINCETUR (Ministerio de Comercio Exterior y Turismo)., 2022. Perú se convierte en primer exportador mundial de uvas. https://www.gob.pe/institucion/mincetur/noticias/585846-peru-se-convierte-en-primer-exportador-mundial-de-uvas.

Morales-Pizarro, D. A., Javier-Alva, J., Álvarez, L. A., Mayta-Obos, R., Aguilar-Anccota., Peña-Castillo, R. and Lindo-Seminario, D., 2022. Isolation, identification and in vitro evaluation of native isolates of Bacillus, Trichoderma and Streptomyces with potential for the biocontrol of grapevine trunk fungi. Tropical and Subtropical Agroecosystems, 25(2) pp. 86. http://dx.doi.org/10.56369/tsaes.4206

Mostert, L., Groenewald, J. Z., Summerbell, R. C., Robert, V., Sutton, D. A., Padhye, A. A., and Crous, P. W., 2005. Species of Phaeoacremonium associated with infections in humans and environmental reservoirs in infected woody plants. Journal of Clinical Microbiology, 43(4), pp. 1752-1767. https://doi.org/10.1128/JCM.43.4.1752-1767.2005.

Reveglia, P., Raimondo, M. L., Masi, M., Cimmino, A., Nuzzo, G., Corso, G., and Evidente, A., 2022. Untargeted and Targeted LC-MS/MS Based Metabolomics Study on In Vitro Culture of Phaeoacremonium Species. Journal of Fungi, 8(1), pp. 55. https://doi.org/10.3390/jof8010055.

Romero-Rivas, L. C., Álvarez, L. A., Gramaje, D., Armengol, J., and Cadenas-Giraldo, C., 2009. First report of Phaeoacremonium parasiticum causing Petri disease of grapevine in Perú. Plant Disease, 93(2), pp. 200-200. https://doi.org/10.1094/PDIS-93-2-0200B.

Spies, C. F. J., Moyo, P., Halleen, F., and Mostert, L., 2018. Phaeoacremonium species diversity on woody hosts in the Western Cape Province of South Africa. Persoonia: Molecular Phylogeny and Evolution of Fungi, 40, pp. 26-62. https://doi.org/10.3767/persoonia.2018.40.02.

Stempien, E., Jean, R., Pierron, G., Adendorff, I., Van Jaarsveld, W. J., Halleen, F., and Mostert, L., 2020. Host defence activation and root colonization of grapevine rootstocks by the biological control fungus Trichoderma atroviride. Phytopathologia Mediterranea, 59(3), pp. 615-626. https://doi.org/10.14601/Phyto-11137.

Velásquez, A., Vega-Celedón, P., Fiaschi, G., Agnolucci, M., Avio, L., Giovannetti, M., and Seeger, M., 2020. Responses of Vitis vinifera cv. Cabernet Sauvignon roots to the arbuscular mycorrhizal fungus Funneliformis mosseae and the plant growth-promoting rhizobacterium Ensifer meliloti include changes in volatile organic compounds. Mycorrhiza, 30(1), pp. 161-170. https://link.springer.com/article/10.1007/s00572-020-00933-3.

Vurukonda, S. S. K. P., Vardharajula, S., Shrivastava, M., and SkZ, A., 2016. Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiological Research, 184, pp. 13-24. https://doi.org/10.1016/j.micres.2015.12.003.




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v25i3.42320

DOI: http://dx.doi.org/10.56369/tsaes.4232



Copyright (c) 2022 Davies Arturo Morales Pizarro

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.