Jetzabelt Ambrosio-Bautista, Marilem Rodríguez-Labastida, Jose Ernesto Sanchez-Vázquez, Juan Felipe de Jesús Torres-Acosta, Gloria Sarahi Castañeda-Ramirez, Liliana Aguilar-Marcelino


Background. Worldwide, gastrointestinal nematodes (GIN) cause losses in livestock production, because in some animals they can cause weight loss or death. Combating these GIN has been based on the use of anthelmintics. However, the misuse of these treatments has caused anthelmintic resistance. Therefore, there is currently a search for new biological alternatives for the control of gastrointestinal nematodes. One of these alternatives is the use of fungal extracts for nematode control. Objectives. To utilize the in vitro larval exsheathment inhibition test to evaluate organic extracts of edible fungi Pleurotus eryngii, P. djamor and Lentinula edodes, against Haemonchus contortus (L3). Methodology. Extracts were prepared from the basidiomes of the fungal species mentioned. In the case of P. eryngii and P. djamor, they were placed in a hydroalcoholic mixture (methanol/water 70:30). On the other hand, L. edodes basidiomes were macerated with distilled water for 24 hours. The extracts were filtered with a cotton/gauze system and through Whatman paper (#4) and were concentrated using a rotary evaporator until the liquid residue was removed and kept at -4 °C until use. To determine the percentage of larval exsheathment inhibition, larvae were exposed to different concentrations (156.25, 312.5, 625, 1250, and 2500 µg/mL) with their respective negative controls (PBS) for 60 minutes. The effective concentration 50% (EC50) was calculated by means of probit analysis. Results. The extracts with the best activity were P. djamor and L. edodes with an effective concentration (EC50) of 533.3 and 558.5 µg/mL, respectively. Implications. This in vitro evaluation provides results that suggest the need for further in vitro studies with more fungi species and other types of extraction procedures. Conclusion. The present study demonstrated that the use of extracts of P. eryngii, P. djamor and L. edodes was shown to have in vitro anthelmintic activity against the larval exsheathment of H. contortus.


exsheathment test; Haemonchus contortus; basidiomata; Pleurotus; Lentinula edodes

Full Text:



Aguilar-Marcelino, L., Sánchez, J.E., Mendoza-Gives, P., 2017. Uso biotecnológico de productos obtenidos a partir de Pleurotus spp. en el control de nematodos parásitos de importancia pecuaria. En: José E. Sánchez y Daniel J. Royse Eds. La Biología, El Cultivo y Las Propiedades Nutricionales y Medicinales de las Setas Pleurotus spp. San Cristóbal de las Casas, Chiapas, México: ECOSUR. pp. 297-309.

Alonso-Díaz, M.A., Torres-Acosta, J.F., Sandoval-Castro, C.A., Aguilar-Caballero, A.J., Hoste, H., 2008. In vitro larval migration and kinetics of exsheathment of Haemonchus contortus larvae exposed to four tropical tanniniferous plant extracts. Veterinary Parasitology, 153, 313–319.

Bangoura, M. L, Nsor-Atindana, J. y Ming, Z. H. 2013. Solvent optimization extraction of antioxidants from foxtail millet species’ insoluble fibers and their free radical scavenging properties. Food Chemistry, 141, 736-744.

Braga, F.R., Araujo, J.V., 2014. Nematophagous fungi for biological control of gastrointestinal nematodes in domestic animals. Applied Microbiology and Biotechnology, 98, 71-82.

Boa, E., 2004. Wild edible fungi. A global overview of their use and importance to people, in Non-Wood Forest Products 17. Food and Agriculture Organization of the United Nations, p161. Rome, _Italy.

Brunet, S., Marínez-Ortiz de Montellano, C., Torres-Acosta, J.F.J., Sandoval-Castro, A.J., Aguilar-Caballero, A.J., Capetillo- Leal, C., Hoste, H. 2008. Effect of the consumption of Lysiloma latisiliquum on the larval establishment of gastrointestinal nematodes in goats. Veterinary Parasitology, 157, 81-88.

Chan-Pérez, J.I., Torres-Acosta, J.F.J., Sandoval-Castro, C.A., Castañeda-Ramírez, G.S., Vilarem, G., Mathieu, C., Hoste, H., 2017. Susceptibility of ten Haemonchus contortus isolates from different geographical origins towards acetone: water extracts of polyphenol rich plants. Part 2: infective L3 larvae. Veterinary Parasitology, 240, 11-16.

Cruz-Arévalo, J., Sánchez, J.E., González-Cortázar, M., Zamilpa, A., Andrade-Gallegos, R.H., Mendoza-de-Gives, P., Aguilar-Marcelino, L., 2020. Chemical composition of an anthelmintic fraction of Pleurotus eryngii against eggs and infective larvae (L3) of Haemonchus contortus. BioMed Research International, 2020, 4138950.

Comans-Pérez, R.S., Sánchez, J.E., Al-Ani, L.K.T., González-Cortázar, M., Castañeda-Ramírez, G.S., Mendoza-de Gives, P., Sánchez-García, A.D., Millán-Orozco, J., Aguilar-Marcelino, L., 2021. Biological control of sheep nematode Haemonchus contortus using edible mushrooms. Biological Control, 152, 104420.

Erjavec, J., Kos, J., Ravnikar, M., Dreo, T., Saboti?, J. 2012. Proteins of higher fungi - from forest to application. Trends in Biotechnology, 30, 259–273.

Gamble, H.R., Purcell, J.P., Fetterer, R.H. 1989. Purification of a 44 Kilodalton protease which mediates the ecdysis of infective Haemonchus contortus larvae. Molecular and Biochemical Parasitology, 33, 49-58.

González-Cortázar, M., Sánchez, J.E., Huicochea-Medina, M., Hernández-Velázquez, V.M., Mendoza-de-Gives, P., Zamilpa, A., López-Arellano, M.E. Pineda-Alegría, J.A., Aguilar-Marcelino, L. 2021. In vitro and in vivo nematicide effect of extract fractions of Pleurotus djamor against Haemonchus contortus. Journal of Medicinal Food, 24, 310-318.

Hassan, M., Rouf, R., Tiralongo, E., May, T., Tiralongo, J. 2015. Mushroom lectins: specificity, structure and bioactivity relevant to human disease. International Journal of Molecular Sciences, 16, 7802–7838.

Hernández-Bolio, G.I., García-Sosa, K., Escalante-Erosa, F., Castañeda-Ramírez, G.S., Sauri-Duch, E., Torres-Acosta J.F.J., Peña-Rodríguez, L. M. 2018. Effects of polyphenol removal methods on the in vitro exsheathment inhibitory activity of Lysiloma latisiliquum extracts against Haemonchus contortus larvae. Natural Product Research, 32, 508-513.

Hernández-Bolio, G. I., 2017. Análisis del perfil metabolómico e identificación de productos antihelmínticos del Lysiloma latisiliquum (L.) Benth. (Tzalam). Tesis de Doctorado.

Jackson, F., Miller, J., 2006. Alternative approaches to control --quo vadit? Veterinary Parasitology, 139, 371-384.

Jang, H.L., Lee, J.H., Hwang, M.J., Choi, Y., Kim, H., Hwang, J., Nam, J.S., 2015. Comparison of physicochemical properties and antioxidant activities between Lentinula edodes and new cultivar Lentinula edodes GNA01. Journal of the Korean Society of Food Science and Nutrition. The Korean Society of Food Science and Nutrition.

Kwok, O.C.H., Plattner, R., Weisleder, D., Wicklow, D.T., 1992. A nematicidal toxin from Pleurotus ostreatus NRRL 3526. Journal of Chemical Ecology, 18, 127–136.

López-Arellano, M.E., Mendoza-Gives, P., Aguilar-Marcelino, L., Liébano-Hernández, E., 2010. Buenas prácticas en el manejo de antihelmíntico para el control de parásitos en rumiantes. Instituto nacional de Investigaciones Forestales Agrícolas y Pecuarias. Centro Nacional de Investigación Disciplinaria en Parasitología Veterinaria. Jiutepec, Morelos, México.

Ministry of Agriculture, Fisheries and Food (MAFF), 1986. Manual of Veterinary Parasitological Laboratory Techniques, ADAS, HMSO, UK.

Medina, P., Guevara-Hernández, F., La-O, M., Ojeda, N., Reyes, E., 2014. Resistencia antihelmíntica en ovinos: una revisión de informes del sureste de México y alternativas disponibles para el control de nematodos gastrointestinales. Pastos y Forrajes, 37, 257-263.

Moradali, M.F., Mostafavi, H., Ghods, S., Hedjaroude, G.A. 2007. Immunomodulating and anticancer agents in the realm of macromycetes fungi (macrofungi). International Immunopharmacology, 7, 701–724.

OCDE/FAO., 2017. “Carne”, en OCDE-FAO Perspectivas Agrícolas 2017-2026, OECD Publicado en, París.

Pineda-Alegría, J.A., 2019. Actividad nematicida de Physalis peruviana y Lentinula edodes y la identificación de grupos activos. Tesis de Maestría. Instituto Politecnico Nacional. Pp63.

Pineda-Alegría, J.A., Sánchez-Vásquez, J.E., González-Cortázar, M., Zamilpa, A., López-Arellano, M.E., Cuevas-Padilla, E.J., Mendoza-Gives, P., 2017. The edible mushroom Pleurotus djamor produce metabolites with lethal activity against the parasitic nematode Haemonchus contortus. Journal of Medicinal Food, 20, 1184–1192.

Quintero-Elena, Z.J., Aguilar-Marcelino, L., Castañeda-Ramírez, G.S., Gómez-Rodríguez, O., Villar-Luna, E., López-Guillén, G., Ramírez-Rojas, S.G., 2022. In vitro and micro-plot predatory activity of the mite Caloglyphus mycophagus against populations of nematode larvae of agricultural importance. Biological control, 165, 104813.

Thumbi, S.M., Bronsvoort, B.M.D.C., Poole, E.J., Kiara, H., Toye, P.G., 2014. Parasite co-infections and their impact on survival of indigenous cattle. Plos One, 9:2.



Copyright (c) 2022 Jetzabelt Ambrosio-Bautista, Gloria Sarahi Castañeda-Ramirez, Marilem Rodríguez-Labastida, Jose Sanchez-Vázquez, Juan Felipe de Jesús Torres-Acosta, Liliana Aguilar-Marcelino

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.