BIOGAS PRODUCTION AND FERMENTATION CHARACTERISTICS in vitro OF CELLULOLYTIC RUMINAL BACTERIAL CONSORTIUMS OBTAINED FROM DIFFERENT FIBERS

David Hernández-Sánchez, Jerónimo Herrera-Pérez, Serafín Jacobo López Garrido, Nicolás Torres-Salado, Paulino Sánchez-Santillán

Abstract


Background. Cellulolytic bacterial consortia (CBC) serve as additives to improve fiber degradation in ruminants, since they improve biogas production and in vitro fermentation characteristics. Objective. To evaluate the biogas production and fermentative characteristics in vitro of mulato grass inoculated with ruminal CBC obtained from ground sawdust, ground mulato grass or whole stem as substrates in the selective culture medium. Methodology. The CBC were obtained from ruminal fluid from a Suiz-Bu cow fitted with a ruminal cannula, which was transferred six times in a selective anaerobic medium. The test consisted of preparing sterile biodigesters with 0.5 g of mulatto grass with 63 d of regrowth, 45 mL of culture medium. The inoculation was with 5 mL of a type of CBC. The biodigesters were incubated 72 h at 39 °C. Biogas production was measured at 3, 6, 9, 12, 24, 48 and 72 h. In the culture media, ammonia nitrogen (N-NH3), total bacterial count, cellulase activity, pH, dry matter degradation (DMD) and neutral detergent fiber degradation (NDFD) were determined at 12, 24, 48 y 72 h. In the biogas production a completely random design was used; while in the rest of the variables a completely randomized design was carried out with a 3x4 factorial arrangement, with fiber source and incubation time as factors. Results. The biogas production of the CBC obtained from the ground grass showed higher (p<0.05) accumulated production in all the evaluated times. The CBC obtained from sawdust increased the biogas production by 175% from 24 to 48 h and by 313% from 48 to 72 h. There was an interaction effect (p <0.05) on DMD, NDFD, N-NH3, total bacterial count and cellulase enzymatic activity. The CBC obtained from ground mulatto grass at 72 h increased (p <0.05) the DMD and NDFD. The CBC obtained from sawdust increased DMD by 19.1% and NDFD by 33% from 48 to 72 h. The concentration of bacteria in the observed interactions is within the range of the ruminal ecosystem. The highest (p<0.05) content of N-NH3 was determined when the CBC obtained from grass stem with 12, 24 and 72 h of incubation were used. Implications. Using the same fiber source to obtain the CBCs improves the degradation of said fiber. Conclusion. The size and source of fiber are decisive in the type of bacteria that make up the cellulolytic bacterial consortia of ruminal origin under the conditions of this in vitro test.

Keywords


mulatto grass, sawdust, in vitro degradation; gas production technique.

Full Text:

PDF

References


Abad-Guamán, R., Carro, M.D., Carabaño, R. and García, J., 2015. Estudio de la cinética de producción de la pulpa de remolacha con inóculos ileales y cecales de conejos: comparación de modelos. In: Asociación Interprofesional para el Desarrollo Agrario (ed). XVI Jornadas sobre producción animal, Zaragoza, España. pp. 275-277.

AOAC. 2005. Official methods of analysis. 18th ed. Association of Official Analytical Chemist. Arlington, VA, USA.

Aschenbach, J.R., Penner G.B., Stumpff, F. and Gäbel, G., 2011. Ruminant nutrition symposum: Role of fermentation acid absorption in the regulation of ruminal pH. Journal of Animal Science, 89, pp. 1092-1107. https://doi.org/10.2527/jas.2010-3301

Barahona, R.R. and Sánchez, P.S., 2005. Limitaciones físicas y químicas de la digestibilidad de pastos tropicales y estrategias para aumentarla. Corpoica. Ciencia y Tecnología Agropecuaria, 6(01), pp. 69-82.

Burns, J.C., 2008. ASAS Centennial Paper: utilization of pasture and forages by ruminants: a historical perspective. Journal of Animal Science, 86, pp. 3647-3663. https://doi.org/10.2527/jas.2008-1240

Castillo-González, A.R., Burrola-Barraza, M.E., Domínguez-Viveros, J. and Chávez-Martínez, A., 2014. Rumen microorganisms and fermentation. Archivos de Medicina Veterinaria, 46(3), pp. 349-361.

Castillo-López, E. and Domínguez-Ordóñez, M.G., 2019. Factores que afectan la composición microbiana ruminal y métodos para determinar el rendimiento de la proteína microbiana. Revisión. Revista Mexicana de Ciencias Pecuarias, 10(1), pp. 120-148. https://doi.org/10.22319/rmcp.v10i1.4547

Castillo-López, E., Ramírez-Ramírez, H.A., Klopfenstein, T.J., Anderson, C., Alugthge, N.D., Fernando, S.C. and Kononoff, P.J., 2014. Effect of feeding dried distillers grains with solubles on ruminal biohydrogenation, intestinal fatty acid profile, and gut microbial diversity evaluated through DNA pyro-sequencing. Journal of Animal Science, 92, pp. 733–743. https://doi.org/10.2527/jas.2013-7223

Cobos, M.A., 2007. Microbiología agrícola: hongos, bacterias, micro y macrofauna, control biológico y planta-microorganismo. Ferrera-Cerrato, R. y Alarcon, A. (eds). Trillas. Distrito Federal, México. 268 p.

Dai, X., Tian, Y., Li, J., Su, X., Wang, X., Zhao, S., Liu, L., Lou, Y., Liu, D., Zheng, H., Wang, J., Dong, Z., Hu, S. and Huang, L., 2015. Metatranscriptomic analyses of plant cell wall polysaccharide degradation by microorganisms in cow rumen. Applied and Environmental Microbiology, 81, pp. 1375-1386. https://doi.org/10.1128/AEM.03682-14

Danielsson, R., Dicksved, J., Sun, L., Gonda, H., Müller, B., Schnürer, A. and Bertilsson, J., 2017. Methane production in dairy cows correlates with rumen methanogenic and bacterial community structure. Frontiers in Microbiology, 8, pp. 226. https://doi.org/10.3389/fmicb.2017.00226

Deng, Y., Huang, Z., Ruan, W., Zhao, M., Miao, H. and Ren, H., 2017. Co-inoculation of cellulolytic rumen bacteria with methanogenic sludge to enhance methanogenesis of rice Straw. International Biodeterioration & Biodegradation, 117, pp. 224-235. http://dx.doi.org/10.1016/j.ibiod.2017.01.017

Hernández-Morales, J., Sánchez-Santillán, P., Torres-Salado, N., Herrera-Pérez, J., Rojas-García, A.R., Reyes-Vázquez, I. and Mendoza-Núñez, M.A., 2018. Composición química y degradaciones in vitro de vainas y hojas de leguminosas arbóreas del trópico seco de México. Revista Mexicana en Ciencias Pecuarias, 9(1), pp.105-120. https://dx.doi.org/10.22319/rmcp.v9i1.4332

Herrera-Pérez, J., Vélez-Regino, L.G., Sánchez-Santillán, P., Torres-Salado, N., Rojas-García, A.R. and Maldonado-Peralta, M.A., 2018. In vitro fermentation of fibrous substrates by wáter buffalo ruminal cellulolytic bacteria consortia. Revista MVZ Córdoba, 23(3), pp. 6860-6870. https://dx.doi.org/10.21897/rmvz.1374

Khejornsart, P., Wanapat, M. and Rowlinson, P., 2011. Diversity of anaerobic fungi and rumen fermentation characteristic in swamp buffalo and beef cattle fed on different diets. Livestock Science, 139, pp. 230-236. https://dx.doi.org/10.1016/j.livsci.2011.01.011

Kingston-Smith, A.H., Marshall, A.H. and Moorby, J.M., 2012. Breeding for genetic improvement of forage plants in relation to increasing animal production with reduced environmental footprint. Animal, 1, pp. 79-88. http://dx.doi.org/10.1017 / S1751731112000961.

Kumar, C.P., Salem, A.Z.M., Jena, R., Kumar, S., Singh, R. and Kumar, P.A., 2015. Rumen microbiology: an overview. In: Kumar, A.P., Sing, R. and Nadan, D.K. (eds), Rumen microbiology: from evolution to revolution, (Springer, New Delhi, India), pp. 3-16.

Lodemann, U. and Martens, H., 2006. Effects of diet and osmotic pressure on Na+ transport and tissue conductance of sheep isolated rumen epithelium. Experimental Physiology, 91, pp. 539-550. https://doi.org/10.1113/expphysiol.2005.032078

McCullough, H., 1967. The determination of ammonia in whole blood by a direct colorimetric method. Clinica Chimica Acta, 17(2), pp. 297-304. https://dx.doi.org/10.1016/0009-8981(67)90133-7

Mehrez, A.Z., Orskov, E.R. and McDonald, I., 1977. Rates of rumen fermentation in relation to ammonia concentration. British Journal of Nutrition, 38, pp. 437-443.

Millen, D.D., Arrigoni, M.D.B. and R.D.L., 2016. Rumenology. Springer international. https://doi.org/10.1007/978-3-319-30533-2

Miller, G.L., 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar, Analilytical Biochemistry, 31(3), pp. 426-428.

Nagaraja, T.G., 2016. Microbiology of the Rumen. In: Domingues, M.D., De Beni, A.M., and Días, R.L.P. (Eds.), Rumenology, Switzerland: Springer Nature, pp. 39-61.

Norma Oficial Mexicana, Especificaciones técnicas para la producción, cuidado y uso de los animales de laboratorio. (NOM-062-ZOO-1999), 1999. Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria. https://fmvz.unam.mx/fmvz/principal/archivos/062ZOO.PDF Consulta: 10 de agosto de 2020.

Noguera, R.R., Ortiz, D.M. and Gallego, N., 2011. Comparación de líquido ruminal vacuno y caprino como fuente de inóculo en la técnica in vitro de producción de gases. Livestock Research for Rural Development, 23(11).

Petri, RM, Forster, R.J., Yang, W., McKinnon, J.J. and McAllister, T.A., 2012. Characterization of rumen bacterial diversity and fermentation parameters in concentrate fed cattle with and without forage. Journal of Applied Microbiology, 112(6), pp. 1152–1162. https://doi.org/10.1111/j.1365-2672.2012.05295.x

Russell, J., 2002. Rumen microbiology and its role in ruminant nutrition. Ithaca, NY. Cornell University Press.

Sánchez-Santillán, P., Meneses-Mayo, M., Miranda-Romero, L.A., Santellano-Estrada, E. and Alarcón-Zúñiga, B., 2015. Fribrinolytic activity and gas production by Pleurotus ostreatus-IE8 and Fomes fomentarius - EUM1 in bagasse cane. MVZ Córdoba, 20, pp. 4907-4916. https://doi.org/10.21897/rmvz.6

Sánchez-Santillán, P. and Cobos-Peralta, M.A., 2016. In vitro production of volatile fatty acids by reactivated cellulolytic bacteria and total ruminal bacteria in cellulosic substrate. Agrociencia, 50(05), pp. 565-574.

Sánchez-Santillán, P., Cobos-Peralta, M.A., Hernández-Sánchez, D., Álvarado, A.I., Espinosa-Victoria, D. and Herrera-Haro, J.G., 2016. Uso de carbón activado para conservar bacterias celulolíticas liofilizadas. Agrociencia, 50, pp. 575-582

SAS. Institute Inc., 2011. Statistical Analysis System, SAS, User’s Guide: Cary, NC. SAS Inst., pp. 3154-3339.

Texta, N.J., Sánchez-Santillán, P., Hernández, S.D., Torres-Salado, N., Crosby, G.M., Rojas-García, A.R., Herrera, P.J. and Maldonado, P.M., 2019. Use of disaccharides and activated carbon to preserve cellulolytic ruminal bacterial consortiums lyophilized. MVZ Cordoba, 24(3), pp. 7305-7313. https://doi.org/10.21897/rmvz.1412

Torres-Salado, N., Sánchez-Santillán, P., Rojas-García, A.R., Almaraz-Buendía, I., Herrera-Pérez, J., Reyes-Vázquez, I. and Mayren-Mendoza, F.J., 2019. In vitro gas production and fermentative characteristics of ruminal cellulolytic bacterial consortia of water buffalo (Bubalus bubalis) and Suiz-bu cow. Agrociencia, 53(02), pp. 145-159

Vélez, R.L.G., Sánchez, S.P., Torres, S.N., Rojas, G.A.R., Méndoza, N.M.A. and Mayren, M.F.J., 2017. Producción de gas in vitro de un cultivo bacteriano celulolítico obtenido de búfalos de agua. In: Memoria del XLI Congreso Nacional de Buiatría. 3-5 de agosto. Acapulco, Guerrero, México. pp. 420-424

Wahrmund, J.L., Ronchesel, J.R., Krehbiel, C.R., Goad, C.L., Tros, S.M. and Richards, C.J., 2012. Ruminal acidosis challenge impact on ruminal temperature in feedlot cattle. Journal Animal Science, 90, pp. 2794-2801. https://doi.org/10.2527/jas.2011-4407

Yokoyama, M.T. and Johnson, K.A., 1988. Microbiología del rumen e intestino. En: El rumiante. Fisiología digestiva y nutrición. C. D. Church (Ed.). Editorial Acribia.

Zicarelli, F., Calabrò, S., Cutrignelli, M.I., Infascelli, F., Tudisco, R., Bovera, F. and Piccolo, V., 2011. In vitro fermentation characteristics of diets with different forage/concéntrate ratios: comparison of rumen and faecal inocula. Journal Science Food and Agriculture, 91, pp. 1213-1221.




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v25i3.41276

DOI: http://dx.doi.org/10.56369/tsaes.4127



Copyright (c) 2022 Paulino Sánchez-Santillán, David Hernández-Sánchez, Jerónimo Herrera-Pérez, Serafín Jacobo López Garrido, Nicolás Torres-Salado

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.