BIOGAS PRODUCTION AND FERMENTATION CHARACTERISTICS in vitro OF CELLULOLYTIC RUMINAL BACTERIAL CONSORTIUMS OBTAINED FROM DIFFERENT FIBERS
Abstract
Keywords
Full Text:
PDFReferences
Abad-Guamán, R., Carro, M.D., Carabaño, R. and García, J., 2015. Estudio de la cinética de producción de la pulpa de remolacha con inóculos ileales y cecales de conejos: comparación de modelos. In: Asociación Interprofesional para el Desarrollo Agrario (ed). XVI Jornadas sobre producción animal, Zaragoza, España. pp. 275-277.
AOAC. 2005. Official methods of analysis. 18th ed. Association of Official Analytical Chemist. Arlington, VA, USA.
Aschenbach, J.R., Penner G.B., Stumpff, F. and Gäbel, G., 2011. Ruminant nutrition symposum: Role of fermentation acid absorption in the regulation of ruminal pH. Journal of Animal Science, 89, pp. 1092-1107. https://doi.org/10.2527/jas.2010-3301
Barahona, R.R. and Sánchez, P.S., 2005. Limitaciones físicas y químicas de la digestibilidad de pastos tropicales y estrategias para aumentarla. Corpoica. Ciencia y Tecnología Agropecuaria, 6(01), pp. 69-82.
Burns, J.C., 2008. ASAS Centennial Paper: utilization of pasture and forages by ruminants: a historical perspective. Journal of Animal Science, 86, pp. 3647-3663. https://doi.org/10.2527/jas.2008-1240
Castillo-González, A.R., Burrola-Barraza, M.E., Domínguez-Viveros, J. and Chávez-Martínez, A., 2014. Rumen microorganisms and fermentation. Archivos de Medicina Veterinaria, 46(3), pp. 349-361.
Castillo-López, E. and Domínguez-Ordóñez, M.G., 2019. Factores que afectan la composición microbiana ruminal y métodos para determinar el rendimiento de la proteína microbiana. Revisión. Revista Mexicana de Ciencias Pecuarias, 10(1), pp. 120-148. https://doi.org/10.22319/rmcp.v10i1.4547
Castillo-López, E., Ramírez-Ramírez, H.A., Klopfenstein, T.J., Anderson, C., Alugthge, N.D., Fernando, S.C. and Kononoff, P.J., 2014. Effect of feeding dried distillers grains with solubles on ruminal biohydrogenation, intestinal fatty acid profile, and gut microbial diversity evaluated through DNA pyro-sequencing. Journal of Animal Science, 92, pp. 733–743. https://doi.org/10.2527/jas.2013-7223
Cobos, M.A., 2007. Microbiología agrícola: hongos, bacterias, micro y macrofauna, control biológico y planta-microorganismo. Ferrera-Cerrato, R. y Alarcon, A. (eds). Trillas. Distrito Federal, México. 268 p.
Dai, X., Tian, Y., Li, J., Su, X., Wang, X., Zhao, S., Liu, L., Lou, Y., Liu, D., Zheng, H., Wang, J., Dong, Z., Hu, S. and Huang, L., 2015. Metatranscriptomic analyses of plant cell wall polysaccharide degradation by microorganisms in cow rumen. Applied and Environmental Microbiology, 81, pp. 1375-1386. https://doi.org/10.1128/AEM.03682-14
Danielsson, R., Dicksved, J., Sun, L., Gonda, H., Müller, B., Schnürer, A. and Bertilsson, J., 2017. Methane production in dairy cows correlates with rumen methanogenic and bacterial community structure. Frontiers in Microbiology, 8, pp. 226. https://doi.org/10.3389/fmicb.2017.00226
Deng, Y., Huang, Z., Ruan, W., Zhao, M., Miao, H. and Ren, H., 2017. Co-inoculation of cellulolytic rumen bacteria with methanogenic sludge to enhance methanogenesis of rice Straw. International Biodeterioration & Biodegradation, 117, pp. 224-235. http://dx.doi.org/10.1016/j.ibiod.2017.01.017
Hernández-Morales, J., Sánchez-Santillán, P., Torres-Salado, N., Herrera-Pérez, J., Rojas-García, A.R., Reyes-Vázquez, I. and Mendoza-Núñez, M.A., 2018. Composición química y degradaciones in vitro de vainas y hojas de leguminosas arbóreas del trópico seco de México. Revista Mexicana en Ciencias Pecuarias, 9(1), pp.105-120. https://dx.doi.org/10.22319/rmcp.v9i1.4332
Herrera-Pérez, J., Vélez-Regino, L.G., Sánchez-Santillán, P., Torres-Salado, N., Rojas-García, A.R. and Maldonado-Peralta, M.A., 2018. In vitro fermentation of fibrous substrates by wáter buffalo ruminal cellulolytic bacteria consortia. Revista MVZ Córdoba, 23(3), pp. 6860-6870. https://dx.doi.org/10.21897/rmvz.1374
Khejornsart, P., Wanapat, M. and Rowlinson, P., 2011. Diversity of anaerobic fungi and rumen fermentation characteristic in swamp buffalo and beef cattle fed on different diets. Livestock Science, 139, pp. 230-236. https://dx.doi.org/10.1016/j.livsci.2011.01.011
Kingston-Smith, A.H., Marshall, A.H. and Moorby, J.M., 2012. Breeding for genetic improvement of forage plants in relation to increasing animal production with reduced environmental footprint. Animal, 1, pp. 79-88. http://dx.doi.org/10.1017 / S1751731112000961.
Kumar, C.P., Salem, A.Z.M., Jena, R., Kumar, S., Singh, R. and Kumar, P.A., 2015. Rumen microbiology: an overview. In: Kumar, A.P., Sing, R. and Nadan, D.K. (eds), Rumen microbiology: from evolution to revolution, (Springer, New Delhi, India), pp. 3-16.
Lodemann, U. and Martens, H., 2006. Effects of diet and osmotic pressure on Na+ transport and tissue conductance of sheep isolated rumen epithelium. Experimental Physiology, 91, pp. 539-550. https://doi.org/10.1113/expphysiol.2005.032078
McCullough, H., 1967. The determination of ammonia in whole blood by a direct colorimetric method. Clinica Chimica Acta, 17(2), pp. 297-304. https://dx.doi.org/10.1016/0009-8981(67)90133-7
Mehrez, A.Z., Orskov, E.R. and McDonald, I., 1977. Rates of rumen fermentation in relation to ammonia concentration. British Journal of Nutrition, 38, pp. 437-443.
Millen, D.D., Arrigoni, M.D.B. and R.D.L., 2016. Rumenology. Springer international. https://doi.org/10.1007/978-3-319-30533-2
Miller, G.L., 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar, Analilytical Biochemistry, 31(3), pp. 426-428.
Nagaraja, T.G., 2016. Microbiology of the Rumen. In: Domingues, M.D., De Beni, A.M., and Días, R.L.P. (Eds.), Rumenology, Switzerland: Springer Nature, pp. 39-61.
Norma Oficial Mexicana, Especificaciones técnicas para la producción, cuidado y uso de los animales de laboratorio. (NOM-062-ZOO-1999), 1999. Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria. https://fmvz.unam.mx/fmvz/principal/archivos/062ZOO.PDF Consulta: 10 de agosto de 2020.
Noguera, R.R., Ortiz, D.M. and Gallego, N., 2011. Comparación de líquido ruminal vacuno y caprino como fuente de inóculo en la técnica in vitro de producción de gases. Livestock Research for Rural Development, 23(11).
Petri, RM, Forster, R.J., Yang, W., McKinnon, J.J. and McAllister, T.A., 2012. Characterization of rumen bacterial diversity and fermentation parameters in concentrate fed cattle with and without forage. Journal of Applied Microbiology, 112(6), pp. 1152–1162. https://doi.org/10.1111/j.1365-2672.2012.05295.x
Russell, J., 2002. Rumen microbiology and its role in ruminant nutrition. Ithaca, NY. Cornell University Press.
Sánchez-Santillán, P., Meneses-Mayo, M., Miranda-Romero, L.A., Santellano-Estrada, E. and Alarcón-Zúñiga, B., 2015. Fribrinolytic activity and gas production by Pleurotus ostreatus-IE8 and Fomes fomentarius - EUM1 in bagasse cane. MVZ Córdoba, 20, pp. 4907-4916. https://doi.org/10.21897/rmvz.6
Sánchez-Santillán, P. and Cobos-Peralta, M.A., 2016. In vitro production of volatile fatty acids by reactivated cellulolytic bacteria and total ruminal bacteria in cellulosic substrate. Agrociencia, 50(05), pp. 565-574.
Sánchez-Santillán, P., Cobos-Peralta, M.A., Hernández-Sánchez, D., Álvarado, A.I., Espinosa-Victoria, D. and Herrera-Haro, J.G., 2016. Uso de carbón activado para conservar bacterias celulolíticas liofilizadas. Agrociencia, 50, pp. 575-582
SAS. Institute Inc., 2011. Statistical Analysis System, SAS, User’s Guide: Cary, NC. SAS Inst., pp. 3154-3339.
Texta, N.J., Sánchez-Santillán, P., Hernández, S.D., Torres-Salado, N., Crosby, G.M., Rojas-García, A.R., Herrera, P.J. and Maldonado, P.M., 2019. Use of disaccharides and activated carbon to preserve cellulolytic ruminal bacterial consortiums lyophilized. MVZ Cordoba, 24(3), pp. 7305-7313. https://doi.org/10.21897/rmvz.1412
Torres-Salado, N., Sánchez-Santillán, P., Rojas-García, A.R., Almaraz-Buendía, I., Herrera-Pérez, J., Reyes-Vázquez, I. and Mayren-Mendoza, F.J., 2019. In vitro gas production and fermentative characteristics of ruminal cellulolytic bacterial consortia of water buffalo (Bubalus bubalis) and Suiz-bu cow. Agrociencia, 53(02), pp. 145-159
Vélez, R.L.G., Sánchez, S.P., Torres, S.N., Rojas, G.A.R., Méndoza, N.M.A. and Mayren, M.F.J., 2017. Producción de gas in vitro de un cultivo bacteriano celulolítico obtenido de búfalos de agua. In: Memoria del XLI Congreso Nacional de Buiatría. 3-5 de agosto. Acapulco, Guerrero, México. pp. 420-424
Wahrmund, J.L., Ronchesel, J.R., Krehbiel, C.R., Goad, C.L., Tros, S.M. and Richards, C.J., 2012. Ruminal acidosis challenge impact on ruminal temperature in feedlot cattle. Journal Animal Science, 90, pp. 2794-2801. https://doi.org/10.2527/jas.2011-4407
Yokoyama, M.T. and Johnson, K.A., 1988. Microbiología del rumen e intestino. En: El rumiante. Fisiología digestiva y nutrición. C. D. Church (Ed.). Editorial Acribia.
Zicarelli, F., Calabrò, S., Cutrignelli, M.I., Infascelli, F., Tudisco, R., Bovera, F. and Piccolo, V., 2011. In vitro fermentation characteristics of diets with different forage/concéntrate ratios: comparison of rumen and faecal inocula. Journal Science Food and Agriculture, 91, pp. 1213-1221.
URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v25i3.41276
DOI: http://dx.doi.org/10.56369/tsaes.4127
Copyright (c) 2022 Paulino Sánchez-Santillán, David Hernández-Sánchez, Jerónimo Herrera-Pérez, Serafín Jacobo López Garrido, Nicolás Torres-Salado
This work is licensed under a Creative Commons Attribution 4.0 International License.