INULIN: ITS USE AS A PREBIOTIC IN RUMINANT NUTRITION

David Hernández-Sánchez, Saraí Rico-López, Paulino Sánchez-Santillán, Marco Antonio Ayala-Monter, María Magdalena Crosby-Galván, Serafín Jacobo López-Garrido

Abstract


Background. Prebiotics stimulate the growth and activity of the beneficial microbiota of the digestive tract, improve the health of the host and act as growth promoters. Inulin has prebiotic potential in ruminants, acts as an immunomodulator, improves intestinal health and productive behavior. However, its prebiotic effect on the ruminal microbiota is still unclear, given the little research carried out to date. Objective. This review focuses on the prebiotic effect of inulin and the benefits on the health and productive behavior of ruminants. Methodology. The bibliographic search was carried out in publications of international and national indexed journals, which have a strict peer review, written in English and Spanish, which included information related to inulin, its prebiotic effect, as well as the response of its use in health and ruminant performance. The scientific results of the reviewed articles were compared and contrasted. Main findings. The research analyzed demonstrate the potential use of inulin as a prebiotic in ruminants during lactation and weaning; benefits are shown on intestinal health and reduction in the incidence of diarrhea. In addition, improvements in animal behavior are observed. Inulin improves milk production in cattle. However, the little information available to date does not allow to determine the effect of this prebiotic on the ruminal microbiota. Implications. The information presented in this article shows that the effect of inulin as a prebiotic depends on its degree of polymerization, the age or growth stage of the ruminant, the doses used and, where appropriate, the probiotic population involved. Conclusions. The use of inulin as a prebiotic enhances the probiotic activity of beneficial bacteria, improving intestinal health and ruminant’s performance. However, more research is required on the effect of inulin in the rumen to know its prebiotic potential on the ruminal microbial.

Keywords


Fructans; food additives; microbiota; gut health; rumen.

Full Text:

PDF

References


Afinjuomo, F., Abdella, S., Youssef, S. H., Song, Y. and Garg, S., 2021. Inulin and Its application in drug delivery. Pharmaceuticals, 14(9), pp. 855. https://doi.org/10.3390/ph14090855

Aldrete-Herrera, P. I., López, M. G., Medina-Torres, L., Ragazzo-Sánchez, J. A., Calderón-Santoyo, M., González-Ávila, M. and Ortiz-Basurto, R. I., 2019. Physicochemical composition and apparent degree of polymerization of fructans in five wild agave varieties: Potential industrial use. Foods, 8, pp. 404-415. https://doi.org/10.3390/foods8090404

Angelakis, E., 2017. Weight gain by gut microbiota manipulation in productive animals. Microbial Pathogenesis, 106, pp. 162-70. https://doi.org/10.1016/j.micpath.2016.11.002

Ayala, M. M. A., Hernández, S. D., Pinto, R. R., González, M. S., Bárcena, G. J. R., Hernández, M. O. and Torres, S. N., 2018. Efecto prebiótico de dos fuentes de inulina en el crecimiento in vitro de Lactobacillus salivarius y Enterococcus faecium. Revista Mexicana de Ciencias Pecuarias, 9(2), pp. 346-361. http://dx.doi.org/10.22319/rmcp.v9i2.4488

Ayala-Monter, M. A., Hernández-Sánchez, D., González-Muñoz, S., Pinto-Ruiz, R., Martínez-Aispuro, J. A., Torres-Salado, N., Herrera-Pérez, J. and Gloria-Trujillo, A. 2019a. Growth performance and health of nursing lambs supplemented with inulin and Lactobacillus casei. Asian-Australasian Journal of Animal Sciences, 32(8), pp. 1137-1144. https://doi.org/10.5713/ajas.18.0630

Ayala-Monter, M. A., Hernández-Sánchez, D., Pinto-Ruiz, R., Torres-Salado, N., Martínez-Aispuro, J. A., Bárcena-Gama, J. R. and Caro-Hernández, J. M., 2019b. Efecto inulina y Lactobacillus casei en el comportamiento productivo, variables ruminales y metabolitos sanguíneos en corderos destetados. Agrociencia, 53, pp. 303-317. https://agrociencia-colpos.mx/index.php/agrociencia/article/view/1786

Badel, S., Bernardi, T. and Michaud, P., 2011. New perspectives for Lactobacilli exopolysaccharides. Biotechnology Advance, 29, pp. 54?66. https://doi.org/10.1016/j.biotechadv.2010.08.011

Baines, D., Erb, S., Lowe, R., Turkington, K., Sabau, E., Kuldau, G., Juba, J., Masson, L., Mazza, A. and Roberts, R. 2011. A prebiotic Celmanax TM decreases Escherichia coli O157:H7 colonization of bovine cells and feed-associated cytotoxicity in vitro. BMC Research Notes, 4(1), pp. 110-123. https://doi.org/10.1186/1756-0500-4-110

Biedrzycka, E. and Bielecka, M., 2004. Prebiotic effectiveness of fructans of different degrees of polymerization. Trends in Food Science Technology, 15(3), pp. 170-175. https://doi.org/10.1016/j.tifs.2003.09.014

Biggs, D. R. and Hancock, K. R., 1998. In vitro digestion of bacterial and plant fructans and effects on ammonia accumulation in cow and sheep rumen fluids. Journal of General and Applied Microbiology, 44, pp. 167–171. https://doi.org/10.2323/jgam.44.167

Braz de Oliveira, A. J., Correia, G. R. A., Perez, C. Ch. T., Müller, S. M., Mera, S. L., James, G. P. A., Lanzi, S. G. and Iacomini, M., 2011. Structure and degree of polymerisation of fructooligosaccharides present in roots and leaves of Stevia rebaudiana (Bert.) Bertoni. Food Chemistry, 129, pp. 305-311. https://doi.org/10.1016/j.foodchem.2011.04.057

Capozzi, V., Russo P., Dueñas, M. T., López, P. and Spano, G., 2012. Lactic acid bacteria producing B?group vitamins: a great potential for functional cereals products. Applied Microbiology and Biotechnology, 96(6), pp. 1383?1394. https://doi.org/10.1007/s00253-012-4440-2

Carr, F. J., Chill, D. and Maida, N., 2002. The lactic acid bacteria: A literature survey. Critical Reviews in Microbiology, 28(4), pp. 281-370. https://doi.org/10.1080/1040-840291046759

Chikindas, M. L., Weeks, R., Drider, D., Chistyakov, V. A. and Dicks, L.M., 2018. Functions and emerging applications of bacteriocins. Current Opinion in Biotechnology, 49, pp. 23–28. https://doi.org/10.1016/j.copbio.2017.07.011

Cho, S. S. and Samuel, P., 2009. Fiber ingredients: food applications and health benefits. Boca Raton, FL, USA: CRC Press. pp. 41–55.

Clavo, M. J., Almeyda, M. J. M., Ruiz, F. E. A., 2015. Incorporación de inulina y un complejo enzimático en la ración alimenticia de terneros lactantes Holstein en crianza intensiva. Anales Científicos, 76(2), pp. 376-381. http://dx.doi.org/10.21704/ac.v76i2.804

Corzo, N., Alonso, J., Azpiroz, F., Calvo, M.A., Cirici, M. and Leis, R., 2015. Prebióticos; concepto, propiedades y efectos beneficiosos. Nutrición Hospitalaria, 31(Supl.1), pp. 99-118. https://doi.org/10.3305/nh.2015.31.sup1.8715

Czerkawski, J. W., Lumsden, J., 1971. Invertase activity in the rumen contents of sheep given molassed sugar-beet pulp. Proceedings of the Nutrition Society. 30, pp. 53A–54A. https://agris.fao.org/agris-search/search.do?recordID=US201302276705

Da Silva, S. S., Converti, A., Dimitrov, T. S., Domínguez, J. M., de Souza O. R. P. 2015. Effect of inulin on growth and bacteriocin production by Lactobacillus plantarum in stationary and shaken cultures. International Journal of Food Science and Technology, 50(4), pp. 64-870. https://doi.org/10.1111/ijfs.12711

De Souza, A. P. O., Converti, A., Domínguez, J. M. and de Souza O. R. P., 2017. Stimulating effects of sucrose and inulin on growth, lactate, and bacteriocin productions by Pediococcus pentosaceus. Probiotics and Antimicrobial Proteins. 9, pp. 466–472. https://doi.org/10.1007/s12602-017-9292-8

Di Bartolomeo, F. and Van den Ende, W., 2015. Fructose and fructans: Opposite effects on health?. Plant Foods for Human Nutrition, 70(3), pp. 227–237. https://doi.org/10.1007/s11130-015-0485-6

El-Kholy, W. M., Aamer, R. A. and Ali, A. N. A., 2020. Utilization of inulin extracted from chicory (Cichorium intybus L.) roots toimprove the properties of low-fat synbiotic yoghurt. Annals of Agricultural Sciences, 65, pp. 59-67. https://doi.org/10.1016/j.aoas.2020.02.002

Enan, G., Mamdouh, M., Negm, S., Ismaiel, A. and Abdel-Shaf, S., 2018. Classifcation, antimicrobial potential, industrial applications and probiotic capability of lactic acid bacteria: A review article. Research Journal of Applied Sciences, 13(12), pp. 742–757. https://doi.org/10.36478/rjasci.2018.742.757

Geigerová, M., Bunešová, V., Vlková, E., Salmonová, H. and Vojt?ch R., 2017. Selection of prebiotic oligosaccharides suitable for synbiotic use in calves. Animal Feed Science and Technology, 229, pp. 73–78. http://dx.doi.org/10.1016/j.anifeedsci.2017.05.011

Gensollen, T., Iyer, S. S., Kasper, D. L. and Blumberg, R. S., 2016. How colonization by microbiota in early life shapes the immune system. Science, 352(6285), pp. 539-44. https://doi.org/10.1126/science.aad9378

Gibson, G. R., Scott, K. P., Rastall, R. A., Tuohy, K. M., Hotchkiss, A., Dubert-Ferrandon, A., Gareau, M., Murphy, E. F., Saulnier, D., Loh, G., Macfarlane, S., Delzenne, N., Ringel, Y., Kozianowski, G., Dickman, R., Lenoir-Wijnkoop, I., Wlaker, C. and Buddington, R., 2010. Dietary prebiotics: current status and new definition. Food Science and Technology Bulletin: Functional Foods, 7 (1), pp. 1–19. https://doi.org/10.1616/1476-2137.15880.

Gil, A., 2010. Tratado de nutrición: Composición y calidad nutritiva de los alimentos. Vol. 2. Madrid. Ed. Médica Panamericana. pp. 114.

Gomez, E., Tuohy K., Gibson G., Klinder A. and Costabile A., 2010. In vitro evaluation of the fermentation properties and potential prebiotic activity of Agave fructans. Journal of Applied Microbiology, 108, pp. 2114-2121. https://doi.org/10.1111/j.1365-2672.2009.04617.x

Ha, T. Q. and Hoa, T. M. T., 2016. Selection of lactic acid bacteria producing bacteriocin. Journal of Vietnamese Environment, 8(5), pp. 71–276. https://doi.org/10.13141/jve.vol8.no5.pp271-276

Hall, M. B. and Weimer, P. J., 2016. Divergent utilization patterns of grass fructan, inulin, and other nonfiber carbohydrates by ruminal microbes. Journal of Dairy Science, 99(1), pp. 245–257. http://dx.doi.org/10.3168/jds.2015-10417

Hamala, A., Kotwica, S., Kumala, A. and Rypu?a, K., 2012. Probiotyki alternatywny sposób na leczenie biegunek u ciel?t. (Probiotics an alternative treatment modality for calf diarrhoea in Polish). Weterynaria Terenie, 6(2), pp. 65–68.

Heinrichs, A. J., Jones, C. M., Elizondo-Salazar, J. A. and Terrill, S. J., 2009. Effects of a prebiotic supplement on health of neonatal dairy calves. Livestock Science, 125, pp. 149–154. https://doi.org/10.1016/j.livsci.2009.04.003

Hernández-Sánchez, D., Gómez-Hernández, J. L., Crosby-Galván, M. M., Hernández-Anguiano, A. M., Ramirez-Bribiesca, J. E., Aranda-Ibañez, E., Gonzalez-Muñoz, S. S. and Pinto-Ruiz, R., 2016. Inulin as prebiotic for Lactobacillus salivarius and Enterococcus faecium with probiotic potential in ruminants. Journal of Animal Science, 94(Suppl. 5), pp. 794–795. https://doi.org/10.2527/jam2016-1632

Holscher, H. D., Bauer, L. L., Gourineni, V., Pelkman, C. L., Fahey-Jr, G. C. and Swanson, K. S., 2015. Agave inulin supplementation affects the fecal microbiota of healthy adults participating in a randomized, double-blind, placebo-controlled, crossover trial. The Journal of Nutrition, 145, pp. 2025-32. https://doi.org/10.3945/jn.115.217331

ISAPP, 2016. International Scientific Association of Probiotics and Prebiotics. Prebiotics. [online] Avalible at: https://isappscience.org/for-scientists/resources/prebiotics/. [Accessed 19 de octubre de 2021].

Kamarul, Z. M., Chin, K. F., Rai, V. and Majid, H. A., 2015. Fiber and prebiotic supplementation in enteral nutrition: a systematic review and meta-analysis. World Journal of Gastroenterology, 21(17), 5372–5381. https://doi.org/10.3748/wjg.v21.i17.5372.

Kara, C., Orman, A., Gencoglu, H., Kovanlikaya, A., Meral, Y., Cetin, I. Yibar, A., Kasap, S., Turkmen, I. and Deniz, G., 2012. Effects of inulin supplementation on selected fecal characteristics and health of neonatal Saanen kids sucking milk from their dams. Animal. 6(12), pp. 1947-1954. https://doi.org/10.1017/S1751731112000900

Karimi, R., Azizi, M. H., Ghasemlou, M. and Vaziri, M., 2015. Application of inulin in cheese as prebiotic: fat replacer and texturizer: a review. Carbohydrate Polymer, 119, pp. 85–100. https://doi.org/10.1016/j.carbpol.2014.11.029

Kazemi-Bonchenari, M., Ghasemi1, H. A., Khodaei-Motlagh1, M., Khaltabadi-Farahani1, A. H. and Ilani, M., 2013. Influence of feeding synbiotic containing Enterococcus faecium and inulin on blood metabolites, nutrient digestibility and growth performance in sheep fed alfalfa-based diet. Scientific Research and Essays, (21), pp. 853-857. https://doi.org/10.5897/SRE2013.5402

Kasperowicz, A., Stan-Glaseka, K., Guczynskaa, W., Piknováb, M., Pristašb, P., Nigutováb, K., Javorskýb, P. and Micha?owskia, T., 2010. Fructanolytic and saccharolytic enzymes of the rumen bacterium Pseudobutyrivibrio ruminis strain 3–preliminary study. Folia Microbiologica, 55(4), pp. 329–331. http://www.biomed.cas.cz/mbu/folia/

Lakshminarayanan, B., Guinane C. M., O'Connor, P. M., Coakley, M., Hill, C., Stanton, O'Toole, C. P. W. and Ross, R. P. 2013. Isolation and characterization of bacteriocin?producing bacteria from the intestinal microbiota of elderly Irish subjects. Journal Applied of Microbiology, 114(3), pp. 886-98. https://doi.org/10.1111/jam.12085

Lammens, W., Le Roy, K., Schroeven, L., Van Laere, A., Rabijns, A. and Van den Ende, W., 2009. Structural insights into glycoside hydrolase family 32 and 68 enzymes: functional implications. Journal of Experimental Botany, 60(3), pp. 727-740. https://doi.org/10.1093/jxb/ern333

Lamsal, B. P., 2012. Production, health aspects and potential food uses of dairy prebiotic galacto oligosaccharides. Journal of the Science of Food and Agriculture, 92(10), pp. 2020-2028. https://doi.org/10.1002/jsfa.5712

Lucey, P. M., Lean, I. J., Aly, S. S., Golder, H.M., Block, E., Thompson, J. S. and Rossow, H. A., 2021. Effects of mannan-oligosaccharide and Bacillus subtilis supplementation to preweaning Holstein dairy heifers on body weight gain, diarrhea, and shedding of fecal pathogens. Journal of Dairy Science, 104(4), pp. 4290–4302. https://doi.org/10.3168/jds.2020-19425

Martínez, C. P., Ibáñez, A. L., Hermosillo, O. A.M. and Ramírez, S. H. C., 2012. Use of probiotics in aquaculture. ISRN Microbiology, 2012, pp.1?13. https://doi.org/10.5402/2012/916845

Martini, E., Krug, S. M., Siegmund, B., Neurath, M. F. and Becker, C., 2017. Mend your fences: The epithelial barrier and its relationship with mucosal immunity in inflammatory bowel disease. Cellular and Molecular Gastroenterology and Hepatology, 4(1), pp. 33–46. https://doi.org/10.1016/j.jcmgh.2017.03.007

Mensink, M. A., Frijlink, H. W., van der Voort M., K. and Hinrichs, W. L. J., 2015. Inulin, a flexible oligosaccharide I: review of its physicochemical characteristics. Carbohydrate Polymers, 130, pp. 405–419. https://doi.org/10.1016/j.carbpol.2015.05.026

Moarrab, A., Ghoorchi, T., Ramezanpour, S., Ganji, F. and Koochakzadeh, A. R., 2016. Effect of synbiotic on peformance, intestinal morphology, fecal microbial population and blood metabolites of suckling lambs. Iranian Journal of Applied Animal Science, 6(3), pp. 621-628. http://ijas.iaurasht.ac.ir/article_524633.html

Montagne, L., Pluske, J. R. and Hampson, D. J. 2003. A review of interactions between dietary fibre and the intestinal mucosa, and their consequences on digestive health in young nonruminant animals. Animal Feed Science and Technology, 108, pp. 5-117. https://doi.org/10.1016/S0377-8401(03)00163-9

Moreno-Vilet, L., Garcia-Hernandez, M. H., Delgado-Portales, R. E., Corral-Fernandez, N. E., Cortez-Espinosa, N., Ruiz-Cabrera, M. A. and Portales-Perez, D. P., 2014. In vitro assessment of agave fructans (Agave salmiana) as prebiotics and immune system activators. International Journal of Biological Macromolecules, 63, pp.181–187. https://doi.org/10.1016/j.ijbiomac.2013.10.039

Morris, C. and Morris, G. A., 2012. The effect of inulin and fructo-oligosaccharide supplementation on the textural, rheological and sensory properties of bread and their role in weight management: A review. Food Chemistry, 133(2), pp. 237-248. https://doi.org/10.1016/j.foodchem.2012.01.027

Mueller, M., Reiner, J., Fleischhacker, L., Viernstein, H., Loeppert, R. and Praznik, W., 2016. Growth of selected probiotic strains with fructans from different sources relating to degree of polymerization and structure. Journal of Functional Foods, 24, pp. 264–275. https://doi.org/10.1016/j.jff.2016.04.010

Ortiz, L. T., Rodríguez, M. L., Alzueta, C., Rebolé, A. and Treviño, J., 2009. Effect of inulin growth performance, intestinal tract sizes, mineral retention and tibial bone mineralisation in broiler chickens. British Poultry Science, 50, pp. 325-332. https://doi.org/10.1080/00071660902806962

Ose, R., Hirano, K., Maeno, S., Nakagawa, J., Salminen, S., Tochio, T. and Endo, A., 2018. The ability of human intestinal anaerobes to metabolize different oligosaccharides: Novel means for microbiota modulation?. Anaerobe, 51, pp. 110-119. https://doi.org/10.1016/j.anaerobe.2018.04.018

Parada, V. D., de la Fuente, M. K., Landskron, G., González, M. J., Quera, R., Dijkstra, G., Harmsen, H. J. M., Faber, K. N. and Hermoso, M. A., 2019. Short chain fatty acids (SCFAS)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Frontiers in Immunology, 10, pp. 1-16. https://doi.org/10.3389/fimmu.2019.00277

Rahim, M. A., Saeed, F., Khalid, W., Hussain, M. and Anjum, F.M., 2021. Functional and nutraceutical properties of fructo-oligosaccharides derivatives: a review. International Journal of Food Properties, 24(1), pp. 1588-1602. https://doi.org/10.1080/10942912.2021.1986520

Rebolé, A., Ortiz, L. T., Rodríguez, M. L, Alzueta, C., Treviño, J. and Velasco, S., 2010. Effects of inulin and enzyme complex, individually or in combination, on growth performance, intestinal microflora, cecal fermentation characteristics, and jejunal histomorphology in broiler chickens fed a wheat-and barley-bassed diet. Poultry Science, 89(2), pp.76-286. https://doi.org/10.3382/ps.2009-00336

Ricca, E., Calabrò, V., Curcio, S. and Iorio, G., 2007. The state of the art in the production of fructose from inulin enzymatic hydrolysis. Critical Reviews in Biotechnology, 27(3), pp. 129-145. https://doi.org/10.1080/07388550701503477

Roberfroid, M., 2000. Non digestible oligosaccharides. Critical Reviews in Food Science and Nutrition, 40(6), pp. 461-480. https://doi.org/10.1080/10408690091189239

Roberfroid, M., Gibson, G. R., Hoyles, L., McCartney, A. L., Rastall, R., Rowland, I., Wolvers, D., Watzl, B., Szajewska, H., Stahl, B., Guarner, F., Respondek, F., Whelan, K., Coxam, V., Davicco, M.J., Léotoing, L., Wittrant, Y., Delzenne, N. M., Cani, P. C., Neyrinck, A. M. and Meheust, A., 2010. Prebiotic effects: metabolic and health benefits. British Journal of Nutrition, 104(Suppl. 2), pp. S1-63. https://doi.org/10.1017/S0007114510003363

Romo-Araiza, A. and Ibarra, A., 2020. Prebiotics and probiotics as potential therapy for cognitive impairment. Medical Hypotheses, 134, pp. 1-8. https://doi.org/10.1016/j.mehy.2019.109410

Saleem, A. M., Zanouny, A.I. and Singer., A. M., 2017. Growth performance, nutrients digestibility, and blood metabolites of lambs fed diets supplemented with probiotics during pre- and post-weaning period. Asian-Australas Journal of Animal Science, 30, pp. 523-30. https://doi.org/10.5713/ajas.16.0691

Salman, M., Cetinkaya, N., Selcuk, Z., Genc, B., Acici, M. 2017. Effects of various inulin levels on in vitro digestibility of corn silage, perennial ryegrass (Lolium perenne L.) and common vetch (Vicia sativa L.)/oat (Avena sativa L.) hay. South African Journal of Animal Science. 47 (5): 724-728. http://dx.doi.org/10.4314/sajas.v47i5.16

Shim, Y., Ingale, S., Kim, J., Kim, K., Seo, D., Lee, S., Chae, B. and Kwon, I., 2012. A multi-microbe probiotic formulation processed at low and high drying temperatures: effects on growth performance, nutrient retention and caecal microbiology of broilers. British Poultry Science, 53(4), pp. 482-490. https://doi.org/10.1080/00071668.2012.690508

Shoaib, M., Shehzada, A., Omar, M., Rakha, A., Raza, H. and Sharif, H. R., 2016. Inulin: Properties, health benefits and food applications. Carbohydrates Polymer, 147, pp. 444-54. https://doi.org/10.1016/j.carbpol.2016.04.020

Smulski, S., Turlewicz-Podbielska, H., Wylandowska, A. and W?odarek, J., 2020. Non-antibiotic possibilities in prevention and treatment of calf diarrhea. Journal of Veterinary Research, 64, pp. 119-126. https://doi.org/10.2478/jvetres-2020-0002

Singh, A. K., Kerketta, S., Yogi, R. K., Kumar, A. and Ojha, L., 2017. Prebiotics: the new feed supplement for dairy calf. International Journal of Livestock Research. 7, pp. 1-17. https://dx.doi.org/10.5455/ijlr.20170610051314

Skowronek, M. and Fiedurek, J., 2003. Inulin and inulinases - properties, applications and possible future use. Przemys? Spo?ywczy, 57(3), pp. 18-20. https://www.infona.pl/resource/bwmeta1.element.baztech-article-BPG5-0032-0020

Srikanth, R., Reddy, C. H., Siddartha, G., Ramaiah, M. J. and Uppuluri, K. B., 2015. Review on production, characterization and applications of microbial levan. Carbohydrate Polymers, 120, pp. 102-114. https://doi.org/10.1016/j.carbpol.2014.12.003

Tian, K., Liu, J., Sun, Y., Wu, Y., Chen, J., Zhang, R., He, T. and Dong, G., 2019. Effects of dietary supplementation of inulin on rumen fermentation and bacterial microbiota, inflammatory response and growth performance in finishing beef steers fed high or low-concentrate diet. Animal Feed Science and Technology, 258, pp. 114299. https://doi.org/10.1016/j.anifeedsci.2019.114299

Uyeno, Y., Shigemori, S. and Shimosato, T., 2015. Minireview: Effect of probiotics/prebiotics on cattle health and productivity. Microbes and Environments, 30(2), pp. 126-132. https://www.jstage.jst.go.jp/browse/jsme2 https://doi.org/10.1264/jsme2.ME14176

Vamanu, E. and Vamanu, A., 2010. The influence of prebiotics on bacteriocin synthesis using the strain Lactobacillus paracasei CMGB16. African Journal of Microbiology Research, 4(7), pp. 534–537. https://doi.org/10.5897/AJMR.9000699

Van de Wiele, T., Boon, N., Possemiers, S., Jacobs, H. and Verstraete, W., 2007. Inulin-type fructans of longer degree of polymerization exert more pronounced in vitro prebiotic effects. Journal of Applied Microbiology, 102(2), pp. 452-460. https://doi.org/10.1111/j.1365-2672.2006.03084.x.

Van Hijum, S. A. F. T., Kralj, S., Ozimek L. K., Dijkhuizen, L. and Van Geel-Schutten, I. G. H., 2006. Structure-function relationships of glucansucrase and fructansucrase enzymes from lactic acid bacteria. Microbiology and Molecular Biology Reviews, 70(1), pp. 157 – 176. https://doi.org/10.1128/MMBR.70.1.157-176.2006

Vital, M., Howe, A. C. and Tiedje, J. M., 2014. Revealing the bacterial butyrate synthesis pathways by analyzing (meta)genomic data. mBio, 5(2), pp. 1-11. https://doi.org/10.1128/mBio.00889-14

Walia, K., Sharma, M., Vijay, S. and Shome, B. R., 2019. Understanding policy dilemmas around antibiotic use in food animals & offering potential solutions. Indian Journal of Medical Research, 149(2), pp.107–118. https://doi.org/10.4103/ijmr.IJMR_2_18

Wang, Y., Nan, X., Zhao, Y., Jiang, L., Wang, H., Hua, D., Zhang, F., Wang, Y., Liu, J., Yao, J. and Xiong, B., 2021. Dietary supplementation with inulin improves lactation performance and serum lipids by regulating the rumen microbiome and metabolome in dairy cows. Animal Nutrition, 7, pp. 1189-1204. https://doi.org/10.1016/j.aninu.2021.09.007

Weström, B., Arévalo, S. E., Pierzynowska, K., Pierzynowski, S. G. and Pérez-Cano, F. J., 2020. The immature gut barrier and its importance in establishing immunity in newborn mammals. Frontiers in Immunology, pp. 11:1153. https://doi.org/10.3389/fimmu.2020.01153

Xian-Yang, G., Quian, H. and Zhang, W., 2010. Enhancement of L-lactic acid production in Lactobacillus casei from Jerusalem artichoke tubers by kinetic optimization and citrate metabolism. Journal of Microbiology and Biotechnology, 20(1), pp.101-109. https://doi.org/10.4014/jmb.0905.05032

Yoo, J. Y. and Kim, S. S., 2016. Probiotics and prebiotics: present status and future perspectives on metabolic disorders. Nutrients, 8(3), pp. 173-181. https://doi.org/10.3390/nu8030173

Zlolecki, A., Guczynska, W. and Wojciechowicz, M., 1992. Some rumen bacteria degrading fructans. Letters in Applied Microbiology, 15, pp. 244–247. https://doi.org/10.1111/j.1472-765X.1992.tb00774.x




URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v25i3.41224

DOI: http://dx.doi.org/10.56369/tsaes.4122



Copyright (c) 2022 DAVID HERNANDEZ, Saraí Rico López, Paulino Sánchez Santillán, Marco Antonio Ayala Monter, María Magdalena Crosby Galván, Serafín Jacobo López Garrido

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.