Ricardo Borjas-Ventura, Noel Bello-Medina, Segundo Bello-Amez, Leonel Alvarado-Huaman, Diana Rabaza-Fernandez, Lourdes Tapia Y Figueroa, Viviana Castro-Cepero, Alberto Julca-Otiniano


Background. Cacao is an important source of income, especially for small farmers in developing countries. However, its commercialization, and consequently its production, is threatened by the high levels of cadmium (Cd+2) in grains. Objective. This work was carried out with the objective of determining the differentiated uptake of six cacao genotypes in San Ramón, central Peruvian jungle. Methodology. The treatments consisted of the combination of different doses Cd+2 (0, 50, 100 and 150 ppm) with the genotypes CCN-51, ICS-60, ICS-95, POUND-7 and VRAE-99. Results. The results indicate that POUND 7 absorbed a greater amount of Cd+2 concentrated mainly in the root, while CCN-51 concentrated it mainly in the aerial tissues. In VRAE-99, a significant drop in stem height and diameter was observed, especially at the 150 ppm dose. This genotype was shown to be more sensitive to this metal at high doses (150 ppm) and decreased its photosynthetic rate and its efficiency in the use of water, which was confirmed by the increase in the internal carbon content. Implications. In general, it was found that POUND-7 is a promising genotype that can potentially be used as a rootstock because it is capable of accumulating Cd+2 mainly in the roots. Conclusion. Although cacao is considered a Cd+2 accumulator plant, this heavy metal can negatively affect the physiology of the plant as in the case of VRAE-99. Further studies are suggested to better understand how Cd+2 affects cacao physiology.


cacao; cadmium; genotype; rootstock.

Full Text:



Anjum, S., Tanveer, M., Hussain, S., Bao, M., Wang, L., Khan, I., Ullah, E., Tung, S., Samad, R. and Shahzad, B., 2015. Cadmium toxicity in maize (Zea mays L.): consequences on antioxidative systems, reactive oxygen species and cadmium accumulation. Environmental Science and Pollution Research, 22, pp. 17022-17030. https://doi.org/10.1007/s11356-015-4882-z

Arévalo-Gardini, E., Arévalo-Hernández, C., Baligar, V. and He, Z., 2017. Heavy metal accumulation in leaves and beans of cacao (Theobroma cacao L.) in major cacao growing regions of Peru. Science of the Total Environment, 605-606, pp. 792-800. https://doi.org/10.1016/j.scitotenv.2017.06.122

Asigbaase, M., Dawoe, E., Lomax, B. and Sjogersten, S., 2021. Biomass and carbon stock of organic and conventional agroforests, Ghana. Agriculture, Ecosystems & Environment, 306(1), pp. 170192. https://doi.org/10.1016/j.agee.2020.107192

Bayçu, G., Moustaka, J., Gevrek, N. and Moustakas, M., 2018. Chlorophyll fluorescence imaging analysis for elucidating the mechanism of photosystem II acclimation to Cadmium exposure in the hyperaccumulating plant Noccaea caerulescens. Materials, 11(12), pp. 2580. https://doi.org/10.3390/ma11122580

Batsi, G., Sonwa, D., Mangaza, L., Ebuy, J. and Kahindo, J., 2020. Biodiversity of the cocoa agroforests of the Bengamisa-Yangambi forest landscape in the Democratic Republic of the Congo. Forests, 11(10), pp. 1096. https://doi.org/10.3390/f11101096

Cámara Café Cacao. 2021. Cacao. Lima, Perú. Disponible en https://camcafeperu.com.pe/ES/cacao-peru.php. (Consulta 08 marzo 2021).

Carvalho, J., Toebe, M., Tartaglia, F., Bandeira, C. and Tambara, A., 2017. Leaf area estimation from linear measurements in different ages of Crotalaria juncea plants. Anais da Academia Brasileira de Ciencias, 89(3), pp. 1851-1868. https://doi.org/10.1590/0001-3765201720170077

Gamboa, R., Borjas, R., Saravia, D., Alarcón, G., Alvarado, L. and Julca, A., 2017. Comportamiento en Vivero de Diferentes Patrones y Plantas Injertadas De Cacao (Theobroma cacao L.) en Rio Negro, Satipo, Junín, Perú. Revista Pakamuros, 5(1), pp. 34-42.

García, L. 2010. Catálogo de cultivares de cacao del Perú. MINAGRI-DEVIDA. Disponible en https://www.midagri.gob.pe/portal/download/pdf/direccionesyoficinas/dgca/cultivares_cacao.pdf (Consulta 6 abril 2021).

Genchi, G., Sinicropi, M., Lauria, G., Carocci, A. and Catalano, A., 2020. The effects of cadmium toxicity. International Journal of Environmental Research and Public Health, 17(11), pp. 3782. https://doi.org/10.3390/ijerph17113782

Hatfield, J. and Dold, C., 2019. Water-use efficiency: Advances and challenges in changing climate. Frontiers in Plant Science, 10, pp,103. https://doi.org/10.3389/fpls.2019.00103

He, X., Richmond, M., Williams, D., Zheng, W. and Wu, F., 2019. Exogenous Glycinebetaine Reduces Cadmium Uptake and Mitigates Cadmium Toxicity in Two Tobacco Genotypes Differing in Cadmium Tolerance. International Journal of Molecular Science, 20(7), pp. 1612. https://doi.org/10.3390/ijms20071612

Huybrechts, M., Cuypers, A., Deckers, J., Iven, V., Vandionant, S., Jozefczak, M. and Hendrix, S., 2019. Cadmium and Plant Development: An Agony from Seed to Seed. International Journal of Molecular Science, 20(16), pp. 3971. https://doi.org/10.3390/ijms20163971

Hodge, A., Berta, G., Doussan, C., Merchan, F. and Crespi, M., 2009. Plant root growth, architecture and function. Plant Soil, 321, pp. 153-187. https://doi.org/10.1007/s11104-009-9929-9

Huang, D., Gong, X., Liu, Y., Zeng, G., Lai, C., Bashir, H., Zhou, L., Wang, D., Xu, P., Cheng, M. and Wan, J., 2017. Effect of calcium at toxic concentrations of cadmium plants. Planta, 245, pp. 863-873. https://doi.org/10.1007/s00425-017-2664-1

Indriati, G., Susilawati, M. and Puspitasari, M., 2019. Insect diversity of cocoa (Theobroma cacao L.) plantation under different shade trees in Pakuwon, Sukabumi. IOP Conf. Series: Earth and Environmental Science, 418, pp. 012017. https://doi:10.1088/1755-1315/418/1/012017

Jan, S. and Parray, J., 2016. Approaches to heavy metal tolerance in plants. Springer, New York, USA.

Januškaitien?, I., 2010. Impact of Low Concentration of Cadmium on Photosynthesis and Growth of Pea and Barley. Environmental Research Engineering and Management, 3(53), pp. 24-29.

Meter, A., Atkinson, R. and Laliberte, B., 2019. Cadmium in cacao from Latin America and the Caribbean– A Review of Research and Potential Mitigation Solutions. Bioversity International, Rome, Italy.

Meng, Z., Duan, A., Chen, D., Dassanayake, K., Wang, X., Liu, Z., Liu, H. and Gao, S., 2017. Suitable indicators using stem diameter variation-derived indices to monitor the water status of greenhouse tomato plants. PLOS ONE, 12(2), pp. e0171423. https://doi.org/10.1371/journal.pone.0171423

Ministerio de Agricultura y Riego (MINAGRI)., 2016. Estudio del cacao en el Perú y en el mundo, un análisis de la producción y el comercio. Lima, Perú. Disponible en https://camcafeperu.com.pe/admin/recursos/publicaciones/Estudio-cacao-Peru-y-Mundo.pdf. (Consulta 10 diciembre 2020).

Miranda, E., Sangama, E. & Flores, J., 2017. Evaluación del proceso de germinación de tres clones de cacao (Theobroma cacao L.) para ser usado como patrón bajo las condiciones edafoclimáticas del distrito de Manantay-Ucayali-2015. Revista Tzhoecoen, 9(2), pp. 1-8.

Morales, E., 2018. Indicadores de calidad de panta en viveros forestales del estado de Tamaulipas. Tesis maestría. Universidad Autónoma de Nuevo León, México.

Oliva, M., Rubio, K., Epquin, M., Marlo, G. and Leiva, S., 2020. Cadmium uptake in native cacao trees in agricultural lands of Bagua, Peru. Agronomy, 10(10), pp. 1551. https://doi.org/10.3390/agronomy10101551

Ordoñez, C. and Rangel, O., 2020. Composición florística y aspectos de la vegetación en sistemas agroforestales en cacao (Theobroma cacao-Malvaceae) en el departamento de Huila, Colombia. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 44(173), pp. 1033-1046.

Julca, A., Andia, E., Estelita, S. and Borjas, R., 2018. Comportamiento de Coffea arabica L. injertadas sobre Coffea canephora en presencia de nematodos en viveros. Revistas de Investigaciones Altoandinas, 30(3), pp. 267-280.

Perfus-Barbeoch, L., Leonhardt, N., Vavasseur, A. and Forestier, C., 2002. Heavy metal toxicity: Cadmium permeates through calcium channels and disturbs the plant water status. The Plant Journal, 32, pp. 539-548. https://doi.org/10.1046/j.1365-313X.2002.01442.x

Poschenrieder, C., Gunsé, B. and Barceló, J., 1989. Influence of cadmium on water relations, stomatal resistance, and abscisic acid content in expanding bean leaf. Plant Physiology, 90, 1365-1371.

Rafati Rahimzadeh, M., Rafati Rahimzadeh, M., Kasemi, S. and Moghadamnia, A., 2017. Cadmium toxicity and treatment: An update. Caspian Journal of International Medicine, 8(3), pp. 135-145. https://doi.org/10.22088%2Fcjim.8.3.135

Ramtahal, G., Chang Yen, I., Bekele, I., Bekel, F., Wilson, L., Maharaj, K. and Sukha, B., 2015. Implications of distribution of cadmium between the nibs and testae of cocoa beans on its marketability and food safety assessment. Quality Assurance and Safety of Crops & Foods, 7(5), pp. 731-736. https://doi.org/10.3920/QAS2013.0388

Rehman, F., Khan, F., Varshney, D., Naushin, F. and Rastoji, J., 2011. Effect of cadmium on the growth of tomato. Biology and Medicine, 3(2), pp. 187-190.

Ribeiro, K., Braga, R., Scalco, M. and Horgan, G., 2013. Leaf area estimation of medium size plants using optical metrology. Revista Brasileira de Engenharia Agrícola e Ambiental, 17(6), pp. 595-601.

Schaefer, H., Dennis, S. and Fitzpatrick, S., 2020. Cadmium: strategies to reduce dietary exposure. Journal of Food Science, 85(2), pp. 260-267. https://doi.org/10.1111/1750-3841.14997

Singh, M., Kumar, J., Singh, S., Singh, V., Prasad, S. and Singh, M., 2015. Adaptation strategies of plants against heavy metal: toxicity: A short review. Biochemistry & Pharmacology, 4, pp. 2. http://dx.doi.org/10.4172/2167-0501.1000161

Song, Y., Jin, L. and Wang, X., 2016. Cadmium absorption and transportation pathways in plants. International Journal of Phytoremediation, 19(2), pp. 133-141. https://doi.org/10.1080/15226514.2016.1207598 .

STATISTA., 2020. Global cocoa bean production in 2018/19 and 2020/21, by country. NORC/University of Chicago. Disponible en https://www.statista.com/statistics/263855/cocoa-bean-production-worldwide-by-region/#:~:text=The%20Ivory%20Coast%20and%20Ghana,metric%20tons%20of%20cocoa%20beans (Consulta 20 enero 2021).

Tominaga, J., Shimada, H. and Kawamitsu, Y., 2018. Direct measurement of intracellular CO2 concentration in a gas-exchange system resolves overestimation using the standard method. Journal of Experimental Botany, 69(8), pp. 1981-1991. https://doi.org/10.1093/jxb/ery044

Voora, V., Bermúdes, S. and Larrea, C., 2019. Global market report: Cocoa. International Institute for Sustainable Development.12p. Disponible en https://www.iisd.org/system/files/publications/ssi-global-market-report-cocoa.pdf. (Consulta 08 de enero 2021).

Weraduwage, S., Chen, J., Anozie, F., Morales, A., Weise, S. and Sharkey, T., 2015. The relationship between leaf area growth and biomass accumulation in Arabidopsis thaliana. Frontiers in Plant Science, 6, pp. 117. https://doi.org/10.3389/fpls.2015.00167

Wiszniewska, A., Hanus-Fajerska, E. and Muszynnska, E., 2017. Comparative assessment of response to cadmium in heavy metal-tolerant shrubs cultured in vitro. Water, Air & Soil Pollution, 228, pp. 294. https://doi.org/10.1007/s11270-017-3488-0

Zavala, W., Merino, E. and Peláez, P., 2018. Influencia de tres sistemas agroforestales del cultivo de cacao en la captura y almacenamiento de carbono. Scientia Agropecuaria, 9(4), pp. 493-501.

Zug, K., Huamaní, H., Meyberg, F., Cierjacks, J. and Cierjacks, A., 2019. Cadmium accumulation in Peruvian cacao (Theobroma cacao L.) and opportunities for mitigation. Water, Air & Soil pollution, 230, pp. 72. https://doi.org/10.1007/s11270-019-4109-x

URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v25i3.40002

DOI: http://dx.doi.org/10.56369/tsaes.4000

Copyright (c) 2022 Leonel Alvarado

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.