Amaury Martín Arzate Ferández, Rodrigo Rosas Chávez, Tomás Héctor Norman Mondragón, María del Carmen Corona Rodríguez, José Luis Piña Escutia


Background: Phalaenopsis is an orchid of economic importance worldwide. Its natural reproduction is slow due to its monopodial growth (a single apical meristem). Therefore, it is necessary to make in vitro propagation protocols more efficient. Objectives: 1. To evaluate three concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D) in combination with three of 6-Benzyl Adenine (BA) in the in vitro induction of protocormic like bodies (PLBs) at from leaf explants of Phalaenopsis sp. var. Dudu, under three periods of darkness, 2. To test the effect of four concentrations of honey water and fermented sap, as organic complexes (CO), on the in vitro multiplication rate of PLBs. Methodology: Two tests were carried out: Test 1. Three concentrations of 2,4-D (3, 4, 5 mgL-1) and three of BA (1, 2, 3 mgL-1) were evaluated in leaf explants of Phalaenopsis sp., combined with three periods of darkness 14, 21, 28 days in a completely randomized design with a trifactorial arrangement (27x10). Test 2. Four concentrations of honey water and fermented sap (0, 10, 50, 100 mlL-1) were evaluated, arranged in a completely random design (8x10). Results: The best combination of plant growth regulators (PGR) for the formation of PLBs (14 PLBs/explant) was with 5 mgL-1 of 2,4-D and 2 mgL-1 of BA, during 21 days of darkness. Regarding the use of CO, the addition of 10 mlL-1 of fermented sap and 50 mlL-1 of honey water induced the highest rates of multiplication of PLBs/explant (41.4 and 39.6 PLBs). The regeneration of Phalaenopsis sp. from PLBs occurred in 225 days. Implications: The results obtained in the two trials are the basis for establishing a protocol for the multiplication of Phalaenopsis sp. Conclusions: The combination of 5 mgL-1 of 2,4-D and 2 mgL-1 of BA produced the highest number of PLBs/explant (14) at 21 days of darkness and subsequent light exposure for six weeks. On the other hand, the addition of 10 mlL-1 of fermented sap and 50 mlL-1 of honey water as CO induced the highest rates of PLBs multiplication (41.4 and 39.6 PLBs, respectively). 100% survival of seedlings was observed after 21 days of acclimatization, under greenhouse conditions.


Protocormic like bodies (PLBs); 2,4-dichlorophenoxyacetic acid (2,4-D); 6-benzyladenine (BA); honey water; fermented sap; somatic embryogenesis (ES).

Full Text:



Al-Khayri, J.M., 2001. Optimization of biotin and thiamine requirement for somatic embryogenesis of date palm (Phoenix dactylifera L.). In Vitro Cell Device Biology Plant, [e-journal] (37) pp. 453-456. [Accessed 18 July 2017].

Arnold, S.V., Sabala, I., Bozhhov, P., Dyachok, J. and Filonova, L., 2002. Developmental pathways of somatic embryogenesis. Plant Cell, Tissue, and Organ Culture, [e-journal] (69), pp. 233–249. [Accessed 15 may 2017]

Arroyo-Cruz, C. and Reynoso-Ocampo, C.A., 2016. Efecto de las bajas temperaturas en las características fisicoquímicas del pulque (Agave salmiana Xamini). Revista de Ciencias Naturales y Agropecuarias, [e-journal] 3(6) pp. 19-24. [Accessed 20 August 2017].

Arzate-Fernández, AM. and Mejía-Franco, R., 2011. Embryogenic capacity of induced calli on zygotic embryonic axis of Agave angustifolia Haw. Revista Fitotecnia Mexicana, 34(2), pp. 101-106.

Balilashaki, K., Naderi, R., Kalatari, S. and Soorni, A., 2014. Micropropagation of cv. Cool ‘Breeze’ with using of flower stalk nodes and leaves of sterile obtained from nodes cultures. International Journal of Farming and Allied Sciences, [e-journal] 3(7), pp. 823-829. [Accessed 10 Jun 2017].

Bunik, V.I. and Fernie A.R., 2009. Metabolic control exerted by the 2-oxoglutanate dehydrogenase reaction a cross-kingdom comparison of the crossroad between energy production and nitrogen assimilation. Biochemistry Journal, [e-journal] (422) pp. 405-421. [Accessed 18 Jul. 2017].

Celestino, C., Hernández, I., Carneros, E., López-Vela, D. and Toribio, M., 2005. La embriogénesis somática Phalaenopsis amabilis como elemento central de la biotecnología forestal. Investigación Agraria: Sistema de Recursos Forestales, [e-jurnal)] 14(3)pp. 345-357. [Accessed 12 May 2017].

Cheng, J.T. and Chang, W.C., 2006. Directed somatic embryogenesis and plant regeneration from leaf of. Biologia Plantarum, [e-journal] 50(2) pp. 169-173. [Accessed 20 jul 2017].

Chien, Kai-Wen, Chandra, A.D., Tsay, Hsin-Sheng, Chang, and Chin-An., 2015. Elimination of mixed ‘Odontoglossum ringspot’ and ‘Cymbidium mosaic’ viruses from Phalaenopsis hybrid ‘V3’ through shoot-tip culture and protocorm-like body selection. Crop Protection, [e-journal] (67) pp. 1-6. [Accessed 19 August 2017].

Chu, C., Chung, Y., Shium, Y., Lin, W., and Hung, C., 2012. Plastid TRNL intron polymorphisms among Phalaenopsis species used for identifying the plastid genome type of Phalaenopsis hybrids. Scientia Horticulturae, [e-journal] (142) pp. 84–91. [Accessed 20 Jun 2017].

Chugh S., Guha, S., and Rao U.I., 2009. Micropropagation of orchids: A review on the potential of different explants Scientia Horticulturae, [e-journal] (122) pp. 507–520. [Accessed 11 Jul 2017].

David D., Gansau, J.A. and Abdullah, J.O., 2008. Effect of NAA and BAP on protocorm proliferation of Borneo Scented Orchid, Vanda helvola. AsPac Journal Molecular Biology Biotechnologist, [e-journal] 18(1) pp. 221-224. [Accessed 22 jul 2019].

Feria, M., Chávez, M. and Quiala, E., 2007. Establecimiento in vitro de Phalaenopsis. Biotecnología Vegetal, [e-journal] 7(1) pp. 27-33. Corpus ID: 85796510 [Accessed 22 May 2018].

Flores, M.A., Coyotl, H.J., Hernández, T.M., Velásquez, J.L. and Hernández, A., 2006. Gestión de calidad de una miel obtenida a partir de aguamiel de maguey pulquero (Agave salmiana). IV Congreso Internacional XV Congreso Nacional de Ingeniería Bioquímica, [e-journal] [Accessed 25 August 2019].

Freire, S.M., 2003. Aspectos básicos de la embriogénesis somática. Biotecnología Vegetal, [e-journal]3(4) pp. 195 – 209. [Accessed 29 August 2018].

Goyer, A., 2010. Thiamine in plants: aspects of its metabolism and functions. Phytochemistry, [e-journal] (71) pp. 1615-1624. [Accessed 20 Jun 2019].

Griesbach, R.J., 2002. Development of Phalaenopsis Orchids for the Mass-Market. Trends in new crops and new uses. Proceedings of the Fifth National Symposium, Atlanta, Georgia, USA. November, 10-13, 2001. J. Janick and A. Whpkey, ed. Alexandria, USA. pp. 458-465. [23 August 2018].

Jia-Hua, Feng and Jen-Tsung, Chen, 2014. A Novel in vitro Protocol for Inducing Direct Somatic Embryogenesis in Phalaenopsis aphrodite without Taking Explants. The Scientific World Journal, [e-journal], pp. 1-7. [17 de junio de 2017].

Kohlenbach, H.W., 1978. Comparative somatic embryogenesis. In: Thorpe, T. A. (Ed.). Frontiers of Plant Tissue Culture, University of Calgary Press, pp. 59-66.

Körbes, A.P., and Droste, A., 2005. Carbon sources and polyethylene glycol on sobean somatic embryo conversion. Pesquisa Agropecuária Brasileira, [e-journal] (40) pp. 211-216. [Accessed 25 May 2017].

Košir, P., Škof, S. and Luthar, Z, 2004. Direct shoot regeneration from nodes of Phalaenopsis orchids. Acta Agriculturae Slovenica, [e-journal] 83(2) pp. 233-242. [Accessed 16 Jun 2018].

Matías-Luis, G., Peña-Caballero, V., Reyna-González, W., Domínguez-Díaz, L.R. and Martínez-Hernández, J.J., 2019. Valor nutricional y medicinal del pulque. Journal of Negative and No Positive Results, [e-journal]. 4(12) pp. 1291-1303. [20 May 2020].

Musharof, M.H., Ravi, K., Pham, T.V., Budi, W., Songjun, Z. and Teixeira da Silva, J., 2013. The Application of Biotechnology to Orchids. Critical Reviews in Plant Sciences, [e-journal] 32(2) pp. 69-139. [Accessed 27 August 2018].

Paek, K.Y., Hahn, E.J. and Park, S.Y., 2011. Micropropagation of Phalaenopsis orchids via protocorms and protocorm-like bodies. Plant Embryo Culture: Methods and Protocols, Methods in Molecular Biology, [e-journal] 7(10) pp. 293-306. [AccessedAugust 2019].

Pant, M., 2013. Brahama Kamal-the spiritually revered, scientifically ignored medicinal plant. Current Science, [e-journal] 104(6) pp. 685-686. [Acccessed 21 May 2017].

Real, C.S., Moreno, M.D. and Menchaca, G.R.A., 2007. Cultivo de protocormos de Mormodes maculata var. Unicolor L.O. Williams (Orchidaceae). Foresta Veracruzana, [e-journal] 9(1) pp. 55-58.

Reyes D., J. I., 2017a. Clonación de Agave angustifolia HAW. mediante técnicas biotecnológicas. [e-book] 92 p. [Accessed 25 Jun 2018].

Reyes-Díaz, J.I., Arzate-Fernández, A.M., Piña-Escutia, J.L. and Vázquez-García, L.M., 2017b. Media culture factors affecting somatic embryogenesis in Agave angustifolia Haw. Industrial Crops and Products, (108) pp. 81-85.

Salazar-Mercado S.A., Amaya-Nieto A. Z. and Barrientos-Rey F., 2013. Evaluación de diferentes medios de cultivo in vitro en el desarrollo de híbridos de Phalaenopsis (Orchidaceae). Revista Colombiana de Biotecnología, [e-journal] 15(2) pp.97-105. [Accessed 10 Jul 2017].

SEDICI, 2017. Cultivo in vitro. Disponible en [Accessed 25 February 2017].

Sheelavanthmath, S.S., Murthy, H.N., Hema, P.E., Hahn, E.J. and Paek, K. Y., 2005. High frequency of protocorm like bodies (PLB’s) induction and plant regeneration from protocorm and leaf sections of Aerides crispum. Scientia Horticulturae [e-journal] 106(3) pp. 395–401. [Accessed 28 Jul 2018].

Sheoran, O.P; Tonk, D.S; Kaushik, L.S; Hasija, R.C and Pannu, R.S., 1998. Statistical Software Package for Agricultural Research Workers. Recent Advances in information theory, Statistics & Computer Applications by D.S. Hooda & R.C. Hasija Department of Mathematics Statistics, CCS HAU, Hisar pp. 139-143.

Sinha, P. and Jahan, M.A.A., 2011. Clonal propagation of Phalaenopsis amabilis (L.) BL. Cv. ‘Golden Horizon’ through in vitro culture of leaf segments. Journal of Scientific and Industrial Research, [e-journal] 46 (2) pp. 163-168. [Accessed 25 September 2017].

So-Young, P., Hosakatte, N. M. and Kee-Yoeup, P., 2001. Rapid propagation of Phalaenopsis from floral stalk-derived leaves. In vitro Cellular & Developmental Biology Plant, [e-journal] (38) pp. 168–172. [Accessed 28 May 2019].

Sujjaritthurakarn, P. and Kanchanapoom, K., 2011. Efficient direct protocorm-like bodies induction of dwarf Dendrobium using thidiazuron. Notulae Scientia Biologicae, [e-journal] 3(4) pp. 88-92. [Accessed 30 April 2019].

Tan, A.M., Danial, M., Mahmood, M. and Subramaniam, S., 2012. Exquisite protocol of callus induction and protocorm-like bodies (PLB’s) regeneration of Dendrobium Sonia-28. Australian Journal of Crop Science, [e-journal] 6(5) pp. 793-800. [Accessed 21 Jun 2018].

Tanaka, M. and Sakanishi Y., 1978. Factors affecting the growth of in vitro cultured lateral buds from Phalaenopsis flower stalks. Scientia Horticulturae, (8) pp. 169-178. [Accessed 18 July 2017].

Tirado, J.M., Naranjo, J.E. and Atehortua, L., 2005. Propagación in vitro de Phalaenopsis (Orchidaceae) a partir de protocormos, mediante el sistema de inmersión temporal "RITA". Revista Colombiana de Biotecnología, 7(1) pp. 25-31.

Viñas, M. and Jiménez, V.M. 2011. Factores que influyen en la embriogénesis somática in vitro de Palmas (Arecaceae). Revista. Colombiana de Biotecnología, 13(2) pp. 229-242. [Accessed 22 Jul 2019].



Copyright (c) 2022 María del Carmen Corona Rodríguez

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.