Laura Rodríguez-Bustos, Leopoldo Galicia, Bruno Chavez-Vergara, Ofelia Beltrán-Paz


Background. Soil ecological functions such as C mineralization, enzyme activity, and microbial biomass determine the maintenance of soil fertility in the short and long term. Microbial activity is a sensitive indicator of changes in soils under agricultural management. Objective. Evaluate the metabolic response of soil microbial communities in two temperate maize agroecosystems with different management intensities. Methodology. This study evaluated total soil nutrient concentrations, C mineralization, and microbial metabolic activity by comparing two agricultural regimes. The first one is an intensive regime (IR) characterized by the exclusive use of synthetic fertilizers in a maize monoculture. The second one is a traditional regime (TR) characterized by the use of mixtures of organic matter (maize and bean residues and manure) with synthetic fertilizers in a rotation system of maize and beans. Physical, chemical, and biological properties were tested in the laboratory, and the specific enzyme activity (SEA) and metabolic quotient (qCO2) were calculated. Results. Total soil C concentration was 19% higher in TR (26.6 mg g-1) than in IR (5.1 mg g-1); total C biomass was 30% higher in TR (279 mg C g-1) versus IR (83.9 mg C g-1), and potential C mineralization was 40% higher in TR (356 µg C g-1 d-1) than IR (214 µg C g-1 d-1); in contrast, SEA and qCO2 were lower in TR versus IR. These results support the hypothesis that the microbial community is more efficient under TR than IR because it produces extracellular and intracellular enzymes while growing in biomass. Implications. The present study provides new information about the effect of agricultural management on microbial activity, which is important for farmers not only in Mexico Highlands but also in any agricultural scenario exposed to changes in management practices. Conclusions. Assessment of biological soil properties is a sensitive indicator of changes in soil properties induced by management. Metabolic indices are suitable for the evaluation of ecological functions in cultivated soils.


carbon cycle; enzyme activity; maize; metabolic quotient; soil microbial activity; Mexico highlands

Full Text:



Acosta-Martínez, V., Perez-Guzman, L., Johnson, J., 2019. Simultaneous determination of ?-glucosidase, ? glucosaminidase, acid phosphomonoesterase, and arylsulfatase activities in a soil sample for a biogeochemical cycling index. Applied Soil Ecology, 142, pp.72-80. https://doi.org/10.1016/j.apsoil.2019.05.001.

Addiscott, T., Dexter, A., 1994. Tillage and crop residue management effects on losses of chemicals from soils. Soil & Tillage Research, 30, pp.125–168. https://doi.org/10.1016/0167-1987(94)90003-5.

Alef, K., Nannipieri, P., 1995. Methods in Applied Soil Microbiology and Biochemestry, San diego, California: Academic Press.

Arcand, M., Levy-Booth, D., Helgason, B., 2017. Resources legacy of organic and conventional management differentiates soil microbial carbon use. Frontiers in Microbiology, 8, pp.1-17. https://doi.org/10.3389/fmicb.2017.02293

Beck-Broichsitter, S., Fleige, H. Goebel, M.O., Dörner, J., Bachmann, J., Horn, R., 2016. Shrinkage potential and pore shrinkage capacity of differently developed volcanic ash soils under pastures in southern Chile. Journal of Plant Nutrition and Soil Science, 179, pp.799-808. https://doi.org/10.1002/jpln.201600110

Beltrán-Paz, O., 2017. Dinámica de nutrientes del suelo bajo cultivo intensivo de alfalfa en la región ganadera del Valle de Cuatro Ciénegas, Coahuila. MSc D Universidad Michoacana de San Nicolás de Hidalgo.

Bobbink, R., Heil, G., Trigo, N., 2003. Ecology and Man in Mexico’s Central Volcanoes Area, The Netherlands: Kluwer Academic Publishers.

Bouyocus, G.J., 1962. Direction for making mechanical analysis of soil by hydrometer method. Soil Science, 42, pp. 25-30. https://doi.org/10.1097/00010694-193609000-00007.

Brady, N.C., Weil, R.R., 2010. Elements of the Nature and Properties of Soils, New Jersey: Pearson Education International.

Bray, R., Kurtz, LT., 1945. Determination of total, organic and available forms of phosphorus in soils. Soil Science 59, pp. 39-46. http://dx.doi.org/10.1097/00010694-194501000-00006.

Ciarkowska, K., Solek-Podwika, K., Wieczorek, J., 2014. Enzyme activity as an indicator of soil-rehabilitation processes at a zinc and lead ore mining and processing area. Journal of environmental Management, 132, pp. 250-256. https://doi.org/10.1016/j.jenvman.2013.10.022.

Chavarría, D., Pérez-Brandan, C., Serri, D., Meriles, J.M., Restovich, S., Andriulo, A.,Vargas-Gil, S., 2018. Response of soil microbial communities to agroecological versus conventional systems of extensive agriculture. Agriculture, Ecosystems and Environment, 264, pp.1-8. https://doi.org/10.1016/j.agee.2018.05.008.

Chávez-Vergara, B., Merino, A., Vázquez-Marrufo, G., García-Oliva, F., 2014. Organic matter dynamics and microbial activity during decomposition of forest floor under two native neotropical oak species in a temperate deciduous forest in Mexico. Geoderma, 235-236, pp. 133-145. https://doi.org/10.1016/j.geoderma.2014.07.005.

Chávez-Vergara, B., 2015. Efecto de la calidad de la materia orgánica asociada a dos especies de Quercus sobre la descomposición del mantillo en un bosque Templado Deciduo. PhD D Universidad Nacional Autónoma de México.

Curtaz, F., Stanchi, S., D’amico, M. E., Filippa, G., Zanini, E., Freppaz, M., 2014. Soil evolution after land-reshaping in mountains areas (Aosta Valley, NW Italy). Agriculture, Ecosystems & Environment, 199, pp. 238-248. https://doi.org/10.1016/j.agee.2014.09.013.

Demessie, A., Ram-Singh, B., Lal, R., 2013. Soil carbon and nitrogen stocks under chronosequence of farm and traditional agroforestry land uses in Gambo District, Southern Ethiopia. Nutrient Cycling in Agroecosystems, 95, pp. 365-375. https://doi.org/10.1007/s10705-013-9570-0.

Eakin, H., Appendinni, K., Sweeney, S., Perales, H., 2015. Correlates of Maize Land and Livelihood Change Among Maize Farming Households in Mexico. World Development, 70, pp. 78-91. https://doi.org/10.1016/j.worlddev.2014.12.012.

Etchevers, J., Saynes, V., Sánchez, M., 2015. Manejo sustentable del suelo para la producción agrícola. Ciencia, Tecnologia e Innovación, pp. 63-79.

Fioretto, A., Papa, S., Pellegrino, A., Ferringno, A., 2009. Microbial activities in soils of a Mediterranean ecosystem in different successional stages. Soil Biology & Biochemistry, 41, pp. 2061-2068. https://doi.org/10.1016/j.soilbio.2009.07.010.

Flores-Sánchez, A., Pastor, A., Lantinga, E., Rossing, W., Kropff, J., 2013. Exploring Maize-Legume Intercropping Systems in Southwest Mexico. Agroecology and Sustainable Food Systems, 37, pp.739-761. https://doi.org/10.1080/21683565.2013.763888.

Folke, C., Carpenter, S., Elmqvist, T., Gunderson, L., Holling, C.S., Walker, B., 2002. Resilience and Sustainable Development: Building Adaptive Capacity in a World of Transformations. Journal of the Human Environment, 31(5), pp. 437-440. https://doi.org/10.1579/0044-7447-31.5.437.

García-Oliva, F., 2005. Algunas bases del enfoque ecosistémico en la restauración. In: O. Sánchez, Temas sobre restauración ecológica, Ciudad de México: SEMARNAT , pp 101-112.

Gómez-Tovar, L., Martin, L., Gómez-Cruz, M., Mutersbaugh, T., 2005. Certified organic agriculture in Mexico: Market connections and certification practices in large and small producers. Journal of Rural Studies, 21 (4), pp. 461-474. https://doi.org/10.1016/j.jrurstud.2005.10.002.

Guo, JH., Liu, XJ., Zhang, Y., Shen, JL., Han, WX., Zhang, WF., Chrristie, K., Goulding, K., Vitousek, PM., Zhang, F., 2010. Significant Acidification in Major Chinese Croplands. Sciene, 327, pp. 1008-1010. https://doi.org/10.1126/science.1182570.

INEGI., 2007. Censo Agrícola, Ganadero y Forestal 2007. Tabulados básicos. Consultado en: http://www.inegi.org.mx/est/contenidos/proyectos/agro/ca2007/resultados_agricola/default.aspx.

INEGI., 2015. Estadísticas a propósito del Día Mundial del Suelo: Datos Nacionales. Aguascalientes, México.

Jenkinson, D., Brookes, P., Powlson, D., 2004. Measuring soil microbial biomass. Soil Biology and Biochemistry, 36, pp. 5-7. https://doi.org/10.1016/j.soilbio.2003.10.002.

Jordanova, N., 2017. Applications in Pedology, Environmental Science and Agriculture, London: Academic Press.

Kallenbach, C., Grandy, A. S., 2011. Controls over soil microbial biomass responses to carbon amendments in agricultural systems: A meta-analysis. Agriculture, Ecosystems and Environment, 144, pp. 241–252. https://doi.org/10.1016/j.agee.2011.08.020.

Khaliq, A., Kaleem-Abbasi, M., Jammu, A., 2014. Improvements in the physical and chemical characteristics of degraded soils supplemented with organic–inorganic amendments in the Himalayan region of Kashmir, Pakistan. CATENA, 126, pp. 209-219. https://doi.org/10.1016/j.catena.2014.11.015.

Li, S., Li, H., Yang, C., Wang, Y., Xue, H., Niu, Y., 2016. Rates of soil acidification in tea plantations and possible causes. Agriculture, Ecosystems and Environment, 233, pp. 60-66. https://doi.org/10.1016/j.agee.2016.08.036

Lima, R., da Silca, A., Giarola, N., da Silva, A., Rolim, M., 2017. Changes in soil compaction indicators in response to agricultural field traffic. Biosystems Engineering, 162, pp. 1-10. https://doi.org/10.1016/j.biosystemseng.2017.07.002.

Liu, Z., Rong, Q., Zhou, W., Liang, G., 2017. Effects of inorganic and organic amendment on soil chemical properties, enzyme activities, microbial community and soil quality in yellow clayey soil. Plos ONE, 12, pp.1-20. https://doi.org/10.1371/journal.pone.0172767.

McAffe, K., 2017. Beyond techno-science: Transgenic maize in the fight over Mexico’s future. Geoforum, 39, pp. 148-160. https://doi.org/10.1016/j.geoforum.2007.06.002.

Monteiro, F., Ferreira, N., de Oliveira, N., Ávila, K., 2003. Simplified version of the sodium salicylate method for analysis of nitrate in drinking waters. Analytica Chimica Acta, 477, pp. 125-129. https://doi.org/10.1016/S0003-2670(02)01395-8.

Muñoz, J.A., Oleschko-Lutkova, K., Velasquez-Valle, MA., Velazquez-García, J., Martínez-Menes, M., Figueroa-Sandoval B., 2011. Propiedades físicas de un Andosol mólico bajo labranza de conservación. Revista Mexicana de Ciencias Agrícolas, 2, pp. 151-162.

Nachtergaele, F., Biancalani, R., Petri, M., 2011. Land degradation. In: FAO. 2011. The state of the world's land and water resources for food and agriculture (SOLAW), Rome and London: United Nations, pp. 4-14.

Panettieri, M., Knicker, H., Murillo, J., Madejón, E., Hatcher, P., 2014. Soil organic matter degradation in an agricultural chronosequence under different tillage regimes evaluated by organic matter pools, enzymatic activities and CPMAS 13C NMR. Soil Biology and Biochemistry, 78, pp. 170-181. https://doi.org/10.1016/j.soilbio.2014.07.021.

Perret, S., Dorel, M., 1999. Relationships between land use, fertility and Andisol behaviour: Examples from volcanic islands. Soil Use and Management, 15 (3), pp.144-149. https://doi.org/10.1111/j.1475-2743.1999.tb00080.x

Raiesi, F., Beheshti, A., 2014. Soil specific enzyme activity shows more clearly soil responses to paddy rice cultivation than absolute enzyme activity in primary forests of northwest Iran. Applied Soil Ecology, 75, pp. 63–70. https://doi.org/10.1016/j.apsoil.2013.10.012.

Rao, M., Acevedo, F., Diez, M., Gianfreda, I., 2014. Enzymes as useful tools for environmental purposes. Chemosphere, 107, pp. 145-162. https://doi.org/10.1016/j.chemosphere.2013.12.059.

Robertson, P., Coleman, D., Bledsoe, C., Sollins, P., 1999. Standard soil methods for long-term ecological research (LTER), London: Oxford University Press.

Rodier, J., Legube, B., Merlet, N., 2010. Análisis del agua, 9, Barcelona: OMEGA.

Schlichting, E., Blume, H-P., Leinweber, P., 1966. Bodenkundliches Praktikum, Hamburg und Berlin: Verlag Paul Parey.

Siebe, C., Jahn, R., Stahr, K. 2006. Manual para la descripción y evaluación ecológica de suelos en el campo, Ciudad de México: Sociedad Mexicana de la Ciencia del Suelo.

Sinsabaugh, RL., Follstad, JJ., 2011. Ecoenzymatic stoichiometry of recalcitrant organic matter decomposition: the growth rate hypothesis in reverse. Biogeochemistry, 102, pp. 31-43. https://doi.org/10.1007/s10533-010-9482-x.

Squire, G.R., Hawes, C., Valentine, T., Young, M.W., 2015. Degradation rate of soil function varies with trajectory of agricultural intensification. Agriculture, Ecosystems and Environment, 202, pp. 160-167. https://doi.org/10.1016/j.agee.2014.12.004.

Sweeney, S., Steigerwald, D., Davenport, F., Eakin, H., 2013. Mexican maize production: Evolving organizational and spatial structures since 1980. Applied Geography, 39, pp. 78-92. https://doi.org/10.1016/j.apgeog.2012.12.005.

Takahashi, T., Dahlgren, R.A., 2016. Nature, properties and function of Aluminum-humus complexes in volcanic soils. Geoderma, 263, pp. 110-121. https://doi.org/10.1016/j.geoderma.2015.08.032

Tarrasón, D., Ravera, F., Reed, M., Dougill, A., Gonzalez, L., 2016. Land degradation assessment through an ecosystem services lens: Integrating knowledge and methods in pastoral semi-arid systems. Journal of Arid Environment, 124, pp. 205-213. https://doi.org/10.1016/j.jaridenv.2015.08.002.

Ugolini, F.C., Dahlgren, R.A., 2002. Soil development in volcanic ash. Global Environmental Research, 6, pp. 69-81.

Van Reeuwijk, L. P., 1992. Procedures for Soil Analysis, 9, Wageningen, The Netherlands: International Soil Reference and Information Centre (ISRIC).

Vance, E., Brookes, P., Jenkinson, D., 1987. An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 19, pp. 703-707. https://doi.org/10.1016/0038-0717(87)90052-6.

Waldrop, MP., Balser, TC., Firestone, MK., 2000. Linking microbial community composition to function in a tropical soil. Soil Biology and Biochemistry, 32, pp. 1837–1846. https://doi.org/10.1016/j.geoderma.2014.07.005

World reference base for soil resources (WRB)., 2015. International soil classification system for naming soils and creating legends for soil maps, Rome, Italy: United Nations.

Yi, J., Zeng, Q., Mei, T., Zhang, S., Li, Q., Wang, M., Tan, W. 2021. Disentangling drivers of soil microbial nutrient limitation in intensive agricultural and natural ecosystems. Science of the Total Environment, 806, 150555. https://doi.org/10.1016/j.scitotenv.2021.150555.

URN: http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v25i3.39118

DOI: http://dx.doi.org/10.56369/tsaes.3911

Copyright (c) 2022 Laura Rodríguez-Bustos, Leopoldo Galica, Bruno Chavez-Vergara, Ofelia Beltrán-Paz

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.