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SUMMARY 

Background: Tomatoes, as a nutraceutical food abundant in vitamins and antioxidants, play a significant role 

in reducing the risk of various diseases. Integrating advanced agricultural practices, such as using 

nanoparticles instead of traditional fertilizers, alongside techniques like grafting and deficit irrigation, offers a 

promising approach to improving their overall quality. Nevertheless, addressing the challenge of water 

scarcity remains a critical concern in modern agriculture. Objective: To evaluate the growth, yield, and fruit 

quality of grafted tomato hybrids under deficit irrigation conditions, along with the application of copper 

nanoparticles. Methodology: This research analyzes the effect of grafting, grafting + 100 ppm CuNPs 

(copper nanoparticles), and 100 ppm CuNPs on the growth, yield, and quality of Saladette-type tomato 

hybrids (Solanum lycopersicum L.) Aquiles, Cuauhtémoc, Mesías, and Moctezuma under deficit irrigation 

(DI) conditions, DI75, and DI50. The variables included plant height (PH), stem diameter (SD), leaf area 

(LA), average fruit weight (AFW), total fruit weight (TFW), and water use efficiency (WUE). The general 

fruit quality parameters were polar diameter (PD), equatorial diameter (ED), fruit firmness (FF), total soluble 

solids (TSS) content, β-carotene, and lycopene content. Results: The Aquiles hybrid achieved a remarkable 

AFW. The Cuauhtémoc hybrid showed higher β-carotene and lycopene contents. Grafted plants promoted 

higher AFW, TFW, WUE, and FF. The use of CuNPs induced a higher TSS content, β-carotene, and 

lycopene. The DI50 affected PH, but WUE was higher without TFW changes, increasing TSS and lycopene 

content. Implications: The loss of fruit quality in grafted tomato plants is compensated using CuNPs and 

deficit irrigation. Conclusion: Grafting is a highly effective method for increasing tomato yield, while the 

application of CuNPs significantly enhances the fruit's internal quality. Furthermore, employing deficit 

irrigation at 50% (DI50) maximizes water use efficiency, improving specific quality attributes without 

negatively impacting overall yield. 

Key words: agronomic management; carotenoids; water scarcity; nanotechnology; tomato quality. 

 

 
† Submitted September24, 2024 – Accepted January 14, 2025.  http://doi.org/10.56369/tsaes.5882 

  Copyright © the authors. Work licensed under a CC-BY 4.0 License.  https://creativecommons.org/licenses/by/4.0/ 

ISSN: 1870-0462. 

ORCID = L.E. Tamayo-Ruiz: https://orcid.org/0000-0002-5377-8233; E. Neri-Ramírez: https://orcid.org/0000-0003-1547-9942; M. 

Cabrera-de La Fuente: https://orcid.org/0000-0002-3292-2793; M. Rocandio-Rodríguez: https://orcid.org/0000-0002-8296-0843; Y. 

R. Moreno-Ramírez: https://orcid.org/0000-0002-1580-1471; R. Delgado Martínez: https://orcid.org/0000-0001-9945-5985 

 

mailto:tamayo.eduardo@outlook.com
mailto:rdelgado@docentes.uat.edu.mx
mailto:eneri@docentes.uat.edu.mx
mailto:mrocandio@docentes.uat.edu.mx
mailto:yrmoreno@docentes.uat.edu.mx
mailto:cafum7@yahoo.com
http://doi.org/10.56369/tsaes.5882
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-5377-8233
https://orcid.org/0000-0003-1547-9942
https://orcid.org/0000-0002-3292-2793
https://orcid.org/0000-0002-8296-0843
https://orcid.org/0000-0002-1580-1471
https://orcid.org/0000-0001-9945-5985


Tropical and Subtropical Agroecosystems 28 (2025): Art. No. 032                                                                      Tamayo-Ruiz et al., 2025 

2 

RESUMEN 

  

Antecedentes: Los tomates, al ser un alimento nutracéutico rico en vitaminas y antioxidantes, reducen el 

riesgo de enfermedades. La incorporación de nanopartículas en lugar de fertilizantes en prácticas agrícolas 

como el injerto y el riego deficitario puede mejorar integralmente su calidad. Sin embargo, es importante 

considerar el desafío de la escasez de agua en el panorama agrícola actual. Objetivo: Evaluar el crecimiento, 

rendimiento y calidad del fruto de híbridos de tomate injertados en condiciones de riego deficitario, junto con 

la aplicación de nanopartículas de cobre. Metodología: Esta investigación analiza el efecto del injerto, injerto 

+ 100 ppm de CuNPs (nanopartículas de cobre) y 100 ppm de CuNPs en el crecimiento, rendimiento y 

calidad de híbridos de tomate tipo Saladette (Solanum lycopersicum L.) Aquiles, Cuauhtémoc, Mesías, 

Moctezuma en condiciones de riego deficitario (RD), RD75 y RD50. Las variables incluyeron altura de planta 

(AP), diámetro de tallo (DT), área foliar (AF), peso promedio de fruto (PPF), peso total de fruto (PTF) y 

eficiencia en el uso de agua (EUA). Los parámetros generales de calidad del fruto fueron diámetro polar (DP), 

diámetro ecuatorial (DE), firmeza de fruto (FF), contenido de sólidos solubles totales (SST), β-caroteno y 

licopeno. Resultados: El híbrido Aquiles obtuvo un PPF notable. El híbrido Cuauhtémoc presentó mayores 

contenidos de β-caroteno y licopeno. Las plantas injertadas promovieron mayor PPF, PTF, EUA y FF. El uso 

de CuNPs indujo un mayor contenido de SST, β-caroteno y licopeno. El DI50 afectó la AP, pero la EUA fue 

mayor sin cambios en el PTF, también aumentando el contenido de SST y licopeno. Implicaciones: La 

aplicación de CuNPs y el riego deficitario compensan la pérdida de calidad de fruto en plantas de tomate 

injertadas. Conclusión: Los injertos pueden ser utilizados para aumentar el rendimiento, y el uso de CuNPs 

promueve el aumento de la calidad interna del fruto. El uso de DI50 potencialmente mejora algunos aspectos 

de calidad con un uso eficiente del agua sin afectar el rendimiento. 

Palabras clave: calidad de tomate; carotenoides; escasez hídrica; manejo agronómico; nanotecnología. 

 

INTRODUCTION 

 

The tomato is a key vegetable crop in terms of 

cultivated area, covering 4.8 million hectares with 

an annual production of 182 million tons (Anwar, 

Fatima, and Mattoo, 2019). Classified as a 

nutraceutical vegetable due to its high content of 

vitamins and antioxidants (Waliszewski and 

Blasco, 2010), the tomato has earned the 

designation of a "functional food." This status 

stems from its association with a reduced risk of 

developing certain types of cancer, inflammatory 

processes, and cardiovascular diseases (Campbell 

et al., 2004; Giovannetti et al., 2012). However, 

the quality of tomatoes is influenced by crop 

management practices, including grafting, the 

application of fertilizer nanoparticles, and 

irrigation strategies (Campbell et al., 2004; Guo et 

al., 2021; Wu et al., 2021).  

 

Grafting is a plant growth modification technique 

that increases yield (Melnyk et al., 2015; 

Ramírez-Jiménez, Ribeiro Marchiori and 

Córdoba-Gaona, 2021). In horticulture, cucurbits 

and solanaceous species are commonly grafted 

(Gaion, Braz, and Carvalho, 2018), grafting 

allows tolerance/resistance to abiotic factors such 

as salinity, temperature, and water stress (Singh et 

al., 2020), as well as biotic factors like pathogens 

and viruses, depending on the graft-scion 

combination, other characteristics of the grafted 

plant can influence excessive vegetative growth, 

delayed fruit harvest, and physiological disorders. 

Grafting techniques are often combined with 

strategies like deficit irrigation to optimize 

resource use and enhance crop performance. 

However, for successful outcomes under water 

stress conditions, the rootstock must exhibit high 

vigor to maintain its effectiveness and support 

plant growth (Al-Harbi, Hejazi, and Al-Omran, 

2017), additionally, certain rootstocks are more 

suitable for tolerance to water deficit conditions 

(Al-Harbi et al., 2018; Al-Harbi, Al-Omran and 

Alharbi, 2018). 

 

Deficit irrigation is an alternative that arises due 

to water scarcity and aims to maximize water 

productivity, resulting in water savings (Tahi et 

al., 2007; Lu et al., 2019), in geographic areas 

with limited water resources, it becomes an 

applicable alternative due to the reduction in the 

actual volume of irrigation required (Patanè, 

Tringali and Sortino, 2011). This technique 

induces changes in stomatal activity, leading to 

increased efficiency in water use for irrigation. 

Although yield losses may occur due to water 

deficit, they are often compensated by an increase 

in the content of total soluble solids, vitamin C, 

and antioxidant compounds, which are highly 

valued for commercial purposes (Castel Sánchez 

and González Altozano, 2003; Agbna et al., 2017; 

Khapte et al., 2019). 

 

In addition, nanoparticles (NPs), particularly 

metallic NPs, have emerged as a technological 

alternative in agriculture, offering potential 
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benefits surpassing those of organic and synthetic 

fertilization management (Lira-Saldivar et al., 

2018; Raliya et al., 2018). Previous studies have 

documented the viability and effects of applying 

NPs at different doses, including their impact on 

quality, yield, increased aerial biomass, and 

changes in photosynthetic capacity in tomato 

crops (León-silva et al., 2018; López-Vargas et 

al., 2018; Morales-Espinoza et al., 2019). 

Specifically, the foliar application of copper NPs 

is aimed at enhancing antioxidant activity in fruits 

(Rajput et al., 2018; Hernández-Hernández et al., 

2019), and improving overall fruit quality 

(Hernández-Hernández et al., 2018; López-Vargas 

et al., 2018), either alone or in combination with 

other elements. It has also been shown to reduce 

pathogen severity and promote tolerance in crops 

(Cumplido-Nájera et al., 2019; Lopez-Lima et al., 

2021). Therefore, the objective of this research 

was to evaluate the growth, yield, and fruit quality 

of grafted tomato hybrids under deficit irrigation 

conditions, along with the application of copper 

nanoparticles.  

 

MATERIALS AND METHODS 

 

Location, plant material, and seedling 

 

The experiment was conducted in a 60 m² 

greenhouse located at the Facultad de Ingeniería y 

Ciencias, Universidad Autónoma de Tamaulipas, 

in Ciudad Victoria, Tamaulipas, at coordinates 

23°42’57.35” N and 99°9’7.96” W. The 

evaluation period spanned from November 2019 

to April 2020. The greenhouse, of the sawtooth 

type, was oriented north to south and equipped 

with manually operated side blinds. During the 

experiment, the environmental conditions inside 

the greenhouse averaged a temperature of 37 °C, 

with extremes ranging from a maximum of 47 °C 

to a minimum of 21.8 °C. The average relative 

humidity was 77.1%, reaching a maximum of 

94.2% and a minimum of 55.6%. 

 

The plant material used in the experiment 

consisted of tomato hybrids: Aquiles, 

Cuauhtémoc, Mesías, and Moctezuma (Harris 

Moran, Davis, CA, USA). These hybrids had 

indeterminate growth and produced Roma-type 

fruits. The seedlings of the hybrids were grafted 

onto the Colosus RZ F1 hybrid (Rijk Zwaan, The 

Netherlands). To obtain the seedlings, 

germination trays were used, which were filled 

with pre-hydrated Peatmoss as the substrate. The 

rootstock seeds were sown five days after the 

hybrid seeds. The resulting seedlings were 

transplanted into black polyethylene bags with a 

capacity of 14 L, filled with sandy-loam soil 

texture. The soil had a pH of 7.8 and an electrical 

conductivity of 1.8 mS cm-1. 

 

Management and application of copper 

nanoparticles 

 

The CuNPs used in the experiment had an average 

diameter of 25 nm, a chemical purity of 99.8%, 

and a spherical shape (SkySpring Nanomaterials). 

An atomizer was used to apply two doses of a 

solution of CuNPs with a concentration of 100 

ppm, and they were distributed in two 

applications. The first foliar application (10 mL) 

was performed 30 days after transplantation 

(DAT), and the second foliar application (10 mL) 

was conducted 46 DAT, at which point most of 

the plants had started fruit development. The 

CuNPs were applied as a foliar from a zenith 

angle, and each experimental unit was temporarily 

isolated with polyethylene.  

 

Establishment of irrigation levels 

 

Daily irrigation was performed until the 

conclusion of the experiment using a drip 

irrigation system. The water volume applied was 

determined based on the specific treatment 

requirements, accounting for row spacing (0.80 

m), plant spacing (0.50 m), cultivation 

coefficients (0.45, 0.75, 1.15), and 

evapotranspiration (ETP). The ETP was 

calculated daily using the EVAPO application, 

developed by Maldonado, Valeriano, and de 

Souza Rolum (2019). This application is based on 

the reference ETP equation, Penman-Monteith 

FAO 56 (Allen et al., 2006), and utilizes real-time 

data obtained from the database of "The POWER 

Project" at NASA Langley Research Center 

(LaRC). The applied irrigation levels were 50% 

and 75% of the theoretical estimates of the crop's 

water requirements. In this context, the 50% 

(DI50) represents the minimum threshold within 

the moderate range of water deficit, while the 

75% (DI75) is set 5% above the lower limit of the 

percentage considered appropriate for optimal 

crop development (Chai et al., 2016; Takács et al., 

2020). The Steiner nutrient solution (Steiner, 

1961) was used to supply nutrients to the plants. 

 

Plant height, stem diameter, and foliar area in 

the productive stage 

 

The measurement of these variables was 

conducted 132 days after the initiation of all 

treatments, with measurements taken across all 

experimental units. Plant height was determined 
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using a measuring tape graduated in centimeters, 

measuring from the plant base to the apical 

meristem. Stem diameters were measured 10 cm 

above the plant base to avoid variations caused by 

root emergence on the stem and the increased 

thickness at the graft union zone. Digital vernier 

calipers graduated in millimeters, were used for 

precise stem diameter measurements. 

 

The leaf area was assessed by photographing 

mature leaves located below the second cluster 

using a Nikon D5100 digital camera. The captured 

images were analyzed with the ImageJ software, 

employing a 30 cm graduated ruler as a reference 

tool. The leaf area was expressed in square 

centimeters (cm²). 

 

Average fruit weight, yield, and water use 

efficiency 

 

The average fruit weight was recorded in grams 

(g). Harvested fruits were placed in labeled paper 

bags corresponding to the respective treatments 

and weighed using a digital scale with a precision 

of 0.01 g. The yield was calculated by summing 

the total weight of fruits produced per plant, 

encompassing fruits from the first to the sixth 

bunch. The yield was expressed in kilograms per 

plant (kg/plant).  

 

Water use efficiency was determined using the 

water productivity index, which represents the 

quantity of fruit produced per cubic meter of 

irrigation water applied. This index was expressed 

in kilograms of fruit per cubic meter (kg/m³) of 

irrigation water. 

 

Polar, equatorial diameter, and fruit firmness 

 

The size or caliber of the fruit was determined by 

measuring the polar and equatorial diameters. 

Measurements were taken using a vernier caliper 

graduated in millimeters (mm), and the 

measurements were represented in mm to 

determine the fruit firmness, a manual 

penetrometer was used. An 8 mm diameter strut 

was applied to the fruit, and the firmness was 

measured in units of kilogram per square 

centimeter (kg cm-2). The sampled fruits were 

representative of each bunch, healthy, and ripe, 

following standard parameters (USDA, 2005). 

 

Total solid soluble content, lycopene, and beta-

carotene 

 

The concentration of soluble solids was 

determined using the same fruit samples analyzed 

for firmness. Measurements were taken with a 

SperScientific model 300054 digital 

refractometer, and the results were expressed in 

degrees Brix (°Brix). For pigment analysis, red 

fruits from clusters 2, 3, and 4 were collected 

from all experimental units across treatments. 

Each fruit was homogenized in 200 mL beakers, 

which were kept on ice in a cooler to prevent 

pigment degradation. Pigment extraction and 

quantification were then performed in triplicate, 

following the methodology outlined by Nagata 

and Yamashita (1992). Absorbance readings were 

taken using a spectrophotometer BioMate 3. The 

units for beta-carotene and lycopene were 

represented in micrograms per 100 grams of fresh 

fruit weight (μg 100g-1 FFW).  

 

Statistical analysis 

 

The experiment was designed as a completely 

randomized trial with four replications, following 

a factorial arrangement of 4 × 4 × 2. The first 

factor was the tomato hybrids: Aquiles, 

Cuauhtémoc, Mesías, and Moctezuma. The 

second factor consisted of four agricultural 

management techniques: foliar application of 

CuNPs per plant, grafted plants, grafted plants 

with foliar application of CuNPs per plant, and a 

control. The third factor included two levels of 

deficit irrigation (DI): DI75 and DI50. Statistical 

analyses were performed using SAS 9.0 software. 

Analysis of variance (ANOVA) was applied to 

evaluate the overall significance of the treatments. 

Tukey's test (p = 0.05) was used for multiple 

comparisons of means for the hybrids and 

agronomic treatments, while the Least Significant 

Difference (LSD) test (p = 0.05) was applied to 

the deficit irrigation treatments due to the absence 

of additional comparisons. Additionally, principal 

component analysis (PCA) was employed to 

visualize the relationships between the hybrids, 

agronomic management techniques, and levels of 

deficit irrigation. PCA was instrumental in 

correlating variables and evaluating the 

contribution of the combined factors to the 

observed outcomes. 

 

RESULTS AND DISCUSSION 

 

Crop growth and yield 

 

The plant height variable showed no interaction 

between factors (Supplementary table 1); 

however, the comparison of means separately 

between factors (Figure 2) illustrates the 

contribution of the factors to the variable. Thus, 

the hybrid AQ exhibited a significant difference 
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with greater plant height compared to the other 

evaluated hybrids. On the other hand, the control 

plants and those with the application of CuNPs as 

agronomic management showed similar heights, 

which distinguished them from the grafted plants 

and the combination of grafted plants + CuNPs 

(Table 1). Copper nanoparticles, as well as other 

metals, can promote plant height (Priyanka et al., 

2019), however, in this experimental case, the 

difference was determined using grafted plants 

rather than the foliar application of 100 ppm of 

CuNPs, a dosage that did not interfere with stem 

elongation, a fact confirmed by the combination 

of agronomic management practices. On the other 

hand, DI75 showed greater height compared to 

DI50. In addition to the advantages associated 

with growth and photosynthesis in tomato crops, 

copper in other forms based on nanometric size 

reduces the progression of fungal diseases such as 

Fusarium oxysporum, which gives it an additional 

advantage as an effective fungicide (Deng et al., 

2023). 

 

The total fruit weight, analyzed as a yield 

variable, did not exhibit any type of interaction 

among the studied factors (Supplementary Table 

1). However, a significant difference was 

observed for the agronomic management factor, 

with the highest total weight accumulation (Figure 

2). Specifically, grafted plants demonstrated the 

best performance in this variable, indicating that 

the applied dose of CuNPs did not contribute 

significantly to total fruit weight. In contrast, 

other studies have shown that the application of 

different copper doses can positively influence 

fruit yield and plant growth. However, these 

studies utilized copper in forms combined with 

chitosan and hydrogels applied to the soil, rather 

than isolated nanoparticles (Hernández et al., 

2016). The remaining factors in this study 

displayed similar behavior, showing no significant 

differences in their effects on total fruit weight. 

 

Water use efficiency showed a significant 

difference in agronomic management and deficit 

irrigation level aspects (Figure 3). In the first 

factor, grafted plants exhibited a higher index of 

the WUE variable. However, the control 

treatment, as well as plants with CuNPs 

application, showed a similar performance, except 

for the grafts. In the case of DI50, it had a 

superior response compared to DI75. 

 

The irrigation volume for the DI75 and DI50 

treatments remained below the daily 

evapotranspiration rate (Figure 4). However, on 

January 27, 46 days after transplantation and the 

onset of fruit filling, the irrigation volume for the 

DI75 treatment slightly exceeded the 

evapotranspiration values, while the DI50 

treatment consistently remained below them. 

Despite this, the soil in the DI75 treatment 

retained a stable moisture level throughout the 

evaluation period. In contrast, the soil in the DI50 

treatment exhibited signs of dehydration on days 

with elevated temperatures, suggesting a potential 

stress effect due to insufficient water availability. 

 

Leaf area was significantly influenced by the 

interaction between hybrids and agronomic 

management, as well as the interaction between 

agronomic management and deficit irrigation 

levels (Supplementary Table 1). Furthermore, 

stem diameter and average fruit weight 

demonstrated a three-way interaction involving 

hybrids, agronomic management techniques, and 

deficit irrigation levels (Supplementary Table 1), 

highlighting the complex interplay of these 

factors in determining plant performance and 

yield characteristics. 

 

 

 
Figure 2. Contribution of factors to the plant height variable, Tukey (p=0.05) for the first eight treatments. 

LSD test for the last two treatments. Hybrids; AQ: Aquiles, CU: Cuauhtémoc, ME: Mesías, MO: 

Moctezuma. Agronomic treatments; T: control, CuNPs: copper nanoparticles (100 ppm), G: grafted, 

G+CuNPs: grafted + copper nanoparticles (100 ppm). DI50: 50% deficit irrigation, DI75: 75% deficit 

irrigation. 
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Table 1. Mean of morphological and yield variables of grafted tomato plants (G), application of copper 

nanoparticles (CuNPs), grafting combined with nanoparticles (G+CuNPs) under deficit irrigation (DI) 

conditions. 

DI T H PH 

(cm) 

FA 

(cm2) 

SD 

(mm) 

AWF 

(g) 

TWF 

(kg plant-1) 

WUE 

(kg m3) 

DI75 C AQ 240.25 ±5.07 162.65 ±6.01 10.05 ±0.77 87.41 ±3.19 2.62 ±0.18 19.53 ±1.36 

CU 208.25 ±10.18 216.79 ±9.24 7.18 ±0.21 71.55 ±4.26 2.08 ±0.21 15.50 ±1.55 

ME 208.75 ±18.78 291.31 ±21.59 8.18 ±0.32 85.40 ±9.10 2.64 ±0.23 19.71 ±1.75 

MO 220.75 ±22.83 339.81 ±2.64 8.25 ±0.56 70.60 ±1.73 2.25 ±0.16 16.80 ±1.17 

CuNPs AQ 245.75 ±5.81 332.19 ±44.23 7.83 ±0.21 88.88 ±6.03 2.70 ±0.49 20.13 ±3.65 

CU 200.00 ±13.64 241.03 ±20.77 7.80 ±0.33 74.79 ±2.41 2.28 ±0.16 16.99 ±1.22 

ME 208.25 ±4.84 345.87 ±30.04 7.20 ±0.33 73.02 ±3.36 2.28 ±0.31 16.98 ±2.28 

MO 222.75 ±9.41 346.49 ±34.83 8.13 ±0.54 57.85 ±12.30 2.00 ±0.39 14.94 ±2.91 

G AQ 200.00 ±5.48 609.43 ±32.36 9.50 ±0.77 77.83 ±2.99 2.85 ±0.19 21.24 ±1.43 

CU 170.25 ±11.45 693.70 ±35.22 9.48 ±0.77 69.75 ±4.29 2.73 ±0.22 20.34 ±1.62 

ME 196.00 ±11.15 631.27 ±25.44 9.93 ±0.48 78.72 ±2.70 3.02 ±0.17 22.50 ±1.27 

MO 188.50 ±4.86 757.22 ±23.85 9.58 ±0.26 88.27 ±6.00 2.61 ±0.18 19.49 ±1.31 

G+CuNPs AQ 193.50 ±8.91 452.53 ±24.72 9.90 ±0.60 90.84 ±6.01 2.50 ±0.21 18.64 ±1.53 

CU 196.75 ±7.76 635.88 ±22.87 9.58 ±0.23 68.71 ±5.82 2.39 ±0.09 17.80 ±0.70 

ME 196.00 ±11.15 571.81 ±32.40 9.23 ±0.24 76.18 ±2.74 2.69 ±0.25 20.07 ±1.87 

MO 188.50 ±4.86 618.08 ±25.98 10.03 ±0.25 78.79 ±4.58 2.55 ±0.20 19.00 ±1.52 

DI50 C AQ 219.50 ±8.07 131.87 ±4.34 10.00 ±0.22 86.32 ±5.34 2.30 ±0.10 25.64 ±1.08 

CU 210.75 ±13.38 145.20 ±8.66 8.90 ±0.64 61.30 ±13.21 2.03 ±0.38 22.59 ±4.20 

ME 208.75 ±4.89 170.89 ±10.70 9.05 ±0.49 86.75 ±3.44 2.66 ±0.11 29.69 ±1.21 

MO 195.50 ±14.52 153.54 ±5.38 7.78 ±0.38 76.45 ±3.28 2.26 ±0.20 25.16 ±2.28 

CuNPs AQ 211.75 ±1.89 179.72 ±4.05 9.85 ±0.21 87.90 ±5.83 2.44 ±0.06 27.20 ±0.62 

CU 195.50 ±5.33 192.51 ±16.08 8.50 ±0.36 75.91 ±4.65 2.26 ±0.19 25.21 ±2.11 

ME 193.50 ±1.19 209.82 ±21.06 8.53 ±0.35 80.53 ±3.90 2.66 ±0.10 29.67 ±1.11 

MO 203.00 ±0.58 251.94 ±20.77 8.65 ±0.35 83.20 ±2.55 2.48 ±0.06 27.65 ±0.64 

G AQ 186.75 ±12.98 457.50 ±18.60 8.48 ±0.39 87.54 ±3.22 2.58 ±0.15 28.73 ±1.69 

CU 155.00 ±6.63 521.01 ±26.25 10.60 ±0.58 76.60 ±3.30 2.55 ±0.04 28.46 ±0.46 

ME 171.75 ±8.41 410.57 ±32.26 9.73 ±0.36 75.49 ±7.12 2.62 ±0.01 29.27 ±0.09 

MO 170.00 ±10.40 550.72 ±51.63 9.88 ±0.19 78.41 ±4.35 2.89 ±0.12 32.25 ±1.38 

G+CuNPs AQ 199.25 ±5.25 333.75 ±27.93 9.05 ±0.34 93.77 ±3.76 2.48 ±0.18 27.71 ±2.01 

CU 176.00 ±4.64 499.53 ±33.29 8.23 ±0.13 86.65 ±6.09 2.80 ±0.12 31.25 ±1.34 

ME 181.50 ±6.89 482.31 ±33.67 8.95 ±0.17 67.96 ±6.56 2.36 ±0.05 26.38 ±0.59 

MO 158.00 ±5.76 494.28 ±30.01 10.48 ±0.40 72.21 ±2.48 2.32 ±0.06 25.87 ±0.63 

PH: plant height, FA: foliar area, SD: stem diameter, AWF: average fruit weight, TWF: total weight fruit, 

WUE: water use efficiency. ±: standard error of the mean. 

 

 

 
Figure 2. Contribution of factors to the total fruit weight variable. Tukey (p=0.05) for the first eight 

treatments. LSD test for the last two treatments. Hybrids; AQ: Aquiles, CU: Cuauhtémoc, ME: Mesías, MO: 

Moctezuma. Agronomic treatments; T: control, CuNPs: copper nanoparticles (100 ppm), G: grafted, 

G+CuNPs: grafted + copper nanoparticles (100 ppm). DI50: 50% deficit irrigation, DI75: 75% deficit 

irrigation. 
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Figure 3. Isolated comparison of the contribution of factors for the water use efficiency variable. Tukey 

(p=0.05) for the first eight treatments. LSD test for the last two treatments. Hybrids; AQ: Aquiles, CU: 

Cuauhtémoc, ME: Mesías, MO: Moctezuma. Agronomic treatments; T: control, CuNPs: copper nanoparticles 

(100 ppm), G: grafted, G+CuNPs: grafted + copper nanoparticles (100 ppm). DI50: 50% deficit irrigation, 

DI75: 75% deficit irrigation. 

 

 

 
Figure 4. Dynamics of crop evapotranspiration and applied irrigation. The left y-axis represents the irrigation 

of the applied levels. The right y-axis represents crop evapotranspiration.  

 

 

External and internal fruit quality 

 

The average fruit calibre determined by polar 

diameter (Figure 5) and equatorial diameter 

(Figure 6), was not influenced by interactions 

between factors (Supplementary Table 2). 

However, agronomic management led to changes 

in the polar diameter of the fruit (Table 2), while 

the equatorial diameter was modified by the 

hybrid factor and agronomic management 

(Supplementary Table 2). Fruit firmness was 

influenced by the interaction between the factors: 

hybrid and deficit irrigation. Total soluble solids 

were influenced by treatments and deficit 

irrigation. Regarding the content of lycopene and 

beta-carotene in the fruits, a three-way interaction 

of the factors: hybrid, treatment, and deficit 

irrigation was observed (Supplementary Table 2). 

The application of nanoparticles has been 

associated with quality variables, which has 

allowed the increase of firmness, vitamin C 

content, and antioxidant capacity, as well as 

bioactive compounds such as flavonoids and 

lycopene (Hernández et al., 2016, López-Vargas 

et al., 2018). However, the dynamics of lycopene 

and beta-carotene content are influenced by the 

deficit of applied irrigation, as it contributes 

significantly to the nutritional quality of the crop 

from the increase of total soluble solids as well as 

carotenoids (He et al., 2024). 
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Table 2. Mean of internal and external quality and major carotenoids of grafted tomato plants (G), 

application of copper nanoparticles (CuNPs), grafting combined with nanoparticles (G+CuNPs) under 

deficit irrigation levels (DI75, DI50). 

DI T H 
ED 

(mm) 

PD 

(mm) 
FF 

TSS 

(°Brix) 

LY 

(ug 100 ffw-1) 

BE 

(ug 100 ffw-1) 

DI75 C AQ 55.51 ±1.52 66.06 ±3.44 2.31 ±0.17 3.71 ±0.10 97.34 ±2.75 72.35 ±3.87 

CU 54.14 ±1.02 63.35 ±1.06 2.28 ±0.06 3.44 ±0.14 84.60 ±2.50 76.62 ±2.87 

ME 56.40 ±1.64 64.95 ±1.95 2.43 ±0.09 4.18 ±0.08 101.87 ±6.39 72.63 ±3.42 

MO 54.26 ±1.87 65.37 ±1.19 2.23 ±0.06 3.55 ±0.25 104.05 ±7.10 71.94 ±4.70 

CuNPs AQ 59.58 ±1.54 68.43 ±0.69 2.32 ±0.11 3.74 ±0.16 81.70 ±2.40 78.01 ±0.28 

CU 54.29 ±1.25 64.71 ±1.95 2.04 ±0.11 3.71 ±0.15 117.63 ±6.17 82.08 ±2.71 

ME 53.86 ±2.01 62.85 ±1.84 2.27 ±0.08 3.76 ±0.23 88.59 ±6.00 71.39 ±4.69 

MO 51.46 ±3.11 57.05 ±5.87 2.40 ±0.17 3.91 ±0.22 97.98 ±4.62 83.01 ±3.26 

G AQ 60.91 ±1.48 68.63 ±1.82 2.89 ±0.19 3.26 ±0.18 85.70 ±2.01 60.31 ±2.51 

CU 56.57 ±0.74 65.92 ±0.66 2.61 ±0.12 3.21 ±0.07 92.20 ±1.99 57.31 ±1.40 

ME 59.66 ±1.31 66.70 ±1.81 2.60 ±0.11 3.28 ±0.21 84.32 ±1.16 61.37 ±2.93 

MO 60.39 ±1.70 67.52 ±1.25 2.75 ±0.09 3.15 ±0.07 68.85 ±2.55 63.52 ±1.51 

G+CuNPs AQ 61.69 ±0.77 70.17 ±1.33 2.33 ±0.21 3.44 ±0.08 92.15 ±1.29 70.78 ±2.12 

CU 58.59 ±0.74 65.58 ±0.56 2.51 ±0.12 3.05 ±0.10 89.26 ±1.87 67.21 ±0.98 

ME 59.30 ±0.27 66.06 ±0.71 2.68 ±0.12 3.60 ±0.25 66.36 ±1.85 57.37 ±1.31 

MO 56.97 ±1.67 61.91 ±3.80 2.36 ±0.09 3.23 ±0.21 89.06 ±5.34 61.97 ±0.95 

DI50 C AQ 55.51 ±1.52 63.17 ±2.22 2.22 ±0.12 4.21 ±0.09 87.17 ±8.47 73.86 ±5.88 

CU 54.14 ±1.02 56.29 ±6.17 2.21 ±0.17 4.71 ±0.13 117.88 ±6.30 73.66 ±1.30 

ME 56.40 ±1.64 62.01 ±1.18 2.35 ±0.04 5.03 ±0.27 82.87 ±1.77 62.01 ±0.53 

MO 54.26 ±1.87 61.67 ±1.58 2.23 ±0.08 4.74 ±0.25 117.82 ±9.19 67.27 ±1.92 

CuNPs AQ 59.58 ±1.54 58.04 ±4.75 2.19 ±0.05 4.18 ±0.14 114.65 ±4.83 73.37 ±1.34 

CU 54.29 ±1.25 62.30 ±1.76 2.23 ±0.04 4.55 ±0.17 148.03 ±5.06 82.27 ±0.98 

ME 53.86 ±2.01 64.03 ±0.86 2.43 ±0.11 4.75 ±0.14 93.59 ±2.53 64.91 ±2.52 

MO 51.46 ±3.11 67.21 ±0.88 2.04 ±0.08 4.24 ±0.09 121.12 ±7.28 74.38 ±3.17 

G AQ 60.91 ±1.48 64.70 ±0.50 2.64 ±0.14 4.07 ±0.04 85.36 ±5.78 78.37 ±3.72 

CU 56.57 ±0.74 64.51 ±1.19 2.54 ±0.14 4.30 ±0.20 137.60 ±8.52 81.49 ±1.87 

ME 59.66 ±1.31 64.38 ±2.72 3.19 ±0.18 4.51 ±0.28 76.53 ±5.65 50.55 ±2.06 

MO 60.39 ±1.70 62.83 ±2.03 2.65 ±0.11 4.44 ±0.27 122.77 ±2.00 77.06 ±3.72 

G+CuNPs AQ 61.69 ±0.77 66.10 ±0.79 2.49 ±0.12 4.26 ±0.19 105.74 ±5.48 70.29 ±2.16 

CU 58.59 ±0.74 67.89 ±1.30 2.60 ±0.19 3.94 ±0.18 87.13 ±6.99 57.72 ±1.49 

ME 59.30 ±0.27 67.24 ±5.00 3.16 ±0.11 4.01 ±0.19 61.05 ±1.58 47.16 ±0.43 

MO 56.97 ±1.67 64.73 ±1.22 2.48 ±0.17 3.71 ±0.30 70.35 ±3.56 55.40 ±1.74 

ED: ecuatorial diameter, PD: polar diameter, FF: fruit firmness, TSS: total soluble solids, LY: lycopene 

concentration, BE: beta carotene concentration, ±: standard error of the mean. 

 

 

 
Figure 5. Isolated comparison of the contribution of factors for the polar fruit diameter variable. Tukey 

(p=0.05) for the first eight treatments. LSD test for the last two treatments. Hybrids; AQ: Aquiles, CU: 

Cuauhtémoc, ME: Mesías, MO: Moctezuma. Agronomic treatments; T: control, CuNPs: copper nanoparticles 

(100 ppm), G: grafted, G+CuNPs: grafted + copper nanoparticles (100 ppm). DI50: 50% deficit irrigation, 

DI75: 75% deficit irrigation. 
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Figure 6. Isolated comparison of the contribution of factors for the polar fruit diameter variable. Tukey 

(p=0.05) for the first eight treatments. LSD test for the last two treatments. Hybrids; AQ: Aquiles, CU: 

Cuauhtémoc, ME: Mesías, MO: Moctezuma. Agronomic treatments; T: control, CuNPs: copper nanoparticles 

(100 ppm), G: grafted, G+CuNPs: grafted + copper nanoparticles (100 ppm). DI50: 50% deficit irrigation, 

DI75: 75% deficit irrigation. 

 

 

The behavior of the variables and treatments 

under both irrigation conditions 

 

The Biplot (Figure 7) clusters the 32 treatments 

resulting from the experimental design. 

Component 1 explains 39.52 % of the data 

variability, and Component 2 explains 19.01% of 

the variability. The variables are visualized, along 

with the hybrids, with their respective agronomic 

management; application of CuNPs, grafting, and 

grafted with the addition of CuNPs under both 

established irrigation conditions. 

 

 
Figure 7. Dispersion of CP1 and CP2 for the analyzed variables: plant height (PH), leaf area (FA), stem 

diameter (SD), average fruit weight (AFW), total fruit weight (TW), and water use efficiency (WUE); polar 

diameter (PD), equatorial diameter (ED), fruit firmness (FF), total soluble solids (TSS), lycopene (LY), and 

beta-carotene (BE), depending on the hybrids, treatments (CuNPs: 100 ppm Copper nanoparticles, G: Grafted 

plants, CuNPs+G: 100 ppm of Copper nanoparticles and grafted plants, control: without treatment), and 

deficit irrigation (DI75: markers in blue, DI50: markers in red). 
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Plant height, stem diameter, and leaf area 

 

Plant height was greater in treatments without 

restrictive irrigation, with projections aligning 

more closely with the quadrant IV axis. Within 

this quadrant, hybrids treated with CuNPs, such as 

MO, ME, and CU, achieved heights of 220.75 cm, 

208.25 cm, and 200.00 cm, respectively (Table 1). 

This suggests that the foliar application of CuNPs 

may promote an increase in plant height, likely 

due to their potential role in enhancing nutrient 

availability and uptake (Hafeez et al., 2015; 

Priyanka et al., 2019), however, the response 

fluctuates depending on the concentration and the 

crop (Faraz et al., 2022). Furthermore, its 

influence may be accompanied by the intrinsic 

characteristics of each hybrid, or in this case, the 

genetic load of the evaluated hybrids (Cortez and 

Montejo, 2020). On the other hand, the CU hybrid 

under control conditions had a height of 208.25 

cm, unlike the case with nanoparticle application. 

This suggests that the material exposed to the dose 

of CuNPs may have generated a type of toxicity 

due to copper accumulation in the roots, which in 

turn restricted stem elongation (Broadley et al., 

2012). 

 

Additionally, the CU hybrid with combined 

agronomic management had a plant height of 

176.00 cm, followed by the ME hybrid grafted 

with 171.75 cm, both visualized in quadrant II. 

These values were conditioned by the rootstock, 

due to the increased energy consumption in 

nutrient translocation and absorption, thus limiting 

stem elongation. However, this is compensated for 

by other attributes such as yield (Palada and Wu, 

2007; Bogoescu et al., 2011; Soare, Dinu, and 

Babeanu, 2018; Sora et al., 2019). In this sense, 

copper nanoparticles in their oxidized form, in 

addition to being negatively charged, promote the 

translocation of calcium and iron in large 

proportions, which is reflected in the nutrient 

content in tomatoes (Deng et al., 2023) 

 

In quadrant III, a high correlation was observed 

between the variables of equatorial diameter, as 

well as the polar diameter of the fruit with leaf 

area. In the latter variable, under DI75 conditions, 

the grafted hybrids; MO, CU, ME, and AQ, had 

leaf areas of 757.22, 693.69, 631.26, and 569.7 

cm², respectively (Table 1). Under DI50, the leaf 

area is affected, tending to significantly reduce 

this variable (Pal et al., 2016), as in the case of the 

control hybrids MO and AQ, which obtained 

values of 153.54 and 131.86 cm², respectively, 

under severe DI50 conditions. This suggests that 

the combination of grafting and the Colosus RZ 

rootstock promoted vegetative growth of the 

hybrids, a dynamic similar to using other 

rootstocks like Beaufort, Maxifort, or Spirit (Al-

Harbi et al., 2018), as reported by Djidonou et al. 

(2013), and Ramírez-Jiménez, Barrera-Sánchez, 

and Córdoba-Gaona (2020), primarily attributed 

to changes in assimilate distribution (Schwarz et 

al., 2013). 

 

Yield, average weight, and water productivity 

 

In parallel, in quadrant II and under DI50 

conditions, there is a negative correlation between 

plant height and total fruit weight. The grafted 

hybrids ME and CU grafted + CuNPs had higher 

total fruit weights at 2.89 and 2.80 kg per plant, 

respectively (Table 1). According to the above, 

foliar application of CuNPs points to the potential 

for increasing crop yield (Hernández-Hernández 

et al., 2019), at least for the conditions given in 

the experiment, albeit linked to potential tolerance 

to DI50 (Prakash et al., 2019). However, the use 

of grafting is the agronomic management that 

contributes the most to the variable, as the hybrids 

CU and MO with CuNPs application showed 

contrasting yields of 2.27 and 2.00 kg per plant, 

respectively (Table 1). Therefore, the combination 

of both agronomic managements proved positive, 

as the use of grafted plants promotes not only 

vigor but also yield. While using grafted plants 

can lead to compact plants due to the limitation in 

stem elongation, changes in nutrient absorption 

dynamics are attributed, which is reflected in the 

productive potential of tomato cultivation (Palada 

and Wu, 2007; Bogoescu et al., 2011). It is 

important to note that not all graft-rootstock 

combinations have advantages, it is important to 

validate compatibility, to obtain adequate yields 

(Voronkova and Rzayeva, 2024). 

 

On the other hand, the highest average fruit 

weight was represented by the hybrid AQ in the 

grafted mode, and the same hybrid in combination 

with the foliar application of CuNPs, with an 

average of 93.76 and 87.54 g, respectively (Table 

1). This could suggest tolerance of the rootstock 

to severe water stress. This finding is consistent 

with the work of Koleška et al. (2018), who 

reported that rootstocks can enhance tolerance to 

abiotic stress. Additionally, the foliar application 

of CuNPs may have synergized with the grafted 

plants, further improving their performance. In 

contrast, hybrids located in quadrant IV under 

DI75 conditions exhibited lower average fruit 

weights. For example, the MO and CU hybrids 

without any agronomic management achieved 

average fruit weights of 70.60 g and 71.55 g, 
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respectively. This highlights the potential trade-

off between irrigation strategies and fruit weight 

under specific management practices. However, 

the application of nanoparticles did not promote 

advantages in the addressed variable for the 

hybrids ME with 73.01 g, and the hybrid MO 

reflected a value of 57.85 g, indicating a lower 

agronomic performance, at least for the yield 

component. The lower fruit weight may be linked 

to severe water restriction; however, the higher 

values are attributed to the use of grafted plants, a 

frequent response in various studies. Soare, Dinu, 

and Babeanu (2018), reported an increase of 

68.53% in average fruit weight compared to non-

grafted plants. Nevertheless, the percentage 

increases in this variable can vary depending on 

the graft-rootstock combination (Koleška et al., 

2018; Jenkins et al., 2022), which is regularly 

reflected in fruit yield. 

 

The values found in the water productivity 

variable show a contrasting dynamic, visualized in 

quadrant II, where the grafted hybrids under DI75 

conditions, MO and CU, presented 32.24 and 

28.46 kg m³, respectively (Table 1), with an 

accumulated irrigation volume of 89.6 liters per 

plant in a cycle of 132 days. These values are 

slightly lower than those reported by Flores et al. 

(2007), who reported 35 kg m⁻³, with saladette-

type tomatoes cv. Tequila, with an accumulated 

irrigation volume of 110 liters per plant in a cycle 

of 137 days. Thus, the variety plays an important 

role in this variable (Wu et al., 2021), as well as 

changes in the dynamics of water productivity 

based on crop stages (Takács et al., 2020). In this 

way, some rootstocks resist certain abiotic factors, 

from salinity, extreme temperatures, and drought, 

so some will present a significant improvement in 

survival and yield (Faisal et al., 2024; 

Janaharshini et al., 2024), thus granting a great 

advantage in the use of grafts in agriculture in the 

face of limiting growth conditions (Davis et al., 

2024; Reshma et al., 2024). 

 

In quadrant IV, under the DI75 mode, the same 

hybrids, MO, and CU, without any agronomic 

management, obtained 16.80 and 15.50 kg m-³, 

respectively, with an accumulated irrigation 

volume of 134 liters per plant. These were also 

accompanied by hybrids with nanoparticle 

application, ME, and MO, with values of 16.98 

and 14.93 kg m-³ (Table 1). These values are like 

those reported in other studies, where irrigation 

corresponding to 100% of the water volume 

required by the crop is applied, with values 

ranging between 15.9 and 14.8 kg m-3 (Al-

Ghobari and Dewidar, 2018). This is in line with 

Takács et al. (2020), who indicate that water uses 

efficiency at 75% and 100% irrigation levels is 

similar, so the percentage of irrigation volume 

saved can allow for an increase in cultivable areas 

(Noreldin et al., 2015; Halli et al., 2021). Authors 

have determined that in critical stages of the crop, 

such as in the development of the crop, it is 

possible to reduce the crop yield by up to 66.5%, 

which corresponds to commercial yield 

(Gebreigziabher and Assefa, 2024), however, the 

method is considered an advantage for arid 

regions by optimizing the use of water resources, 

making it a sustainable practice (Alkhateeb et al., 

2024). 

 

Lycopene, beta-carotene, and total soluble 

solids contents 

 

In quadrant I, under DI50 conditions, 

nanoparticles influenced the lycopene content in 

fruits, a quality variable. The hybrids CU and AQ 

with CuNPs were grouped, showing 148.02 and 

114.64 µg per 100 g of fresh fruit weight (ffw), 

respectively (Table 2). This influence is evident in 

the contrasting results observed in quadrant III, 

where the grafted hybrid MO achieved a 

concentration of 68.85 µg ffw-1, and the combined 

use of grafting and copper nanoparticles promoted 

a concentration of 66.35 µg ffw-1 in the hybrid 

ME. Therefore, the combination of grafting and 

rootstock may have affected the lycopene content 

specific to some hybrids (Jenkins et al., 2022). 

However, the increase in lycopene concentration 

by establishing irrigation frameworks in deficit 

irrigation mode, as well as partial root-zone 

irrigation, has been addressed in various studies 

(Bogale et al., 2016; Abdulaziz et al., 2017; 

Takács et al., 2020). Furthermore, this strategy 

can be used for a functional food context, 

considering the influence of other agronomic 

factors such as the variety used, based on the 

response to water deficit (Coyago-Cruz et al., 

2019), which should be moderated to ensure 

acceptable performance of the hybrids (Ripoll et 

al., 2016). 

 

Regarding the beta-carotene content, visualized in 

quadrant IV under a DI75 framework, the content 

of this antioxidant was influenced by the 

application of CuNPs in the following hybrids: 

MO, CU, and AQ, with contents of 83.00, 82.07, 

and 78.00 µg ffw-1, respectively (Table 2). From 

this, it could be inferred that grafted plants, due to 

their tolerance to adverse conditions, require 

lower antioxidant activity compared to non-

grafted plants (Koleška et al., 2018). 
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On the other hand, in quadrant I under DI50 

conditions, there was a good representation of the 

vector for the variable of total soluble solids 

content, an aspect of fruit quality. The hybrid ME 

in the control mode and with CuNPs application 

stood out with values of 5.03 and 4.75 °Brix, 

respectively (Table 2). Additionally, the hybrid 

MO had the lowest concentration at 4.24 °Brix, 

compared to the previous ones. At the same time, 

in quadrant III, the grafted CU hybrid with CuNPs 

application had a concentration of 3.04 °Brix. 

These concentrations are addressed in other 

studies with values of 4.1 °Brix for grafted plants 

and 4.6 °Brix in non-grafted plants (Soare et al., 

2018), with increases of over 1.25 °Brix (Pogonyi 

et al., 2005), starting from values of 4.1 to 4.6-4.7 

°Brix reported in Saladette-type fruits (Andrade et 

al., 2014; Martínez-Damián et al., 2018). The 

concentration of total soluble solids increased in 

parallel with the water deficit in the crop, which 

depends on the moisture content in the soil and 

are responsible factors for the changes that occur 

(Turhan et al., 2016; Lovelli et al., 2017; Wang, 

Li and Niu, 2020). Therefore, the combination of 

grafting and rootstock did not increase the total 

soluble solids, so the feasibility of using grafts 

must be assessed through other parameters (Sora 

et al., 2019). This is because a decrease in the 

concentration of total soluble solids is common 

when using grafted plants, as seen in eggplant 

crops (Mozafarian, Ismail, and Kappel, 2020), and 

a similar dynamic in watermelon grafts (Turhan et 

al., 2012; Lopez-Galarza et al., 2015) 

 

Equatorial diameter, polar diameter, and fruit 

firmness 

 

The equatorial diameter of the fruit was greater 

for the grafted hybrid ME + CuNPs with 67.68 

mm under DI50 conditions (Table 2). In contrast, 

the hybrids surrounding the vector, MO, and 

grafted ME, obtained an average of 60.38 and 

59.65 mm, respectively, under DI75 conditions. 

These diameters indicate that the rootstock can 

change the characteristics of the fruits. Although 

these changes occur depending on the graft-

rootstock combination, there is a possibility of 

producing rounded fruits (Ramírez-Jiménez, 

Barrera-Sánchez and Córdoba-Gaona, 2020). This 

is supported by the equatorial diameter presented 

by the control hybrid CU, projected in quadrant I, 

with 48.93 mm, which is smaller compared to the 

grafted ME hybrid. This is the expected response 

when dealing with Saladette-type fruits, according 

to the description from the seed company. 

 

The polar diameter of the fruit, represented in 

quadrant III, was exemplified by the hybrid ME 

under DI50, grafted + CuNPs, with a length of 

67.24 mm (Table 2). This suggests that despite 

being subjected to water stress, the length of the 

fruits was not significantly affected when the 

graft-rootstock combination proposed in this 

research was used, along with the foliar 

application of 100 ppm copper nanoparticles. In 

contrast, slight differences were observed among 

the grafted hybrids under DI75 conditions. The 

hybrids MO, ME, CU, and AQ recorded fruit 

lengths of 67.52 mm, 66.69 mm, 65.61 mm, and 

66.38 mm, respectively. These similar values may 

be attributed to the homogeneity of the hybrids 

used, at least for this variable. It is noteworthy 

that grafting can influence fruit shape (Musa et 

al., 2021). In some crops, this change might result 

in less visually appealing fruit (Milošević and 

Milošević, 2022); however, fruit shape is not the 

primary characteristic of interest for tomatoes. 

Other factors, such as shelf life and overall crop 

performance, play a more significant role in 

determining the suitability of the crop (Carrillo-

Rodríguez et al., 2019). 

 

The grafted MO hybrid + CuNPs demonstrated 

good fruit firmness performance at 2.48 kg cm-2 

(Table 2). According to the projection, it is also 

grouped with the grafted ME and grafted CU + 

CuNPs hybrids at 3.19 and 2.60 kg cm-2, 

respectively. Changes in texture and flavor 

aspects can occur depending on the characteristics 

of the rootstock (Sora et al., 2019). Additionally, 

water restriction may have led to a reduction in 

fruit size, which is inversely proportional to an 

increase in fruit firmness (Cui et al., 2020). 

 

CONCLUSIONS 

 

The agronomic evaluation revealed that the 

application of copper nanoparticles (CuNPs) to 

grafted plants, combined with different irrigation 

regimes, significantly influenced yield, fruit 

quality, and water use efficiency in tomato crops. 

The hybrids displayed distinct agronomic 

characteristics: the Aquiles hybrid excelled in 

plant height and average fruit weight, the Mesías 

hybrid stood out for greater fruit firmness and 

total soluble solids within acceptable ranges, and 

the Cuauhtémoc hybrid demonstrated higher 

concentrations of lycopene and beta-carotene. 

 

Grafted plants and those treated with CuNPs 

yielded positive outcomes. Under deficit irrigation 

conditions, grafted plants achieved higher fruit 

yield, water productivity, and stem diameter. 
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Moreover, combining grafting with CuNPs 

applications enhanced internal fruit quality, 

increasing total soluble solids, beta-carotene, and 

lycopene concentrations. However, grafting alone 

hurt lycopene concentrations and total soluble 

solids, suggesting that its primary benefits are 

improvements in fruit firmness and size. 

 

Deficit irrigation at 50% (DI50) enhanced water 

use efficiency without causing significant yield 

losses, while promoting acceptable increases in 

lycopene content and total soluble solids. This 

indicates that DI50 is a viable strategy for 

optimizing water resources in regions with limited 

irrigation availability. On the other hand, deficit 

irrigation at 75% (DI75) positively affected plant 

height and leaf area during the productive stage, 

demonstrating its potential for improving 

vegetative growth under certain conditions. 
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Supplementary Table 1. Analysis of variance for the variables plant height (PH), leaf area (LA), stem 

diameter (SD), average fruit weight (AFW), total fruit weight (TFW), and water use efficiency (WUE) 

as a function of hybrids (H), treatments (T), deficit irrigation (DI). 

FV PH FA SD AWF TWF WUE 

H 3442.9 ** 60960.82 ** 2.02 * 1264.7 ** 0.38 ns 26.8 ns 

T 8999.51 ** 1089387.52 ** 12.6 ** 18.1 ns 0.93 * 74.45 * 

DI 6286.01 ** 530923.26 ** 2.91 * 184.21 ns 0.03 ns 2557.4 ** 

H*T 469.16 ns 16368.47 ** 3.67 ** 270.04 * 0.15 ns 14.6 ns 

H*DI 392.84 ns 3834.34 ns 0.44 ns 35.49 ns 0.18 ns 10.34 ns 

T*DI 210.78 ns 12737.83 * 3.93 * 131.17 ns 0.12 ns 7.09 ns 

H*DI*T 383.17 ns 4065.67 ns 1.75 * 264.8 * 0.16 ns 16.17 ns 

Error 353.36  2688.84  0.73  122.77  0.16  12.17  

R2 0.61  0.94  0.61  0.44  0.33  0.73  

CV 9.55  13.35  9.51  14.09  16.26  15.04  
* Significance at 5%; ** Significance at 1%; ns: non significance. C.V.: Coefficient variation 

 

Supplementary Table 2. Analysis of variance for the variables polar diameter (PD), equatorial 

diameter (ED), fruit firmness (FF), total soluble solids (TSS), lycopene (LY), and beta-carotene 

(BE) as a function of hybrids (H), treatments (T), and deficit irrigation (DI). 

 ED PD FF TSS LY BE 

H 49.14 * 29.93 ns 0.47 ** 0.60 * 4157.09 ** 915.17 ** 

T 223.50 ** 95.60 * 1.81 ** 2.14 ** 3562.27 ** 1366.36 ** 

DI 37.56 ns 99.28 ns 0.05 ns 22.57 ** 4418.39 ** 40.99 ns 

H×T 9.20 ns 15.21 ns 0.07 ns 0.18 ns 923.51 ** 103.88 ns 

H×DI 37.53 ns 59.56 ns 0.24 * 0.20 ns 1639.16 ** 293.72 ** 

T×DI 73.95 ns 39.45 ns 0.12 ns 0.41 * 1387.63 ** 553.26 ** 

H×DI×T 24.93 ns 39.29 ns 0.08 ns 0.16 ns 706.40 ** 98.19 * 

Error 16.53  25.25  0.06  0.14  100.28  28.65  

R2 0.45  0.34  0.61  0.73  0.84  0.80  

C.V. 7.19  7.8  10.19  9.36  10.43  7.79  
* Significance at 5%; ** Significance at 1%; ns: non significance. C.V.: Coefficient variation 

 


