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SUMMARY 

Background. Fungi of the genus Ganoderma cause white rot of wood in forest trees and trees of economic 

importance due to the variety of lignocellulolytic enzymes they produce, which may be widely applied for 

environmental, food production, and biotechnological purposes, among others. Methodology. Fourteen strains 

of the genus Ganoderma isolated from the central region of Veracruz were studied. Qualitative assays were 

conducted in Petri dishes to determine the production of cellulase, laccase, and peroxidase enzymes in media 

with CMC, ABTS, and Azure B, respectively. Activity indexes were calculated according to the formation of 

discoloration and oxidation halos. Five strains with significant activity were selected, which were used for the 

quantitative determination of cellulase, laccase, lignin peroxidase, and manganese peroxidase activities using 

crude extracts obtained from liquid cultures in flasks with minimal medium by spectrophotometric assays with 

CMC, ABTS, Azure B, and manganese sulfate as reaction substrates. Results. The qualitative assays showed 

cellulase and laccase activity but not peroxidase activity in the studied strains. The quantitative assays showed 

cellulase, laccase, and lignin peroxidase activity but not manganese peroxidase activity, where laccase activity 

was the most relevant. The strains G. weberianum GV26 and Ganoderma sp. GV11 showed the highest laccase 

production on the 16th day of culture at 27±1 °C, with 102.8 and 106.2 U/L, respectively. Implications. The 

strains with significant enzymatic activities are candidates for further studies of optimization, purification, and 

bioremediation of recalcitrant xenobiotic compounds. Conclusion. The strains Ganoderma GV11 and GV26 

are a potential source of lignocellulolytic enzymes that could be applied in biotechnological processes. 

Key words: White rot; Cellulases; Laccases; ABTS; Azure B.  

 

RESUMEN 

Antecedentes. Los hongos del género Ganoderma son causantes de la pudrición blanca de la madera en árboles 

forestales y de importancia económica, debido a la variedad de enzimas lignocelulíticas que producen, las cuales 

pueden tener una amplia aplicación en el área ambiental, alimentaria, biotecnológica, entre otras. Metodología. 

Se estudiaron 14 cepas del género Ganoderma aisladas de la región central de Veracruz, mediante ensayos 

cualitativos en caja de Petri se determinó la producción de enzimas celulasa, lacasa y peroxidasa, en medios 

con CMC, ABTS y Azure B, respectivamente; con lo que se calcularon los índices de actividad de acuerdo a la 

formación de halos de decoloración y oxidación. Se seleccionaron cinco cepas con actividad significativa a las 
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cuales se les realizó la determinación cuantitativa de las actividades celulasa, lacasa, lignino peroxidasa y 

manganeso peroxidasa, utilizando extractos crudos obtenidos de los cultivos líquidos en matraces con medio 

mínimo, esto mediante ensayos espectrofotométricos utilizando CMC, ABTS, azure B y sulfato de manganeso 

como sustratos de reacción. Resultados. En los ensayos cualitativos se observó actividad celulasa y lacasa pero 

no actividad peroxidasa en las cepas estudiadas. Por otro lado, en los ensayos cuantitativos se observó actividad 

celulasa, lacasa y lignina peroxidasa, pero no manganeso peroxidasa, siendo la actividad lacasa la más relevante; 

las cepas G. weberianum GV26 y Ganoderma sp. GV11 obtuvieron la mayor producción lacasa a los 16 días 

de cultivo, a 27±1 °C, con 102.8 y 106.2 U/L, respectivamente. Implicaciones. Las cepas con actividades 

enzimáticas significativas son candidatas para continuar con estudios de optimización, purificación y 

bioremediación de compuestos xenobióticos recalcitrantes. Conclusión. Las cepas de Ganoderma GV11 y 

GV26 son fuente potencial de enzimas lignocelulolíticas que podría tener una aplicación en procesos 

biotecnológicos. 

Palabras claves: Pudrición blanca; Celulasas; Lacasas; ABTS; Azure B. 

 

INTRODUCTION 

 

Fungi of the genus Ganoderma P. Karst. 1881, 

which are considered basidiomycetes of the order 

Poryporales belonging to the family 

Ganodermataceae, are found in tropical and 

temperate regions worldwide (Moncalvo and 

Ryvarden, 1997; Cao et al., 2012). This genus 

exhibits a wide spectrum of morphological 

variability, since some characteristics may change 

according to the substrate or geographic zone, 

which, along with the excessive use of synonyms 

and generalized names, have made its identification 

difficult and inconsistent, and it has thus been a 

taxonomically confusing genus since its 

establishment (Wang and Yao 2005; Cabarroi-

Hernández et al., 2019; Du et al., 2019). This genus 

includes 181 accepted species worldwide (He et al., 

2022) and the mycological databases Index 

Fungorum (Index Fungorum, 2024) and 

MycoBank (Mycobank, 2024) show 495 and 539 

records, respectively. There are several reports of 

the presence of some species of this genus in 

Mexico, such as the work by Mendoza et al., 

(2011), who reported the presence of 

approximately 16 species of Ganoderma. 

Moreover, Torres-Torres et al., (2015) mention 30 

species of the subgenus Ganoderma, while 

Cappello-García et al., (2023) found 29 species, 

where the states of Sonora and Veracruz were 

found to have a higher number of records and 

diversity of species, particularly the presence of G. 

lobatum, G. weberianum, G. curtisii, and G. 

oerstedii in the central region of Veracruz 

(Espinosa-García et al., 2021). 

 

Some species of Ganoderma have been used in 

traditional eastern medicine for two thousand years 

(Loyd et al., 2018; Cao et al., 2018). These species 

are known for their production of secondary 

metabolites with anticancer, antihypertensive, anti-

inflammatory, antioxidant, antibiotic, and antiviral 

activities, among others, which make them 

potential sources of medications and nutraceuticals 

(Suárez-Medellín et al., 2012; Cao et al., 2018). 

However, fungi of this genus are parasitic in nature 

and are responsible for white rot in live forest trees 

and trees of economic importance such as Areca 

catechu (betel nut palm), Hevea brasiliensis 

(rubber tree), and Elaeis guineensis (oil palm) (He 

et al., 2022); the latter being mostly affected by G. 

boninense, which causes the death of up to 80% of 

plantations (Jazuli et al., 2022; Khoo and Chong, 

2023). The rot occurs due to the degradation of 

lignin, cellulose, and other wood components by 

lignocellulolytic enzymes (Falade et al., 2017). The 

degradation of these components involves the 

participation of extracellular enzymes, such as 

laccase (EC 1.10.3.2), manganese peroxidase (EC 

1.11.1.14), and lignin peroxidase (EC 1.11.1.13), 

among others, which belong to the group of lignin-

modifying enzymes. These enzymes are 

characterized by their non-specificity (Kirk, 1987; 

Dávila and Vázquez-Duhalt, 2006), and thus, apart 

from degrading lignin, they can also act on other 

substrates, which allows their application in 

biotechnological processes that range from food 

processing and biopulping and biobleaching (Liew 

et al., 2010; Wan and Li, 2012; Peralta et al., 2017) 

to the transformation and degradation of various 

organic contaminants and xenobiotic compounds 

(Zhou et al., 2012; Viswanath, 2014; Agrawal et 

al., 2018; Singh et al., 2019; Tuomela and Hatakka, 

2019; Vishnoi and Dixit, 2019; Ipeaiyeda et al., 

2020). 

 

The study of native species of Ganoderma 

broadens the knowledge of this genus in Mexico, 

particularly its biotechnological importance, such 

as its potential enzymatic production and the 

different areas where these enzymes can be used. 

Given that Veracruz is one of the states of Mexico 

with different reported species, it is relevant to 

conduct enzymatic bioprospecting studies. 

Considering the above, the present study aimed to 

assess the capacity to produce the main 
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extracellular lignocellulolytic enzymes of 

Ganoderma strains obtained from the central 

region of the state of Veracruz, Mexico. 

 

MATERIALS AND METHODS 

 

Microorganisms and culture conditions 

 

Fourteen Ganoderma strains were studied with the 

following codes and GenBank accession numbers: 

G. curtisii GH16012 (MT254976), Ganoderma sp.  

GH16013, G. curtisii GH16015 (MT254977), G. 

curtisii GH16018 (MT254978), G. curtisii 

GH16019 (MT254979), G. curtisii GH16023 

(MT254980), Ganoderma sp.  GV11, Ganoderma 

sp.  GV13, G. tuberculosum GV21 (MT232639), 

Ganoderma sp.  GV22, G. weberianum GV26 

(MT232635), Ganoderma sp. GV29, G. 

weberianum GV31 (MT232642) and Ganoderma 

sp. GV81(Figure 1), which belong to the collection 

of the Applied Mycology Research Center, were 

studied and isolated from different substrates in the 

central region of the state of Veracruz (Serrano-

Márquez et al., 2021, Espinosa-García et al., 2021). 

The strains were cultured in potato dextrose agar 

(PDA) at 27 °C ± 1 in darkness for seven days for 

their reseeding and maintenance. 

 

Qualitative assay of cellulase activity  

 

The fungi were cultured in a culture medium with 

agar-agar (1.7%, w/v) and carboxymethylcellulose 

(CMC 1%, w/v) as the only source of sterilized 

carbon at 121 °C for 15 minutes. The 14 strains 

were inoculated in Petri dishes in triplicate and 

incubated for 5 days at 27 °C ± 1. The azo dye 

Congo red (0.5 %, w/v) was used to reveal the 

cellulolytic activity by pouring it in the Petri dishes 

for 15 minutes, which were then washed with a 1 N 

NaCl solution (Meddeb-Mouelhi et al., 2014; 

Coniglio et al., 2016). Subsequently, mycelial 

growth and the formation of cellulase discoloration 

halos were measured. The obtained values were 

used to calculate the potency index (PI) by dividing 

the diameter of the discoloration halo by the 

mycelial growth diameter of each strain (Chan-

Cupul et al., 2016).   

 

 

Figure 1. Mycelial growth of the 14 Ganoderma spp. strains used in the present study. 
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Qualitative assay of ligninolytic activities  

 

For peroxidase activity, the heterocyclic dye Azure 

B (5 mM) was used in a PDA medium (Monotya et 

al., 2014). In the case of laccase activity, 2,2'-

azino-bis[3-ethylbenzothiazoline-6-sulfonic acid] 

(ABTS) was used in a medium with the following 

composition (g/L): glucose, 15; KH2PO4, 1.0; 

K2HPO4, 1.0; MgSO4·7H2O, 0.5; CaCl2, 0.1; 

(NH4)2SO4, 0.05; ZnSO4, 0.03; MgSO4, 0.002; 

MnSO4, 0.002; CuSO4, 0.002; FeSO4, 0.01; and 

agar, 20 (Jo et al., 2009, Chan-Cupul et al., 2016). 

 

The culture media were sterilized, and the 14 

strains were inoculated in each medium in triplicate 

and incubated for 15 days at 27 °C ± 1. 

Subsequently, mycelial growth and the formation 

of peroxidase discoloration halos and laccase 

oxidation halos were measured, and the PI was 

calculated by dividing the diameter of the formed 

halo by the mycelial growth diameter of each strain 

for both determinations (Chan-Cupul et al., 2016). 

 

Quantitative assay of enzymatic production 

 

The Ganoderma strains were cultured in liquid 

medium with the following composition (g/L): 

glucose, 15; KH2PO4, 1.0; K2HPO4, 1.0; 

MgSO4·7H2O, 0.5; CaCl2, 0.1; (NH4)2SO4, 0.05; 

ZnSO4, 0.03; MgSO4, 0.002; MnSO4, 0.002; 

CuSO4, 0.002; FeSO4, 0.01; and agar, 20 (Jo et al., 

2009; Chan-Cupul et al., 2016) for cellulase, 

laccase, manganese peroxidase (MnP), and lignin 

peroxidase (LiP) enzyme production. Erlenmeyer 

flasks (500 mL) were inoculated in triplicate with 

120 mL of culture medium for each studied strain 

with mycelium discs (5 mm in diameter) and 

incubated for 20 days at 27 ± 1 °C in shaking 

conditions at 140 rpm and in darkness.  

 

Cellulase activity of crude enzyme extract 

 

One milliliter of liquid medium was centrifuged at 

8 000 rpm for 10 minutes. The supernatant was 

used to determine the cellulase activity using 50 μL 

of crude enzyme extract and CMC (1%, w/v) as a 

substrate in 100 μL of sodium citrate buffer (50 

mM) at a pH of 4.8. After 60 minutes of incubation 

at 50 °C, 300 µL of dinitrosalicylic acid (DNS) 

were added to each reaction, which was then 

incubated at 95 °C for 5 minutes. Finally, a 36 µL 

aliquot of each sample was transferred to the wells 

of a flat-bottom plate containing 160 µL of H2O, 

and absorbance (540 nm) was measured in a 

Labsystems Multiskan MCC/340 microplate reader 

(Yu et al., 2016). One unit of enzymatic activity 

(U) was defined as the amount of enzyme produced 

by 1 μmol of reducing sugars in one minute. 

  

Ligninolytic activities of crude enzyme extract 

 

For laccase activity, 16 μL of crude enzyme extract 

were used with 16 μL of ABTS (3 mM) as a 

substrate in 150 μL of sodium acetate buffer (100 

mM) at a pH of 4.5. The change in absorbance (405 

nm) was monitored in a microplate reader 

(Labsystems Multiskan MCC/340) during the first 

5 minutes of the reaction (Heinzkill et al., 1998; 

Chmelová and Ondrejovic, 2014). One laccase unit 

(U) was defined as the amount of enzyme required 

to oxidize 1 μmol of ABTS in one minute.  

 

Lignin peroxidase activity was determined with 0.5 

mL of crude enzyme extract in 1.5 mL of sodium 

tartrate buffer (50 mM) with 0.5 mL of Azure B (32 

μM). The reaction was started by adding 0.5 mL of 

H2O2 (2 mM) (Archibald 1992; Arora and Gill, 

2001). The absorbance reading (650 nm) was 

monitored in a UV/Vis spectrophotometer 

(PerkinElmer Lambda 265 UV/Vis). One unit of 

enzymatic activity (U) is equivalent to a decrease 

of 0.1 absorbance units per minute and per mL of 

crude extract. 

 

Finally, MnP activity was determined with 50 μL 

of crude enzyme extract in 450 μL of sodium 

malonate buffer (50 mM) and manganese sulfate (1 

mM). The reaction was started by adding H2O2 (0.1 

mM). The absorbance reading (270 nm) was 

monitored in a PerkinElmer Lambda 265 UV/Vis 

spectrophotometer (Wariishi and Gold, 1990; 

Wariishi et al., 1992; Huy et al., 2017). One unit of 

enzymatic activity (U) was defined as the amount 

of enzyme required to produce 1 µmol of oxidized 

substrate per minute under the experimental 

conditions. 

 

Statistical analyses 

 

Analyses of variance and multiple comparison tests 

were performed after testing the assumptions of 

normality and homoscedasticity. A 95% 

confidence level was used to determine the 

maximum production values of enzymatic activity 

that were significantly different between the 

different studied strains. All statistical analyses 

were performed in GraphPad Prism 8. 
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RESULTS AND DISCUSSION 

 

Enzymatic activities in Petri dishes 

 

Of the 14 strains studied, five showed enzymatic 

activity in the qualitative assay, which was 

corroborated by the presence of cellulase 

discoloration halos and laccase coloration halos 

(Figure 2). No formation of peroxidase 

discoloration halos was observed and thus this 

enzymatic activity was assumed to be absent. 

Table 1 shows the PI of the strains with cellulase 

and laccase activity based on the differences of the 

coloration/discoloration halos. 

 

Table 1. Cellulase and laccase enzymatic activity 

of Ganoderma strains with halo formations in 

Petri dishes. 

Values with different superscript letters are significantly 

different (p < 0.05). 

 

 

In the case of cellulase activity, the Kruskal-Wallis 

test showed significant differences with a p < 

0.009, and the multiple comparisons analysis 

indicated that the strain GH16023 differed 

significantly from the other strains with a PI of 

5.01, which was the highest value among the five 

selected strains. Laccase activity was confirmed by 

the presence of ABTS oxidation halos, and the 

Kruskal-Wallis test showed significant differences 

between strains with a p < 0.009, where the 

multiple comparisons indicated that GH16023 was 

the strain with the highest laccase activity 

compared to the other strains, with a PI of 5.12, 

which was the highest value among the evaluated 

strains, as with cellulase activity.  

 

The PI values allowed us to select the strains with 

the highest capacity for cellulase and laccase 

enzyme production through the formation of halos 

in Petri dishes by using substrates that allow the 

observation of such activities, which is a frequently 

used technique in processes of selection of 

organisms with enzymatic capacities of interest 

(Chan-Cupul et al., 2016; Coronado-Ruiz et al., 

2018; Kaur et al., 2018; Sánchez-Corzo et al., 

2021). The result obtained from the observations of 

cellulase activity, based on the PI in the medium 

with CMC, showed that only one of the 14 strains 

studied showed a greater potential as a producer of 

extracellular cellulase. The difference observed in 

cellulase activity between strains may be mainly 

due to interspecific variation, since the strains 

belonged to different species. However, it should 

be taken into account that these variations in 

enzymatic production may also be related to other 

factors, as variation in cellulolytic activity has also 

been observed between isolates of different fungi 

of the same species (Pedersen et al., 2009). 

 

In the case of ligninolytic activities, like with 

cellulase activity, not all strains had the capacity to 

produce laccase and peroxidases. Regarding 

peroxidase activity, authors such as Montoya et al., 

(2014), Pingili et al., (2017), and 

Thiribhuvanamala et al., (2017) have shown that 

the dye Azure B is widely used for the qualitative 

determination of enzymes such as LiP and MnP by 

observing its discoloration. However, in the present 

study, we did not observe the formation of 

discoloration halos or the discoloration of the 

culture medium. Thus, the absence of Azure B 

discoloration halos may be directly related to the 

 

 

 
Figure 2. Enzymatic activities in Petri dishes. a) Strain with cellulase activity, b) strain with laccase activity.  

Ganoderma 

strains 

Potency Index (PI) 

Cellulase activity Laccase activity 

GH16015 1.41 (± 0.206) a 1.71 (± 0.085) a 

GH16023 5.01 (± 0.101) b 5.12 (± 0.335) b 

GV11 1.74 (± 0.269) a 1.76 (± 0.129) a 

GV26 2.06 (± 0.400) a 1.76 (± 0.073) a 

GV81 1.59 (± 0.433) a 1.52 (± 0.113) a 
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absence of the peroxidase enzymes of interest 

during the growth of the strains in this medium. 

Laccase activity was detected by the formation of 

green-blueish oxidation halos around the mycelial 

colony, which is characteristic of white-rot fungi 

such as Ganoderma sp. (Montoya et al., 2014; 

Chan-Cupul et al., 2016). However, only five 

strains had PI values, which indicates the 

difference in enzymatic capacity between the 14 

strains studied.  

 

The variation in the presence and absence of 

enzymatic activity in the semiquantitative assays of 

the studied strains may be related to the different 

characteristics between Ganoderma species. Their 

growth and enzymatic production are related to 

their host species in nature, the environmental 

conditions, the nutrient concentration, and, in the 

case of ligninolytic activity, the presence of metal 

ions (Stoilova et al., 2010; Chan-Cupul et al., 2016; 

Saptarini and Hadisoebroto 2017). 

 

Lignocellulolytic activity in liquid fermentation 

 

The culture of the selected strains was used to 

prepare a liquid fermentation in a basal medium. 

Cellulase, laccase, lignin peroxidase, and 

manganese peroxidase activities were determined 

with crude extracts after 20 days of culture. Figure 

3 shows the obtained activities over time. A two-

way analysis of variance (ANOVA) was performed 

to assess the effect of day, strain, and the 

interaction day-strain on enzymatic activity and 

determine the presence of significant differences. 

The results of the two-way ANOVA showed that 

strain, fermentation day, and their interaction had a 

significant effect on the three enzymatic activities 

(cellulase, laccase, and LiP), indicating significant 

differences (all with a p < 0.0001).  

 

The behavior of cellulase activity was similar in the 

five strains, but GH16015 and GH16023 showed a 

higher cellulase production with 0.165 U/mL and 

0.183 U/mL, respectively (Figure 3a). Laccase, 

LiP, and MnP activities were determined for the 

quantification of ligninolytic enzymes. In the case 

of laccase activity, GV26 and GV11 showed the 

highest activity on the 16th day with 102.8 and 

106.2 U/L, respectively (Figure 3b). No MnP 

activity was observed in any of the five strains 

during the established time. In the case of LiP, 

GH16015 showed the highest activity of the five 

strains on the 16th day with 2.56 U/L, followed by 

GV26 with 1.89 U/L on the 17th day (Figure 3c). 

 

Based on the behavior and values of the quantified 

enzymatic activities, the strain GV26 was selected 

for its enzymatic potential. Espinosa-García et al. 

(2021) have previously reported the 

antiproliferative activity of this strain and it has 

been taxonomically and molecularly identified as 

G. weberianum.   

 

The variations in enzymatic production observed 

between strains in the present study may be 

explained by changes produced by extrinsic factors 

during the fermentation time (culture medium, 

temperature, pH, etc.), as well as intrinsic factors 

linked to the complex fungal metabolism (Salmon 

et al., 2014). These variations in the physiology of 

the strains occur even within the same species. The 

maximum laccase activity values were observed on 

the same day (day 16). Enzyme production can 

vary according to the studied species and its fungal 

metabolism, as well as to the composition of the 

culture medium and the presence of different 

substrates and/or inducers in the medium, among 

others (Dinis et al., 2009; de Menezes et al., 2016; 

Zhou et al., 2018; Júnior et al., 2022). Thus, the 

enzyme production times of Ganoderma strains 

can vary between five and 20 days of culture 

(Elissetche et al., 2006; Dinis et al., 2009). 

 

The five strains that showed a PI in the Petri dish 

assays were selected for the liquid fermentation 

process, where differences were observed in the 

behavior of the enzymatic activity when 

performing the qualitative and quantitative 

analyses. The strain with the highest cellulase 

activity in the Petri dish and liquid fermentation 

analyses was GH16023. The strain GH16023 also 

showed the highest PI for laccase activity in the 

Petri dish, while GV11 and GV26 showed the 

highest values in the liquid fermentation. It is 

important to mention that it was not possible to 

quantify peroxidase activity (which includes LiP 

and MnP) in the Petri dishes, and LiP, but no MnP, 

activity was observed in the liquid fermentation. 

This may be related to the culture medium, since 

PDA and Azure B were used in the Petri dishes for 

peroxidase activity, while the liquid fermentations 

were prepared in a basal culture medium with 

different trace elements, which have been reported 

to affect the growth and enzymatic production of 

fungal strains (Chauhan, 2019).  
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Figure 3. Enzymatic activities of the crude extracts of the five Ganoderma strains obtained in a basal medium 

during the fermentation period. a) Cellulase, b) Laccase, and c) LiP. (■) GH16015, (▼) GH16023, (▲) GV11, 

(●) GV26, and (♦) GV81. 

 

 

There are reports of the absence of one or more of 

the main ligninolytic activities in white-rot fungi 

studies. For example, Hernández-Luna et al. (2017) 

conducted a decolorizing study with 

basidiomycetes collected in the north of Mexico 

and found ligninolytic (laccase, MnP, and LiP) 

activity in Trametes villosa (CS5) and T. maxima 

(CU1) strains in qualitative assays in Petri dishes, 

but quantitative assays showed laccase activity in 

both strains, MnP activity only in the CS5 strain, 

and LiP activity was not observed in any of the 

strains. 

 

Some studies have shown variations in ligninolytic 

enzyme production in Ganoderma depending on 

the substrate, culture conditions, and even the 

environment where the fungi are found. Mendoza-

Arceo et al. (2024) reported the absence of some 

enzymatic activities (laccase, MnP, and LiP) that 

they quantified in Ganoderma spp. strains from 

two different environments: urban and ruderal. In 

the case of the ruderal environment, three of the 

seven strains studied showed laccase, MnP, and 

LiP activities, while the other four strains did not 

show MnP activity. Silva et al. (2005) studied four 

Ganoderma spp. strains (CB364, GASI3.4, 

CCB209, and GASI2), where only two produced 

a)

b)

c)
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laccase, MnP, and LiP, while the other strains only 

produced laccase. The strains GASI3.4 and 

CCB209 showed the three enzymatic activities and 

were cultured in three different liquid media: one 

without supplementation, one supplemented with 

wheat bran, and one supplemented with propanil. 

The strain GASI3.4 showed the three enzymatic 

activities at different time intervals, showed no 

MnP activity in the second medium, and no LiP or 

MnP activity in the third medium. The strain 

CCB209 exhibited the three enzymatic activities in 

the medium without supplementation and the 

medium supplemented with propanil, but MnP 

activity was absent in the medium with wheat bran. 

This indicates that, even though Ganoderma and 

other white-rot fungi have the capacity to produce 

ligninolytic enzymes, they may not produce one of 

these enzymes if it is not essential for the 

degradation of the substrate where they are found. 

 

Cellulase production was similar among the five 

strains studied during the liquid fermentation 

process, with the strain GH16023 showing the 

highest production (0.183 U/mL) at 13 days of 

incubation. This agrees with that reported by Dinis 

et al. (2009), who quantified the production of 

cellulases in white-rot basidiomycete fungi in 

CMC, where the maximum activity value (0.130 

U/mL) of G. applanatum was observed on day 14. 

Saptarini and Hadisoebroto (2017) cultured G. 

applanatum and G. tropicum at different pH values 

and temperatures using CMC for cellulase activity, 

where G. applanatum exhibited a maximum 

enzymatic activity value of 0.109 U/mL at a pH of 

10 and of 0.184 U/mL at 45 °C, while the 

maximum activity value for G. tropicum was of 

0.131 U/mL at a pH of 10 and of 0.110 U/mL at 45 

°C. Hu et al. (2019) studied the regulation of the 

Glsnf1 gene for cellulase degradation in G. lucidum 

using CMC as a substrate in the enzymatic 

determinations and reported cellulase activity 

values from 0.050 to 0.200 U/mL in treatments 

with different concentrations of the activator 5-

aminoimidazole-4-carboxamide 1-β-D-

ribofuranoside (AICAR) of the studied gene. 

 

In the case of the ligninolytic enzymes during the 

liquid fermentation process, we observed the 

presence of laccase and LiP, where the former was 

the main oxidative enzyme produced by three of 

the five strains studied, while LiP was produced at 

a lower concentration and in a similar way by the 

five strains. The days when the highest laccase 

production values of the five strains were observed 

differ from those reported by different authors 

(Montoya et al., 2014, Shrestha et al., 2014, Chan-

Cupul et al., 2016 and Qin et al., 2019), who 

mention that the production of laccase in white-rot 

lignicolous fungal species, starts to increase on the 

sixth day of the fermentation process, whereas we 

observed an increase in the activity of this enzyme 

on the 13th day and the highest production was 

observed from the 16th to the 18th day, which agrees 

with that reported by Dinis et al., 2009 and de 

Menezes et al. (2016). The observed difference in 

enzymatic production may be related to the culture 

conditions, where the medium composition and 

substrates used are important elements (Silva et al., 

2005; Elissetche et al., 2006). With respect to the 

medium composition, different carbon sources, the 

amount of nitrogen, and the addition of amino 

acids, vitamins, and trace elements such as Fe, Zn, 

CaCl2, MgSO4, and KH2PO4 can limit or induce the 

production of ligninolytic enzymes (Erden et al., 

2009; Levin et al., 2010; Stajić et al., 2013, Cha-

Cupul et al., 2016; Chauhan, 2019; Shehnaz and 

Prasher, 2022). 

 

In the case of ligninolytic enzyme production with 

crude extracts, the behavior of laccase activity was 

similar in the strains GV11, GV26, and GV81, with 

maximum activity values of 94.3, 102.8, and 106.2 

U/L, respectively. De Menezes et al. (2016) 

reported a maximum laccase activity value of 13.80 

U/L in G. lucidum cultures with a palm tree native 

to Brazil called licuri (Syagrus coronata) as a 

substrate. Elissetche et al. (2006) obtained 2 U/L of 

laccase activity in G. australe using a synthetic 

culture medium and Rodrigues et al. (2019) 

obtained a laccase activity value of 44 U/L in GYP 

(glucose-yeast-peptone) medium with ferulic acid 

as inducer in a G. lucidum culture where different 

inducers were studied, and ferulic acid was found 

to be the best inducer at 2 mM. Compared with the 

studies mentioned above, this study presented 

higher enzymatic values with Ganoderma strains 

grown  in a medium with a different substrate and 

without supplements or inducers. 

 

The behavior of LiP activity was similar in the five 

strains studied during the liquid fermentation 

process, where GH16015 showed the highest 

production with 2.56 U/L at 16 days of incubation, 

which agrees with other Ganoderma studies. Silva 

et al. (2005) mentions the presence of LiP activity 

in the GASI3.4 and CCB209 strains of this genus 

with values of 18.851 and 2.126 U/L, respectively. 

Mendoza-Acero et al. (2024) report the presence of 

LiP in strains collected from an urban and a ruderal 

environment, where the lowest LiP activity value 

in the strains from the ruderal environment was 

6.93 U/L and the highest was 9.95 U/L, and the 

lowest value in the strains from the urban 
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environment was 0.36 U/L and the highest was 

2.29 U/L.  

 

In addition to enzymatic studies, it is important to 

study the metabolism of Ganoderma, which is 

diverse due to its metabolic complexity. Trigos and 

Suárez (2011) reviewed the main biologically 

active metabolites of the genus and note their 

polarity and the importance of ganoderic acids, 

polysaccharides, peptides, and proteins, which may 

have therapeutic applications. There are also 

studies that have examined the production of 

secondary metabolites with antioxidant, 

antiproliferative, and antibacterial activity in 

strains isolated from the central region of Veracruz, 

Mexico (Espinosa-García et al, 2021; Serrano-

Márquez et al., 2021).  

 

CONCLUSIONS 

 

Fungi of the genus Ganoderma are best known for 

their medicinal importance, particularly G. 

lucidum. However, there are species that have been 

poorly studied regarding the bioprospection of their 

extracellular lignocellulolytic activity. There are 

several species endemic to Veracruz that could 

have a significant enzymatic potential. The strains 

isolated from the central region of this state used in 

the present study showed enzymatic activity, 

particularly laccase activity, which is currently 

used in processes of bioremediation of recalcitrant 

xenobiotic compounds, paper bleaching and 

biopulping, food production, biofuel production, 

among others. The results obtained with the strain 

G. weberianum GV26 could be complemented with 

further studies on the optimization of enzymatic 

production that evaluate different substrates, 

temperatures, pH values, inducers, C/N ratios, 

among others, and even studies on enzymatic 

purification. All of this with the purpose of 

providing a biotechnological application. 
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