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SUMMARY 

Background: Assisting sows during parturition reduces the number of stillborn piglets caused by anoxia. 

However, in industrial settings with a large number of animals, the capacity for assistance is limited. The 

development of predictive models based on existing data can enable farms to anticipate stillbirths in sows. 

Objective: To develop a predictive model to identify factors affecting the presence of stillborn piglets (PSbP), 

estimate the probability of their occurrence, and establish a classification criterion accordingly. Methodology: 

Data from 2 415 farrowings in 822 sows (Landrace, Yorkshire, and their crossbreeds) were analyzed. Five 

variables relating to the current farrowing and five variables related to the preceding one were examined. Our 

study used cross-validation (groups = 5), modeling the response variable (PSbP, 1: presence, 0: absence). 

Results: The only factor shown to have a negative effect (p<0.01) on PSbP was litter weight at birth, while 

litter size at birth and parity (number of farrowings) were seen to have a positive effect (p<0.01). PSbP 

prevalence during training and testing were 0.297 and 0.296 respectively. The model's estimated probability 

levels were 0.311 during training and 0.303 during testing, indicating an accurate probability estimation. When 

categorizing using the optimal cutoff point of 0.395, the predictive efficiency as measured by the area under the 

Receiver Operating Characteristic (ROC) curve was 0.846 for training and 0.813 for testing. Implications: 

Implementing this model of information-management software could make it possible to provide swift, efficient 

technical assistance to sows in need, with a high level of predictive efficiency. Conclusions: The probabilistic 

model described here based on a Bayesian approach and adjusted based on a categorization criterion showed 

effective predictive efficiency in the prediction of stillborn piglets.  

Key words: Probabilistic model; logistic regression; cross-validation; Sus scrofa domesticus. 

 

RESUMEN 

Antecedentes: En cerdas, la asistencia al momento del parto ayuda a reducir los lechones nacidos muertos por 

anoxia; en condiciones industriales, donde el número de animales es grande, esta capacidad de asistencia se ve 
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limitada. Generar modelos predictivos a partir de la información disponible, permite predecir la respuesta de 

cerdas respecto a la presencia de lechones nacidos muertos. Objetivo: Generar un modelo de predicción para 

determinar los factores que afectan la presencia de lechones nacidos muertos (PNM), estimar la probabilidad 

que dicho fenómeno se manifieste y, con base en eso, establecer un criterio de clasificación. Metodología: Se 

analizaron los datos de 2415 partos de 822 cerdas provenientes de distintas granjas, con razas Landrace, 

Yorkshire y sus cruzas; cinco variables relacionadas con el parto actual, cinco con el desempeño del parto 

anterior; con validación cruzada (grupos = 5) y se modeló la variable respuesta (PNM, 1: presencia y 0: de otra 

manera). Resultados: Únicamente el peso de la camada al nacimiento tuvo un efecto negativo (p<0.01) en la 

presencia de nacidos muertos; mientras el tamaño de la camada al nacimiento y número de parto tuvieron un 

efecto positivo (p<0.01) en la PNM. La prevalencia de PNM en el entrenamiento fue 0.297 y 0.296 en la prueba, 

mientras que la probabilidad estimada por el modelo en el entrenamiento fue 0.311 y 0.303 en la prueba, una 

estimación buena de la probabilidad, pero en la categorización con la obtención y uso del punto de corte óptimo 

de 0.395, la eficiencia predictiva con una área bajo la curva operativa del receptor de 0.846 para entrenamiento 

y 0.813 para prueba. Implicaciones: La implementación del modelo obtenido en los softwares de gestión de 

información permitirá dirigir puntualmente la asistencia técnica a las cerdas que lo requieran con una buena 

eficiencia. Conclusiones: El modelo probabilístico con aproximación bayesiana ajustado junto con el criterio 

de categorización presentó una eficiencia predictiva buena para predecir lechones nacidos muertos. 

Palabras clave: Modelo probabilístico; regresión logística; validación cruzada; Sus scrofa domesticus. 

 

 

INTRODUCTION 

 

The increase that has been observed in pig-farm 

efficiency is attributed to technological progress at 

various levels of the pig-breeding system, 

including improvements in reproductive capacity 

(Caicedo et al., 2012), progress in the areas of 

genetics (Ghio and de la Sota, 2018) and nutrition 

(Gaillard et al., 2020), enhanced biosecurity 

protocols (López and Sánchez, 2019), and the 

adoption of good vaccination and medication 

practices (Maes et al., 2019). Recent research has 

focused on adapting farming practices to meet the 

unique needs of  individual animals, guided by the 

principles of precision pig farming (Tzanidakis et 

al., 2021).  

 

In this context, precision pig farming covers all the 

stages of the system, being based on the tenet that 

each animal has unique traits and requirements. 

This kind of farming aims to satisfy each animal’s 

individual needs so as to significantly improve pig 

farming practices by integrating cutting-edge 

information technologies. To achieve the latter 

goal, precision pig farming has used integrated 

models that optimize the use of existing 

information. These advances facilitate customized 

herd management focused on individual needs 

(Pomar and López, 2018; Tzanidakis et al., 2021). 

 

On sow farms, productive efficiency (i.e. the 

number of weaned piglets per sow) is directly 

influenced by piglet mortality during the birth, 

lactation and weaning phases, having a cumulative 

effect that significantly influences technical and 

economic outcomes on farms (Pomar and Pomar, 

2005; Martínez-Castañeda and Perea-Peña, 2012; 

Stalder, 2017; Faccin et al., 2020; Maes et al., 

2020). 

 

Piglet mortality during birth is primarily caused by 

anoxia due to a disturbance in the natural birthing 

process that can lead to umbilical-cord rupturing or 

premature placenta detachment, both of which 

hinder proper delivery and ultimately lead to the 

piglet's death (Castillo and Vicente, 2016). Given 

the complex nature of the birthing process, the 

effective tackling of mortality due to anoxia at the 

farm-level poses a considerable challenge. 

Precision pig farming aims to focus technical 

support on sows that are at risk of delivering 

stillborn piglets (Pomar and López, 2018). This 

targeted approach is essential for reducing the 

number of stillbirths and requires predictive 

models to anticipate the latter (Vanderhaeghe et al., 

2010). 

 

Logistic regression is of importance in biology due 

to its ability to interpret binary phenomena that 

may be influenced by other variables, making it 

possible to predict probable stillbirths 

(Vanderhaeghe et al., 2010) by establishing a single 

binary response variable based on several 

explanatory variables. Predictive models have been 

developed in order to anticipate the occurrence of 

stillborn piglets and provide sows with the 

technical assistance that they require based on an 

understanding of the risk factors inherent in the 

birthing process (Vanderhaeghe et al., 2010). 

 

In certain cases, the optimization of parameters 

from logistic models using Bayesian statistics can 
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lead to significant improvements. This is so 

because there have been cases of overfitting in 

conventional logistic-regression models, leading to 

convergence failures (Londoño-Parra et al., 2018). 

Since such conventional models rely on frequency 

approximation for their fit, it is difficult to 

accurately estimate their regression parameters 

(Gelman et al., 2008). Furthermore, some authors 

have found that certain biological phenomena are 

predicted more accurately via logistic regression 

than via machine-learning methods (Nusinovici et 

al., 2020). 

 

Given the need for models capable of accurately 

predicting variables that influence the technical 

performance of swine farms, the aim of the study 

was to develop a predictive model for identifying 

the factors influencing the occurrence of stillborn 

piglets, estimating its likelihood and establishing 

classification criteria.  

 

MATERIALS AND METHODS 

 

Data source 

 

Data from 2,415 farrowings in 822 sows on farrow-

to-wean pig farms were analyzed during the period 

2010-2013. The qualitative variables studied were 

farm (FA) and breed or genetic line (BLN), while 

the quantitative variables studied were number of 

farrowings (NF), litter size at birth (LSB: only live-

born piglets), number of stillborn piglets (NSbP), 

number of mummies (NMu: fetuses that died after 

the occurrence of bone calcification), litter weight 

at birth (LWB: only live-born piglets), litter weight 

and size at birth in the preceding farrowing (LWB-

PF and LSB-PF respectively), weight and size of 

litter at weaning in the preceding farrowing (LWW-

PF and LSW-PF respectively), and number of 

stillborn piglets in the preceding farrowing (NSbP-

PF). The standard normal distribution was analyzed 

for all variables. The dichotomous variable, 

Presence of Stillborn Piglets (PSbP), was generated 

defined by PSbP = 1 when stillbirths occurred and 

PSbP = 0 when they did not occur. 

 

Evaluation of information 

 

Paired and independent Tukey means (p<0.05) 

were compared in order to determine: a) 

differences between the FA and BLN of the LSB, 

NSbP, NMu, LWB, LWB-PF, LSB-PF, LWW-PF, 

LSW-PF and NSbP-PF variables, so as to measure 

their effect and importance in the building of the 

model; b) differences between LSB, NSbP and 

LWB of the LSB-PF, NSbP-PF and LWB-PF 

respectively, in order to establish a paired-means 

effect, only observations with more than one 

farrowing were included (n=1,725), and c) 

differences among the different variables, LSB, 

NSbP, LWB, LWB-PF, LSB-PF, LSW-PF, LWW-

PF and NSbP-PF, were included, based on the 

classification variable PSbP: 1. farrowings with 

stillborn piglets and 2. farrowings with no stillborn 

piglets. 

 

Modelling 

 

Based on the above variables and without taking 

stock of the FA or BLN groups, the logistic 

regression was adjusted via a Bayesian 

approximation method (Equation 1), using cross-

validation where the response variable was PSbP 

and the modelled probability was the occurrence of 

stillbirths (P[Y=1|X]). The Bayesian strategy used 

was the one based on conditional probability, using 

Cauchy’s non-informative prior distribution, that is 

recommended by Gelman et al. (2008), since, when 

estimated, the parameters have smaller associated 

variance using that approach, thus increasing the 

model’s predictive power and avoiding 

overadjustment.  

 

In order to avoid collinearity and guarantee a 

parsimonious model, the variables retained were 

determined using the stepwise regression 

procedure. Only those variables that had a 

significant effect (p<0.05) on the response variable, 

PSbP, were considered. The cross-validation 

carried out was for k-groups (k-fold cross-

validation) as described by Berrar (2017). 

 

To minimize bias in the generation of the model, 

the database was split up into five groups (k=5) so 

as to ensure that the latter kept the proportions of 

the response variable when randomizing (Kohavi, 

1995); upon splitting up the database into the said 

random groups, without replacing any of the data, 

a proportion similar to that of the response variable 

(PSbP) was found among them. The groups 

underwent 20% of the observations with k 

iterations being used, k-1 groups being utilized for 

training (80% of all the observations), and the 

model’s predictive efficiency being tested on the 

group that was not considered for training. The K-

group-repetition method was not used until the 

arrangement with the least variance was found, 

since Molinaro et al. (2005) have shown that, 

instead of increasing predictive power, such 

repetitions only bring about slight reductions in 

variance. 
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𝑃(𝑌 = 1|𝑋𝑖) = 

𝑒𝑥𝑝(𝛽0+𝛽1𝑋1+𝛽2𝑋2+⋯+𝛽𝑃𝑋𝑃)

1 + 𝑒𝑥𝑝(𝛽0+𝛽1𝑋1+𝛽2𝑋2+⋯+𝛽𝑃𝑋𝑃)
   𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (1) 

 

where P (Y=1|Xi) is the conditional probability of 

stillborn piglets occurring at birth (PSbP), and 

assumes a value of 1, given Xi, which is the vector 

of realization of the individual, i, in the p variables; 

β0 is the intercept, βP is the regression coefficient 

for the p variable, and Xp is the value of the p 

variable. 

 

To determine the predictive power of the models, 

the factors considered were: 1) the value of the 

Receiver Operating Characteristic (ROC) area 

below the curve, which ranges from zero to one, 

where values close to one have better predictive 

power; 2) the standard error of the mean; 3) 

Spearman correlation between the observed PSbP 

and those estimated based on the model, using the 

optimal cut-off point (OCP), which is defined as 

the optimal likelihood for establishing a decision-

making borderline at which PSbP assumes a value 

of 1 based on the probability estimate; 4) 

evaluation of the observed mean using the 

predicted mean. 

 

RStudio for R software (Posit team, 2023) was used 

to process and analyze the data and create the 

graphs. The following packages were used for 

cross-validation and model-adjustment (“caret” 

version 6.0-94; “leaps” version 3.1; and “BGLR” 

version 1.1.1), for graphs (“MASS” version 7.3-

53.1 and “rgl” version 0.106.8), and for the model-

performance evaluation (“ROCR” version 1.0-11; 

“leaps” version 3.1; “agricolae” version 1.3-6, and 

“PRROC” version 1.3.1.). 

 

RESULTS AND DISCUSSION 

 

Evaluation of information 

 

The average NF was 2.94 farrowings, being the 

only variable that did not follow normality, having 

a Gamma distribution. The average LWB was 

14.52 kg, 8.22% higher than that reported for F1 

Large Whitex Landrace sows by Rendón-del 

Águila et al. (2017), but lower than the 20.79 kg 

reported by Salazar (2018) in a meta-analysis-

based study that included various breeds and 

genetic lines.  

 

Upon comparing paired means, no differences 

(p>0.05) were found between the current farrowing 

variables and preceding farrowing (PF) variables. 

The average NSbP was 4.11% of all LSB, the 

average weight per animal at birth was 1.29 kg, 

higher than that reported by Knol et al. (2002) for 

Large White x Pietrain piglets, indicating that 

weights under 1.125 kg impede the animals from 

maintaining an adequate body temperature, which 

explains the high LSW, with only 10% mortality 

during lactation (Table 1).  Given the homogeneous 

management practices across the analyzed farms, 

including artificial insemination for reproduction, a 

146-day sow cycle (116 days of gestation, 23 days 

of lactation, and a 7-day weaning-to-service 

interval), and similar genetics, no differences were 

observed between FA and BLN in any of the 

variables studied. Litters averaged 12 live-born 

piglets with a 16% mortality rate during lactation 

and a weaning weight of 7.36 kg. The 130-day 

fattening phase categorized pigs into pre-starting, 

starting, growth, development, and finishing stages 

based on their physiological phase, achieving an 

average live weight of 110 kg. 

 
The two groups defined by the PSbP, showed 

differences (p<0.05) between their means in most 

of the variables. The NF and LSB were higher in 

the group with stillborn piglets (PSbP =1), while 

the LWB was higher in the group without stillborn 

piglets (PSbP =0), with no differences (p>0.05) 

between the NMu in both groups.  

 

In the group with PSbP =1, the average NSbP was 

1.53 piglets; Vanderhaeghe et al. (2010) found the 

same ratio when they studied and split up 532 

farrowings. The population without stillbirths had 

an average litter size at birth of 14.7 piglets, with 

an average mortality level of 2.02 piglets. A similar 

pattern was observed in the preceding farrowing 

variables, although the only categorical variable 

was considered from the variables relating to the 

current farrowing, there were no differences 

(p<0.05) between groups in LWW-PF and LSW-PF 

(Table 1). 

 

Model 

 

The above information suggests the need for a 

model that is of help in determining the likelihood 

of sows having PSbP. In the probabilistic modelling 

with a Bayesian approach, only NF, LSB and LWB 

were significant (p<0.05) in the PSbP. Baxter et al. 

(2008), reported that under similar management 

conditions, piglets with an average weight of 1.17 

kg were stillborn. 
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Table 1. Descriptive statistics and comparative means of the variables studied.  
Variable Mean SEM PSbP = 0 PSbP =1 

Current farrowing  n=1725  n=1699 n=716  
NF* (n) 2.94 0.04 2.80b 3.26a 

 LSB (n) 11.19x 0.06 10.78b 12.18a 

 LWB (kg) 14.52y 0.07 14.69a 14.13b 
 

NSbP (n) 0.46z 0.02 0.00 1.53  
NMu (n) 0.48 0.03 0.46a 0.51a 

Preceding farrowing  n=1725  n=1203 n=522  
LSB-PF (n) 11.18x 0.07 10.92b 11.76a 

 
LWB-PF (kg) 14.47y 0.09 14.34b 14.76a 

 
LSW-PF (n) 9.00 0.05 9.00a 9.00a 

 
LWW-PF (kg) 53.83 0.27 54.13a 53.14a 

 
NSbP-PF (n) 0.45z 0.03 0.40b 0.56a 

*Gamma distribution. a,b: Mean values per column with different literal are statistically different  (p  0.05). 

x,y,z: Mean values per column with different literal are statistically different (p  0.05). SEM: Standard Error 

of the Mean. NF: Parity number. LSB: Litter size at birth. LWB: Litter weight at birth. NSbP: Stillborn piglets. 

NMu: Number of mummies. PSbP =0: Population without stillbirths. PMN=1: Population with stillbirths. 

 

 

The average estimated values of the regression 

coefficients for the NF, LSB and LWB variables 

resulting from the cross-validation process were 

0.102, 0.259 and -0.162 respectively (Table 2). The 

βNF and βLSB estimators had positive values, 

meaning that these variables had a positive effect 

on the probability of PSbP being equal to 1, and a 

negative effect on the number of live-born piglets, 

with the βLWB coefficient being the only one 

showing the negative effect on the PSbP response 

variable. Baxter et al. (2008) report the same trend 

with large LSB having the highest number of 

stillbirths, beginning, in most cases, after the 10th 

piglet. This is due to hypoxia at birth, a problem 

arising from the cumulative effect of uterine 

contractions and most commonly observed in the 

last piglets in the litter (Alonso-Spilsbury et al., 

2007).  

 

Moreover, Canario et al. (2007) mention that this 

problem has worsened due to the genetic selection 

focused in obtaining lean growth and increasing 

sow prolificity, both of which result in less mature 

piglets. The variation of all estimators of the model 

was less than 13%, meaning that, as expected, there 

was little variation in the data within the k=5 

groups. Equation 2 is the definitive equation of the 

modelling, which retains the average of the 

estimators obtained from the cross-validation 

(Pérez-Planells et al., 2015).  

 

 

 

 

 

Table 2. Regression coefficients and their 

confidence interval (α=0.05) obtained from the 

cross-validation (k-groups = 5) of significant 

variables (p<0.05) with the presence of 

stillbirths. 

Estimator Mean 

Intercept -2.103 [-2.204, -2.001]* 

NF 0.102 [0.085, 0.118]* 

LSB 0.259 [0.237, 0.287]* 

LWB -0.14 [-0.162, -0.117]* 

*with α=0.05. 

 

 

As mentioned in this study, the logistic-regression 

model for predicting the occurrence of stillborn 

piglets is defined by only three variables. It’s 

expression is shown in the following equation:  

 

𝑃(𝑌 = 1|𝑋) = 
𝑒𝑥𝑝(−2.103+0.102𝑋1+0.259𝑋2−0.140𝑋3)

1 + 𝑒𝑥𝑝(−2.103+0.102𝑋1+0.259𝑋2−0.140𝑋3)
    𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (2) 

 

where P (Y=1|X) is the probability of stillbirths 

(PSbP) and takes on the value of one: X1= parity, 

X2= litter size at birth and X3= litter weight at 

birth. 

 

The results of the model obtained by cross-

validation and Spearman correlation between 

estimated probability and the response variable are 

stable (Table 3). Almost identical average 

correlations can be observed between the test and 

training groups (0.547 and 0.495 respectively); the 

estimated Mean Squared Error did not differ from 

that of the test, due to the size of the sample, which 
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in all cases was over 400. Bates et al. (2023) assert 

that a sample size of 100 significantly improves 

estimation of the Standard Error of the Mean. 

Basically, upon comparing the training and test 

results for each group, the only thing that varied 

was the confidence interval, which was bigger for 

the test populations, but still with minimal 

differences. Pérez-Planells et al. (2015) established 

that the Mean Squared Error gives us the error 

associated with the method, confirming the model’s 

strong predictive power.  

 

The area below the receiver operating 

characteristic curve of the receptor (ABC-ROC) 

constitutes a robust option for describing and 

comparing classification models (Polo and Miot, 

2020). The results of the cross-validation were 

0.846 (Table 1) and 0.813, values deemed to be 

good (Nahm, 2022). Upon comparing our results 

with those pertaining to the area below the curve of 

different probabilistic models, Pinto and Sanchez 

Bayle (2017) obtained values of between 0.65 and 

0.88 when they created probabilistic models for 

diagnosing bacterial infections in lactating piglets 

with fever, managing to achieve good predictions 

from the said models. While Lynam et al. (2020) 

obtained ABC-ROC values of over 95% when 

using logistic regression to model Type-1 and 

Type-2 diabetes in human adults. 

 

The optimal cut-off point (OCP) shows the limit of 

the optimal probability for establishing the 

borderline where the result of the said probability 

stemming from the model is defined. Presence or 

absence of stillborn piglets (0, 1) is a value obtained 

from the ROC graph, being the point at which the 

sensitivity and specificity are suitable because of 

the use of laxer criteria to increase sensitivity 

results in a compensation whereby specificity 

decreases (Nahm, 2022).  

 

The average value of the model, different from the 

borderline of 0.5 used by Londoño et al. (2018), 

was 0.395 in the training and 0.407 in testing, 

indicating the probability at which stillbirths are 

expected. The test’s  ABC-ROC was similar to that 

of the training when used at the OCP, but lower 

when not taken into account. The average PSbP 

classification was accurate in 78.55% of the cases, 

when predicting both stillbirths and the lack thereof 

(Table 3). 

 

Figure 2 shows the distribution of the 2,415 

farrowings among the model’s three significant 

variables (NF, LSB and LWB). On the left is the 

observed occurrence of PSbP and on the right the 

predicted occurrence of PSbP based on the model 

with a OCP of 0.395. Both the predicted and 

observed occurrences can be seen to follow the 

same trend whereby PSbP increases in step with 

increases in LSB. Moreover, while it can be seen 

that PSbP also increases in step with the NF, the 

graph does not show any clear trend with regard to 

LWB, although the negative impact on the response 

variable had already been defined in the model. The 

differences between the events observed and the 

ones estimated based on the model may be due to 

other variables not contemplated in the latter, such 

as farrowing interval, age of the gilt at insemination 

and gilt birth phenotype (Patterson et al. 2020; 

Carrión-López et al. 2022; van den Bosch et al. 

2022). Baxter et al. (2008) found important 

differences in crown-to-rump length when studying 

the comparative numbers of stillbirths. While 

Oliviero et al. (2010) concluded that the 

relationship between farrowing length and the 

number of stillbirths is clear, explaining that the 

decisive factor in farrowing length is back-fat 

thickness. Although neither the breed nor its 

crossbreeds were significant (p>0.05) in the model, 

Leenhouwers et al. (1999) found that purebred 

sows have more stillborn piglets per litter than 

crossbred ones, although this could depend on litter 

size and farrowing length. 

 

Vanderhaeghe et al. (2013) found 17 non-infectious 

factors, ranging from genetics and characteristics 

of the sow to the features and handling of the piglet 

itself that might have some sort of impact on the 

occurrence of stillbirths, making it clear that this 

model needed to include more environmental 

variables in order to be more precise. Upon 

graphing the probability of PSbP based on the 

model (Equation 2), with the combination of the 

variables (Figure 3), one can see the trend of the 

latter on the response variable.  The observations in 

red are the events that it is expected will have a 

value of one as a result of the categorization of the 

established OCP. While the combination of LWB 

and NF shows an accumulation of observations 

with stable LWB that is not shown on the graph. On 

the other hand, the combination of LSB and NF 

shows a clear tendency for a higher PSbP in step 

with increases in both variables. When one charts 

the distribution of the observations stemming from 

the combination of LSB and LWB, a clear upward 

trend in PSbP can be seen, defined by increase in 

the former and low values for the latter (Figure 3). 

 

 



Tropical and Subtropical Agroecosystems 28 (2025): Art. No. 042                                                               Domínguez-Olvera et al., 2025 

7 

Table 3. Model-performance criteria in the cross-validation and its confidence intervals (α=0.05), with k-groups = 5.  

Estimator  Mean  

Training (80%) n=1,932 

Observed mean 0.296 [0.289, 0.303] 

Predicted mean  0.311 [0.304, 0.318] 

Spearmen correlation*  0.547 [0.537, 0.557] 

SME 0.015 [0.008, 0.021] 

ABC-ROC 0.846 [0.781, 0.851] 

OCP  0.395 [0.383, 0.407] 

Test (20%) n=483 

Observed mean  0.297 [0.267,0.327] 

Predicted mean  0.303 [0.296, 0.309] 

Spearman correlation* 0.495 [0.471, 0.519] 

MSE 0.019 [0.001,0.037] 

ABC-ROC 0.813 [0.802, 0.824] 

OCP 0.407 [0.359, 0.455] 

Effectiveness, % 78.55 [0.767, 0.803] 

*Correlation between the stillbirths observed and the estimated probability (p<0.0001). MSE: Mean squared 

error. ABC-ROC: Area below the Receiver Operating Characteristic of the Receptor. OCP: Optimal Cut-off 

Point. Effectiveness = proportion of true cases (for 0 or 1) in accordance with the classification criteria 

established based on the OCP and their probability. 

 
Figure 1. Third-iteration receiver operating characteristic curve (ROC) showing the best features for 

predicting stillbirths (Area Below the Curve = 0.846). In the right-hand scale, which uses different colors to 

show probability levels, red indicates the optimal cut-off point (0.395), for establishing the borderline that 

specifies based on the probability, the probable presence or absence of stillborn piglets. 

 

 
Figure 2. Observed distribution of births (left-hand graph) and predicted distribution of births (right-hand 

graph) as a function of the variables litter weight at birth (LWB), litter size at birth  (LSB), and number of 

farrowings (NF), including the occurrence of stillborn piglets (red dots). 
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Figure 3. Probability distribution (predicted graphs) of presence of stillborn piglets (PSbP) as a function of the 

variables: litter weight at birth (LWB), litter size at birth (LSB) and farrowing number (NF) of the studied 

population; the predicted occurrence of PSbP (red dots) was determined based on the optimal cut-off point 

(0.395). 

 

 

CONCLUSION 

 

It is concluded that the adjusted probabilistic model 

with Bayesian approximation has good predictive 

efficiency, indicating that sows with heavy litters 

but few piglets are less likely to suffer stillbirths. 

While parity (number of farrowings) had an impact 

on the likelihood of stillbirths, this impact was not 

as obvious as that of litter size and weight at birth. 

The performance-in-previous-farrowings 

(preceding farrowing variables) does not affect the 

probability of stillbirths. The optimal-cut-off-point 

variable was suitable for purposes of creating the 

classification. 
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