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SUMMARY 

Background: Little is known about the long-term physiological effects of salicylic acid (SA) and hydrogen peroxide 

H2O2 on sprouting potato tubers and their possible short- and long-term effects as signaling molecules. Objective: To 

evaluate the effects of SA and H2O2 on the control of minituber sprouting. Methodology: The following research was 

carried out at the INIFAP facilities, Sitio Experimental Metepec, Edo. of Mexico. Microplants were transplanted into 

the soil in a greenhouse and sprayed twice a week with H2O2 (1, 5 mM)  or SA (10-5, 10-6 M), the number and fresh 

weight of minitubers per plant were evaluated. Subsequently, the minitubers were stored for sprouting, keeping half 

of each treatment at 8 °C and the other half at 18 °C. After 60 days of storage at 8 °C, the percentage, length and 

number of shoots per tuber were evaluated. Results: Low concentrations of H2O2 and SA significantly improved the 

sprouting percentage, while high concentrations significantly reduced it. Shoot length was reduced by 40% after 

treatment with 5 mM H2O2 and 10-6 M SA. After 60 days of storage at 18 °C, low concentrations of these molecules 

such as 1 mM H2O2 and 10-6 M SA reduced the sprouting percentage. The number of shoots per minituber increased 

by 10-5 M SA. Implications: This work demonstrated the potential of SA and H2O2 for practical application and tuber 

sprouting research. Conclusion: The results suggest that SA and H2O2 induce postharvest physiological effects on the 

sprouting of minitubers from the moment the plant is in cultivation. 

Key words: long term effects; potato; storage; tuber dormancy.  

 

 

RESUMEN 

Antecedentes: Poco se sabe de los efectos fisiológicos a largo plazo del ácido salicílico (AS) y el peróxido de 

hidrogeno H2O2 en la brotación de tubérculos de papa y sus posibles efectos a corto y largo plazo como moléculas 

señalizadoras. Objetivo: Evaluar los efectos del AS y el H2O2 en el control de la brotación de minitubérculos. 

Metodologia: La siguiente investigación se realizó en las instalaciones del INIFAP, Sitio Experimental Metepec, Edo. 

de México. Microplantas se trasplantaron al suelo en un invernadero y se rociaron dos veces por semana con H2O2 (1, 

5 mM) o AS (10-5, 10-6 M) se evaluó número y peso fresco de tubérculos por planta. Posteriormente los minitubérculos 

se almacenaron para su brotación, manteniéndose la mitad de cada tratamiento a 8 °C y la otra mitad a 18 °C.  Después 

de 60 días de almacenamiento a 8 °C se evaluó porcentaje, longitud y número de brotes por tuberculo.  Resultados: 

Las bajas concentraciones de H2O2 y SA mejoraron significativamente el porcentaje de brotación, mientras que las 
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altas concentraciones lo redujeron significativamente. La longitud de los brotes se redujo en un 40 % después del 

tratamiento con 5 mM de H2O2 y 10-6 M de SA. Después de 60 días de almacenamiento a 18 °C, las bajas 

concentraciones de estas moléculas como 1 mM H2O2 y 10-6 M SA redujeron el porcentaje de brotación. El número de 

brotes por minitubérculo se incrementó en 10-5 M SA. Implicaciones: Este trabajo demostró el potencial del AS y el 

H2O2 para fines prácticos en controlar la brotación del tubérculo y para estudios fisiológicos de brotación de tubérculo. 

Conclusión: Los resultados sugieren que el AS y el H2O2 inducen efectos fisiológicos poscosecha sobre la brotación 

de los minitubérculos desde el momento en que la planta está en el cultivo. 

Palabras clave: efectos a largo plazo; papa; almacenamiento; dormancia de tubérculo. 

 

 

INTRODUCTION 

 

Control of sprouting during potato tuber storage is 

challenging but important for different purposes, 

including fresh consumption, industrial processing and 

seed tuber production (Coleman and Coleman, 2000); 

however, sprouting causes quality loss through 

remobilization of starch and proteins, and shrinkage 

(Sonnewald, 2001; Börnke et al,. 2007). 

 

Dormancy is the physiological state in which tubers do 

not sprout even under ideal physiological conditions 

for germination. This response depends on the genetic 

background, tuber development stage, and 

environmental and management conditions during 

tuber growth and storage (Aksenova et al., 2013; 

Sonnewald and Sonnewald, 2014; Muthoni et al., 

2014; Mani and Hannachi, 2015). Dormancy is 

influenced by environmental and management 

conditions during growth and tuber storage (Mani et 

al., 2014). Temperature, water supply, soil fertility and 

the photoperiod during plant growth are all important 

environmental factors that regulate the sprouting 

response (Muthoni et al., 2014). In particular, 

temperature seems to have a major influence on 

sprouting (Turnbull and Hanke, 1985).  

 

Dormancy of potato tubers during the postharvest 

period is called endodormancy (Lang et al., 1987) and 

involves an unknown endogenous signal that mediates 

the inhibition of meristem growth (Suttle, 2004b).  

 

After a transition period of 1-15 weeks, depending on 

the storage conditions and variety, dormancy is broken 

and apical buds start to grow (Wiltshire and Cobb, 

1996). Farmers sometimes need to promote or retard 

sprouting depending on the time of year (Johansen et 

al., 2008; Salimi et al., 2010). 

 

The breaking of dormancy and the beginning of sprout 

growth in the tuber involve complex hormonal 

changes, many of which alter the nutritional quality of 

the potato (Suttle, 2004a). Several commercial 

compounds to break the dormancy of tubers have been 

tested such as thiourea, carbon disulfide, ethylene 

chlorohydrin, and rindite (Bryan, 1989; Rehman et al., 

2003) however, most of them are extremely volatile, 

very dangerous, corrosive and must be handled with 

extreme care. Additionally, the application of some 

chemical agents raises environmental and consumer 

concerns (Muthoni et al., 2014).   

 

It was suggested that catalase (CAT) and H2O2 mediate 

tuber sprouting (Bajji et al., 2007) and that CAT 

activity can be regulated by salicylic acid (SA), 

modifying the H2O2 content in potato plants (Mora-

Herrera et al. 2005; Mora-Herrera and López-Delgado, 

2006). Also, both SA and H2O2 induce growth 

retardation in in vitro potato plants (López-Delgado 

and Scott, 1997; López-Delgado et al., 1998a, López-

Delgado et al., 1998b) and can have long-term effects 

on potato physiology (Sánchez-Rojo et al., 2011; 

López-Delgado et al., 2012; Aguilar-Camacho et. al., 

2016; López-Delgado et al., 2018).  

 

Information about the long term physiological effects 

of SA and H2O2 on potato tuber sprouting is scarse. 

Bearing in mind the physiological effects of H2O2 and 

SA on potato growth and the long-term effects on 

potato physiology, we reasoned that these signal 

molecules could mediate tuber sprouting in the short 

and long term. The aim of this research was to evaluate 

the potential effects of SA and H2O2 on tuber sprouting 

in the long term at two storage temperatures. 

 

MATERIALS AND METHODS 

 

Plant material and culture conditions  

 

Virus-free Solanum tuberosum L. microplants of clone 

040138 from the in vitro Germplasm Bank of the 

National Institute for Agriculture and Livestock 

Research (INIFAP) were used for experiments in 

Metepec, México. Axillary buds were subcultured in 

jars on MS propagation medium (Murashige and 

Skoog, 1962) every 30 d and grown at 18±1 °C with a 

16-h photoperiod (fluorescent lights, 35 µmol m-2 s-1, 

400-700 nm) to keep a microplant stock.  

 

Greenhouse treatments  

 

Thirty-day-old microplants were transplanted to pots 

(32 × 12 cm) containing peat-moss and perlite. The 

plants were cultured for 100 days after transplanting 

(DAT) and each pot was allocated to an experimental 

unit, with 40 plants per treatment (one plant/pot). The 

experiments were performed three times. The plants 

were fertilized every 15 days and watered once a week.  
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Plants were fertilized (170 N, 230 P, 170 K, 90 S, 20 

Ca, 20 Mg) every fifteen days and watered (soil 

holding waters capacity) twice a week. Plants were 

sprayed twice a week (30-80 DAT) with 1 or 5 mM 

H2O2 or 10-5 or 10-6 M SA, or water (control) at pH 5.6 

(10 mL/plant) in randomized arrays. Harvesting was 

performed at 100 DAT. 

 

Minituber storage 

 

Fifty minitubers harvested from each treatment and the 

control were distributed into two groups.  

 

Minitubers (20-30 mm diameter) of both groups were 

placed under diffuse light (Walker and Fuglie, 2005) at 

two temperatures for sprouting, with half (25 

minitubers/treatment) at 8 °C and half (25 

minitubers/treatment) at 18 °C. The percentage of 

sprouted minitubers, minituber fresh weight, number 

of sprouts/minituber and sprout length were recorded 

after 60 and 100 d of storage. A minituber with one 

sprout at least 3 mm length was considered a sprouted 

minituber. All the sprouts on a minituber were 

quantified to evaluate the sprout number. Sprout length 

was estimated considering only the longest sprout on 

each minituber bearing in mind that it was the first 

sprout developed with the principal growth of the tuber 

(Bajji et al., 2007; Hosseini et al., 2011). 

 

Statistical Analysis 

 

The data were tested for differences between 

treatments using one-way analysis of variance 

(ANOVA) and Duncan’s multiple range test (Duncan, 

1955), and scored as significant if P < 0.05 using the 

SAS software. A completely randomized design was 

used with two factors, the doses of each compound, 

and the storage temperatures. The means and standard 

errors (mean ± SE) were recorded. 

 

 

RESULTS 

 

Harvest  

 

The fresh weight of the minitubers was significantly (P 

< 0.05) increased by SA and H2O2, especially 1 mM 

H2O2 and 10-5 M SA, which significantly (P < 0.05) 

increased the fresh weight by 96 % and 1.03-fold, 

respectively, compared with the control. The number 

of minitubers was significantly (P < 0.05) increased by 

30 % in 1 mM H2O2 treatment (Table 1). 

 

Sprouting  

 

60 days of storage 

 

The 8 °C treatment induced both a reduction and an 

increase in the sprouting percentage. Low 

concentrations of H2O2 and SA significantly (P < 0.05) 

increased the sprouting percentage, whereas high 

concentrations significantly (P < 0.05) reduced it (Fig. 

1). No significant differences were observed in the 

sprouts number/minituber at 8 °C or 18 °C (data not 

shown). 

 

At the same temperature 5 mM H2O2 and 10-6 M SA 

treatments both significantly (P < 0.05) reduced the 

sprout length by 40.0 % compared with the control 

(Fig. 2). 

 

At 18 °C, the sprouting percentage was significantly (P 

< 0.05) decreased compared with the control under low 

concentrations of H2O2 and SA (Fig. 3). 

 

100 days of storage  

 

No significant differences were observed in the 

sprouting percentage at 18 °C (data not shown). The 

number of sprouts per minituber was increased 

significantly (P < 0.05) by 10-5 M SA compared with 

the control (Fig. 4).    

 

 

 

Table 1 Fresh weight and minitubers number. Minitubers were harvested from sprayed plants with SA and 

H2O2. Experiments were performed three times (n=40 plants/treatment). Data are means ± SE. Different letters 

differ significantly by ANOVA and Duncan test (P <0.05). 

 SA= Salicylic acid. H2O2= Hydrogen peroxide. 

 

 

Treatments Minituber fresh weight (g/planta) Minitubers number/plant 

Control 6.56 ± 0.64c† 5.00 ± 0.53b 

1 mM H2O2 12.92 ± 0.73a 6.50 ± 0.52a 

5 mM H2O2 10.43 ± 0.74b 4.90 ± 0.48b 

10-6 M SA 12.04 ± 0.54ab 6.10 ± 0.42ab 

10-5 M SA 13.34 ± 0.73a 5.55 ± 0.40ab 
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Figure 1. Percentage of sprouted minitubers harvested from sprayed plants after 60 d of storage at 8 °C. Experiments 

were performed three times (n=75). SA= Salicylic acid, H2O2= Hydrogen peroxide. Data are means ± SE. Bars labeled 

with different letters differ significantly by ANOVA and Duncan test (P <0.05). 

 

 
Figure 2. Sprout length of sprouted minitubers harvested from sprayed plants after 60 d of storage at 8 °C. Experiments 

were performed three times (n=75). SA= Salicylic acid, H2O2= Hydrogen peroxide. Data are means ± SE. Bars labeled 

with different letters differ significantly by ANOVA and Duncan test (P <0.05). 

 

 
Figure 3. Percentage of sprouted minitubers harvested from sprayed plants after 60 d of storage at 18 °C. Experiments 

were performed three times (n=75). SA= Salicylic acid, H2O2= Hydrogen peroxide. Data are means ± SE. Bars labeled 

with different letters differ significantly by ANOVA and Duncan test (P <0.05). 
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Figure 4. Number of sprouts per minituber harvested from sprayed plants after 100 d of storage at 18 °C. Experiments 

were performed three times (n=75). SA= Salicylic acid, H2O2= Hydrogen peroxide. Data are means ± SE. Bars labeled 

with different letters differ significantly by ANOVA and Duncan test (P <0.05). 

 

 

DISCUSSION 

 

Potato tuber dormancy is affected by genotype, 

physical or chemical stress, and pre- and post-harvest 

conditions (Sonnewald, 2001; Suttle, 2004b; Mani and 

Hannachi, 2015). This work demonstrates the long-

term effects of SA and H2O2 on tuber sprouting and 

temperature mediation of these responses. The results 

demonstrated that spraying plants with SA and H2O2 

affected microtuber postharvest physiology. The 

effects of these treatments on the sprouting percentage, 

and length and number of sprouts were observed after 

storage. Spraying H2O2 and SA on potato plants grown 

in a greenhouse significantly (P < 0.05) increased the 

fresh weight of minitubers; moreover, H2O2 

significantly (P < 0.05) increased the number of 

minitubers at the lowest concentration tested (1 mM, 

Table 1). These results agree with previous reports 

where H2O2 (Romero-Romero and López-Delgado, 

2009) and SA (Sánchez-Rojo et al., 2011) significantly 

increased the number and weight of minitubers in 

plants infected by phytoplasma. The potential effect of 

H2O2 on minituber weight observed in this work was 

also reported in microtubers under the same H2O2 

concentrations (López-Delgado et al., 2012). These 

results could be associated with responses to biotic and 

abiotic stress mediated by SA and H2O2 under stress 

conditions (Romero-Romero and López-Delgado, 

2009). 

 

Studies have shown that hydrogen peroxide regulates 

ethylene, jasmonic acid and SA synthesis, which 

removes dormancy (Kwak et al., 2006). Previous 

reports demonstrated that oxidative stress, specifically 

H2O2, induces dormancy release (Bajji et al., 2007). It 

has been reported that H2O2 not only induces in vitro 

tuberization but also significantly enhances the 

sprouting of microtubers kept at 20 °C (López-

Delgado et al., 2012). In this work, physiological 

effects of H2O2 on tuber sprouting were demonstrated, 

these signaling effects of H2O2 could be mediated by 

CAT activity, the antioxidant enzyme which in the first 

place scavenge H2O2. It was demonstrated that treating 

dormant potato tubers with thiourea (a chemical CAT 

inhibitor) broke dormancy and accelerated sprouting 

(Bajji et al., 2007). Repression of CAT activity 

accelerated potato tuber germination and was 

associated with H2O2 accumulation (M´Hamdi et al., 

2014). Different responses of CAT activity to the 

effects of H2O2 have been observed in potato plants 

under different culture conditions, such as in plants 

infected by phytoplasma under greenhouse conditions 

(Martínez-Gutiérrez et al., 2012) and in vitro plants 

(Mora-Herrera et al., 2005).  

 

The literature documents a complex relationship 

between SA and H2O2 signaling in plants; SA can 

increase H2O2 (Dat et al., 2000) and can also be 

induced by H2O2 (Chamnongpol et al., 1996). SA has 

been reported as a CAT inhibitor in potato (López-

Delgado et al., 1998b; Mora-Herrera et al., 2005). The 

sprouting responses induced by these molecules in this 

work might be related to the mechanism suggested by 

M´Hamdi et al., (2014), where inactivation of CAT 

leads to increased ascorbate peroxidase activity, and 

these changes activate the glutathione cycle and 

pentose phosphate pathway, and subsequently release 

dormancy. The long term effects of spraying plants 

with these molecules on CAT activity and H2O2 

content in tubers are worthy of further investigation.  

 

Temperature seems to have a major influence on tuber 

sprouting (Turnbull and Hanke, 1985; Mani and 

Hannachi, 2015), and is also one of the most important 

physical factors determining the length of the 

dormancy period during storage. 
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Hartmans and Van Loon, (1987) reported that 

temperatures over 12 °C affected the capacity and 

vigor of sprouts compared with tubers stored at 4 °C, 

intensifying respiration, reactive oxygen species levels 

such as internal H2O2 in tubers, and antioxidant 

enzymes like CAT. It was suggested that dormancy 

length is inversely proportional to temperature 

(Wiltshire and Cobb, 1996). However, the sprouting 

capacity of tubers can increase with increasing 

temperature (Ridwan et al., 2014). Interestingly, 

inverse effects were observed after 60 days of storage 

in tubers depending on the temperature; at 8 °C, the 

low concentrations of H2O2 (1 mM) and SA (10-6 M) 

significantly (P < 0.05) enhanced the sprouting 

percentage (Fig. 1), whereas at 18 °C, the same 

concentrations significantly (P < 0.05) reduced it (Fig. 

3). These results confirm  the long-term effects of 

spraying plants with these molecules on tuber 

sprouting. Sprout length was decreased at 8 °C by 5 

mM H2O2 and 10-6 M SA after 60 d of storage (Fig. 2). 

The effects observed on sprout length agree with 

previous reports where salicylate (López-Delgado et 

al., 1998a) and H2O2 (López-Delgado et al., 1998b) 

induced growth retardation in in vitro potato plants, 

associated with antioxidant activity, such as catalase. 

 

The practical utility of SA and H2O2 treatments as 

demonstrated in the present study is strong justification 

for continued investigation of the physiological role of 

these signal molecules in the control of tuber sprouting 

during storage. Additionally, their application raises no 

environmental or consumer concerns because they are 

ecologically innocuous. 

 

CONCLUSION 

 

Responses such as the sprouting percentage, sprout 

length and number of sprouts/minituber in potato, can 

be affected in the long term by SA and H2O2 from the 

time when the plant is in the growing phase, and are 

mediated by storage temperature. These results suggest 

that SA and H2O2 induce postharvest physiological 

effects on minituber sprouting. These physiological 

responses could be important for practical application, 

mediating the number of stems of the plant, since this 

is linked to the sprouting percentage and the number of 

sprouts/minituber. Tuber yield is related with the 

number of stems of the plant.  
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