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SUMMARY 

Background: The evolution and genetic elements for the development of the caste is an enigma in Hymenoptera, 

as well as the total impact that the genetic elements given in the food of the larvae have on the development of 

bees. During the last decades, micro RNAs (miRNAs) from nurse bee secretions in larval food have been found 

to constitute an additional element in the regulatory control of caste determination. Furthermore, social 

differentiation is a complex developmental process influenced by genetic, epigenetic, and environmental factors. 

Objective: To examine and summarize miRNAs as a regulatory component of larval food with an effect on caste 

development in eusocial hymenoptera. Methodology. The sequences of miRNAs expressed in eusocial bees were 

obtained from miRBase.org. MUSCLE V.3 enabled alignment and correction was carried out using Fast.Dist. The 

TreeDyn software was used to obtain the phylogenetic trees. Results: The role of diet and the relationship with 

microRNAs in caste differentiation and regulation may be part of a general mechanism that involves selective 

plant genetic information necessary for insect development. Implications: The in vitro cultivation of stingless 

bees is a practice that is already carried out in some species of commercial importance; However, studies that 

demonstrate how development, differentiation and regulation of gene expression would be shaping the 

differentiation of different castes are still gaps that must begin to be addressed. In vitro breeding would require 

the study of environmental and molecular variables that would modulate the expression of the castes. Conclusion: 

The biogenesis, regulation and functions of microRNA in Eukarya are still obscure, however, some light has been 

shed on the molecular basis of caste differentiation in eusocial bees modulated by 2 miRN transfer pathways; 

endogenous and exogenous. 

Key words: eusociality; caste determination; microRNA; epigenetic regulation. 

 

RESUMEN 

Antecedentes: La evolución y los elementos genéticos para el desarrollo de la casta es un enigma en 

Himenópteros, así como el impacto total que tienen los elementos genéticos dados en el alimento de las larvas en 

el desarrollo de las abejas. Durante las últimas décadas, los micro ARN (miARN) de las secreciones de las abejas 

nodrizas en los alimentos para las larvas constituyen un elemento adicional en el control regulatorio de la 

determinación de castas. Además, esta diferenciación social es un proceso de desarrollo complejo influenciado 

por factores genéticos, epigenéticos y ambientales.  Objetivo: Examinar y resumir los miARN como un 
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componente regulador del alimento de las larvas con efecto sobre el desarrollo de castas en himenópteros 

eusociales. Metodología. Las secuencias de miRNAs expresados en abejas eusociales fueron obtenidos a partir 

de miRBase.org. MUSCLE V.3 permitió el alineamiento y corrección mediante Fast.Dist. El software TreeDyn 

fue utilizado para obtener los arboles filogenéticos. Resultados: El papel de la alimentación y la relación con los 

microARN en la diferenciación y regulación de castas puede ser parte de un mecanismo general que involucra 

información genética vegetal selectiva necesaria para el desarrollo de los insectos. Implicaciones: El cultivo in 

vitro de abejas sin aguijón es una práctica que se realiza en algunas especies de importancia comercial; Sin 

embargo, los estudios que demuestren cómo el desarrollo, la diferenciación y la regulación de la expresión génica 

estarían modelando la diferenciación de las distintas castas son todavía lagunas que deben empezar a abordarse. 

La cría in vitro requerirá el estudio de variables ambientales y moleculares que modularían la expresión de las 

castas. Conclusión: La biogénesis, la regulación y las funciones del microARN en Eukarya aún son oscuras, sin 

embargo, se ha arrojado algo de luz sobre las bases moleculares de la diferenciación de castas en las abejas 

eusociales moduladas por dos vías de transferencia de miRN; endógena y exógena. 

Palabras clave: eusocialidad; determinación de casta; microARN; regulación epigenética. 

 

 

INTRODUCTION 

 

Organized insect societies show a pattern of 

hierarchies and orderly distribution of work. 

Therefore, success is reflected in their communities 

where sociability is key to improving the inclusive 

attitude of an individual. In colonies of social 

insects, the organization in the distribution of work 

is clear, as well as characteristic and distinctive 

phenotypes within the same sex according to the role 

played. Highly eusocial (actual society) occurs and 

has evolved several times in Hymenoptera insects. 

Genetic analyses provide a new empirical baseline 

for understanding this evolution and the definition 

of castes in a more complex way than is handled 

today by referring to the caste of social insects 

merely as "the reproductive division of labor" and as 

"the division of labor among females based on 

reproductive specialization" (Michener, 1974; 

Sumner et al., 2018; Hughes et al., 2003). 

 

Epigenetic mechanisms that affect gene expression 

and biological function have already been 

documented in eusocial bees, specifically through 

gene silencing mediated by short-chain non-coding 

RNA (Yan et al., 2014; Søvik et al., 2015; Ashby et 

al., 2016; Villagra and Frías-Lasserre, 2020). 

MicroRNAs (miRNAs) are ncRNAs whose 

documented function is to regulate gene expression 

(Djuranovic et al., 2011). miRNAs of 19-24 

nucleotides in length, restricting protein production 

by degrading mRNA and inhibiting translation 

(Huntzinger and Izaurralde, 2011) and affecting 

multiple developmental and phenotype 

characteristics (Selbach et al., 2008). The potential 

role of miRNAs in caste development has been 

studied and shown that miRNAs are expressed 

differentially during development. The meliponini 

tribe does not record to date any such study. The 

morphological differentiation of castes is a different 

process influenced by the food provided under a 

highly organized process of sourcing food in brood 

cells, resulting in different morphological, 

physiological, and behavioral phenotypes in the 

castes. 

 

The active components that determine the fate of bee 

development remain elusive and even controversial 

(Buttstedt et al., 2016). According to Sumner et al. 

(2006) and Solenn et al. (2015), the ability of a 

genotype to alter its ontogeny in response to an 

environmental change is due to its phenotypic 

plasticity during development. The roles of miRNAs 

in morphological and phenotypic plasticity are now 

a focus of study. However, there needs to be more 

information on how this influences behavioral 

phenotypic plasticity. The phenotypic plasticity of 

natural behavior due to the division of labor (DOL) 

characterized in Apis mellifera has been the model 

for understanding the genetic mechanisms that 

affect different behavioral phenotypes. Caste 

determination in most bees is caused by different 

stimuli in the quantity and quality of larval food 

(royal jelly) (Apis mellifera, Apini, Apidae). 

 

In contrast, in (Meliponini, Apidae, except in the 

genus Melipona), the caste is determined by the 

amount of larval food (Nogueira-Neto, 1997). For 

this reason, it is important to show the regulatory 

mechanisms of environmentally mediated gene 

expression in the development of the caste in 

stingless bees, which is mainly attributed to the 

amount of food and not the components. Here we 

reviewed the literature comprising the role of 

microRNAs on caste differentiation and regulation 

of development in eusocial bees. The production of 

honey from stingless bees has been carried out since 

ancient times. Maya used Melipona beecheii to 

obtain several products that have gained acceptance 

in current times, therefore the production of queens 

to increase productions would welcome more 

information for this process. 

 

METHODOLOGY 

 

A literature analysis was performed on reports of 

Endogenous and Exogenous miRNAs expressed in 

eusocial bees. Those with influence on the 

determination of caste and consequently on fertility 

were selected. The sequences of the selected 

miRNAs were obtained using the miRBase.org 

database, this is a searchable database of published 
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miRNA sequences and annotations. The structure of 

miRNAs was visualized and documented using the 

RNA structure tool; it is a complete package for the 

prediction and analysis of RNA secondary 

structures. The functions of each one were analyzed 

according to records published in the literature, 

specifically those model organisms of Exogenous 

(Arabidopsis thaliana) and Endogenous 

(Drosophila melanogaster and A. mellifera) 

miRNAs. 

 

To search for sequence homologies, the BLAST of 

the miRBase platform was used, the alignments 

were carried out using the MUSCLE V.3 program 

and the alignment corrections were made using 

Fast.Dist. The graphical representation and editing 

of the phylogenetic trees was carried out with the 

TreeDyn tool. The programs used were free access, 

the selection of these is because they allowed better 

visualization of the similarities in the sequences and 

to investigate the functions. Drawings were carried 

out in Microsoft PowerPoint 2010 and Adobe 

Photoshop Elements 9. 

 

RESULTS AND DISCUSSION 

 

Biogenesis of microRNA 

 

miRNAs are small molecules of non-coding RNA 

(ncRNA), consisting of around 20-24 nucleotides 

and with a characteristic hairpin-shaped structure 

(Lee et al., 2004; Mohr and Mott, 2015; O’Brien et 

al., 2018). With a phosphate group at the 5' end and 

a hydroxyl group at the 3' end, these are derived 

from a process that arises in the nucleus and ends in 

the cytoplasm. Then ncRNA carries out their 

function (Mohr and Mott, 2015); either in the 

development, apoptosis, cell differentiation, 

reproduction, behavior, and physiology in 

eukaryotes, including plants and animals (Ledda et 

al., 2020). They play a significant regulatory role in 

animals and plants by binding to messenger RNAs 

(mRNA) and inhibiting their translation into protein. 

 

MicroRNA gene transcription 

 

The initial step in microRNA biogenesis is the 

transcription of miRNA genes. For example, in 

Drosophila melanogaster, these are transcribed in 

the nucleus by RNA polymerase II, thus facilitating 

the transcription of miRNA loci in these related 

species. RNA polymerase II produces a long chain 

of RNA due to the transcript known as primary 

microRNA (primiRNA), which is several kb long 

(Schanen and Li 2011; Lucas and Raikhel, 2013; 

Ylla et al., 2016). MicroRNA loci organization can 

be a single transcript unit containing a single 

miRNA gene or, in some cases, organized as a 

polycistronic transcript unit containing more than 

one miRNA. Though originally as RNA Pol III 

transcripts, miRNAs are loaded with the canonical 

5’ 7-methyl guanosine caps and 3’ polyadenylation, 

showing clear evidence of RNA Pol II-mediated 

transcription (Lee et al., 2002; Rodriguez et al., 

2004; Lucas and Raikhel, 2013b;). 

 

 

Figure 1. Biogenesis of miRNAs in D. melanogaster. microRNAs are transcribed by RNA Pol II at the first place 

and then a serial step from nucleolus to cytoplasm confers a mature set of microRNAs.  
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Processing of pri-miRNAs 

 

The primiRNAs form hairpin-shaped structures with 

a double-stranded stem and a terminal loop that must 

subsequently be processed to obtain the mature 

miRNA molecule. In D. melanogaster, primiRNAs 

undergo site-specific processing mediated by the 

Microprocessor complex, a multi-protein complex 

composed of an RNase III family and a double-

strand RNA binding protein, Drosha, and Pasha, 

respectively (Denli et al., 2004; Gregory et al., 

2004). The miRNA, after transcription, is end 

methylated before being exported from the nucleus 

to the cytoplasm. This first step yields a 70 nt long 

microRNA. After their export to the cytoplasm, the 

second processing step is mediated by another 

protein complex related to an RNase III, Dicer. 

Dicer requires another RNA binding protein in order 

to mediate the final processing step yielding a 

mature 22 nt long microRNA (György et al., 2001; 

Ketting et al., 2001; W and L., 2001) (Figure 1). 

microRISC Components 

 

In order to be fully functional, mature microRNAs 

form part of the RNA-induced silencing complex 

(RISC). In the cytoplasm, the miRNA-RISC 

(miRISC) protein Argonaute (AGO) selects one of 

the miRNA strands to complete the gene silencing 

and degradation process. miRISC is a well-

conserved complex ranging between 200 and 400 

kDa depending on the organism (Lucas and Raikhel, 

2013b; Santhekadur and Kumar, 2019). Argonaute 

proteins are a well-documented family of RNA-

binding proteins mediating the RNA silencing 

process, widely disseminated to almost all 

organisms (Hutvagner and Simard, 2008). The 

miRISC acts recognizing and by a complementary 

binding with the microRNA, an mRNA is degraded, 

or their protein translation is limited by this process, 

(Tomoyasu et al., 2008; Gu and Knipple, 2013; 

Santhekadur and Kumar 2019). These processes in 

which all these factors are affected by miRNA can 

be seen in figure 2, these factors affect in general in 

all multicellular organisms. 

 

Regulation of functions by microRNA in 

Hymenoptera 

 

miRNAs function as developmental switches 

(Stefani and Slack, 2008), that regulate gene 

expression in the nervous system and give rise to 

behavioral characteristic and phenotypes (Perkins et 

al., 2007; Greenberg et al., 2012). One of the most 

exciting aspects of miRNA affecting phenotypes are 

plant miRNAs. There are reports of plant miRNAs 

ingested from plant food sources that can pass 

through the gastrointestinal tract, enter the blood, 

accumulate systemically, and regulate gene 

expression in animals. The data shows gene 

regulation can be crossed between kingdoms and 

mediated by exogenous miRNAs. Once a new 

microRNA integrates into an animal's genetic 

regulatory network, it is usually retained and 

becomes challenging to lose during evolution 

(Heimberg et al., 2008). 

 

 

Figure 2. Functions of miRNAs in eukaryotes. The general aspects of microRNA regulation and their implications 

on different developmental processes.  
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As reported by Collins et al. (2017) miRNAs are 

associated with caste determination and 

differentiation in a relatively early process in 

eusocial evolution, and the role of individual 

miRNAs is generally not preserved as eusocial 

evolution progresses. They validated two miRNAs 

(Bte-miR-6001-5p and Bte-miR-6001-3p) 

expressed more in late-stage larvae intended for 

queens than in workers. In addition, the role in caste 

determination for miR-6001-5p and miR-6001-3p 

plays a regulatory role of Bte-miR-6001-5p as it 

includes the ecdysone-induced protein and 

ferredoxin. These proteins are associated with 

ecdysone responses in Drosophila (Palandri et al., 

2015). In A. mellifera the ecdysone is an 

ecdysteroid, that mediates several processes, 

including caste determination in eusocial bees 

(Rachinsky et al., 1990) and primitively eusocial 

Bombus terrestris (Hartfelder et al., 2000). 

Therefore, it is necessary to do additional studies. To 

show how endogenous miRNAs affect caste, it is 

also necessary to consider what mechanisms are 

conserved that explain eusociality in some 

Hymenoptera. 

 

Greenberg and collaborators found that certain 

miRNA loci are specific to Hymenoptera, but are 

present only in eusocial taxa, or at least absent in 

non-eusocial wasps Niphona longicornis and 

Nasonia vitripenni (Greenberg et al., 2012). 

Therefore, it raises the possibility that some of these 

miRNAs are involved in the eusociality in 

Hymenoptera, as raised by Bonasio et al. (2010), 

where they show differences in the expression of 

miRNA between different species of eusocial ants, 

miRNA sequence data have advantages for 

estimating phylogenetic relationships. 

 

In the Insecta class and the Order Hymenoptera 

specifically, it is evident that miRNAs miR-14-3P, 

miR-6001-5p and miR-6001-3p are conserved. 

 

The genome sequence of the wasp N. vitripennis 

(Kent et al., 2015), shows that during the evolution 

of sociality, the genes that were subject to selection 

in solitary ancestors co-opted to its use in caste-

specific functions Figure 3. In the case of the ant 

Dinoponera quadriceps, it presents a simple society 

where individuals retain the ability to change 

phenotypes; however, as reported by Patalano et al. 

(2015) evidenced sequence homology in 

reproductive and worker ants. 

 

In the case of miR-6001-5p and miR-6001-3p, both 

share the same functions in A. mellifera, regulating 

reproductive differentiation processes in queen bees; 

however, in B. terrestris, miR-6001-3p differs by its 

expression only in the cuticle of larvae destined for 

queens (Collins et al., 2017). 

 

According to the phylogeny evidenced from miR-

6001-5p, the sequences are conserved in four 

species of Hymenoptera and one species of Diptera. 

It shows a more significant similarity between the 

sequences of A. mellifera with D. quadriceps. This 

similarity of sequence and common points in 

evolution may share their miRNAs' function Figure 

4 and 5.

 

 
Figure 3. Phylogeny. Showing the homology of miR-14-13p in species of the Insecta class and represented in 

blue of the specific Order Hymenoptera. Created phylogeny program CrustalW2 (Madeira et al., 2022). 

https://www.ebi.ac.uk/jdispatcher/  

https://www.ebi.ac.uk/jdispatcher/
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Figure 4. Phylogeny. Showing the homology of miR-6001-5p with other insects and the vast majority of the Order 

Hymenoptera. Created phylogeny program CrustalW2 (Madeira et al., 2022). https://www.ebi.ac.uk/jdispatcher/  

 

 
Figure 5. Phylogeny. Showing the homology of miR-6001-3P with other species of the order Hymenoptera. 

Created phylogeny program CrustalW2 (Madeira et al., 2022). https://www.ebi.ac.uk/jdispatcher/  

 

 

Regarding the homology of miR-6001-3p with other 

organisms of the Insecta class, it does not show any 

homology. However, it does show homology with 

the primitively eusocial wasp Polistes Canadensis, 

possibly sharing functions in caste differentiation 

(Figure 5). 

 

Differentiation of castes in stingless bees: 

microRNAs and eusocial evolution 

 

Insects provide an ideal model system to study the 

role of epigenetics in environmentally induced 

phenotypic evolution, as they have conserved 

chromatin, a human-like modification system, and 

most respond to environmental cues. The 

environment regulates epigenetic mechanisms and 

affects gene expression, acting as a mediator of 

changes in the phenotype induced by diet, which in 

larval stages changes gene expression, which in turn 

influences castes (Cridge et al., 2015). According to 

Hartfelder et al. (2000), Sumner et al. (2006), 

Barchuk et al. (2007) and Collins et al. (2017), in a 

colony of A. mellifera caste determination is a 

decisive factor in the regulation of social behavior, 

it was closely related to the quality of honey. The 

food source thus affects gene expression together 

with epigenetic factors (Figure 2). 

 

Nectar and pollen phytochemicals on honeybees 

may be widespread among social Hymenoptera or 

may be unique to the highly eusocial honeybee (Mao 

et al., 2015). Further increasing the controversy over 

the impact of diet on the evolution of eusociality. 

Caste development in social insects represents the 

most important evolutionary transition from one 

level of organization to another and is believed to be 

critical to the ecological success of social insects 

(Zhu et al., 2017). 

 

In highly eusocial bee colonies, there are two sexes 

(males and females) and two castes (workers and 

queens). In social insects, the term caste is used 

more frequently to refer to the division of labor 

between females, based on reproductive 

specialization (Michener, 1974, 2007). 

Reproductive specialization is reflected in workers 

and queens being morphologically and 

physiologically different. The queens are dedicated 

to reproduction, so they have lost all the structures 

for food gathering and nest building. The workers 

dedicate themselves to collecting food and different 

activities within the nest. In some species, the 

workers are capable of reproduction, but since they 

are unable to mate, they are only capable of 

producing unfertilized (male) eggs. 

 

Stingless bees present different mechanisms for 

caste determination; one of these is trophic 

determination, which can be found in almost all 

genera except Melipona (Sakagami, 1982). In this 

type of determination, the fate of the larva depends 

on nutritional differentiation; the larva that becomes 

the queen is placed in cells with more food than the 

workers. There are also two other variants of the 

caste-determining trophic system. The first consists 

of the construction of queen cells in advance. That 

is, the constructed cells are made exclusively to raise 

a queen. In these species, the queen cells are 

normally located on the periphery (Smith et al., 

2008; Smith and Suarez, 2010). In the second 

variant of trophic determination, queens are created 

in worker cells through emergency queen rearing; in 

this variant, enlarged queen cells are produced by 

the fusion of two adjoining worker cells (Wei et al., 

2019). While in the Melipona genus, caste 

determination depends on the individual's genotype, 

the effect of food is essential for its expression, 

defined as trophogenetics (Lisboa et al., 2005; Lu et 

al., 2021) depicted in Figure 6. 

https://www.ebi.ac.uk/jdispatcher/
https://www.ebi.ac.uk/jdispatcher/
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Figure 6. Determination of trophic caste is present in the Meliponini tribe, except Melipona. In this type of 

differentiation, the fate of the larva depends on conditional nutritional feeding; the larva that becomes a queen is 

raised in cells with more food than the workers—building queen cells and supplying them with the food necessary 

for their development. In these species, the queen cells are normally located on the periphery (Smith et al. 2008; 

Smith and Suarez 2010).  

  

 

Kerr (1950) proposed the Melipona model of caste 

determination, in which two unrelated loci, each 

with a pair of alleles, interact to produce the specific 

genotype of a queen. Only when both loci are in a 

heterozygous condition can the individual become a 

queen. But the expression of the queen phenotype 

will require an adequate quantity or quality of food 

(Quezada-Euán, 2018). Due to the evolutionary 

complexity of eusociality in insects, it is relevant to 

consider for its understanding in addition to a 

consideration of caste determination by the amount 

of food ingested; the modification of molecular 

pathways related to development, behavior, 

neurobiology, physiology, and morphology as well 

as those external routes that may affect (Figure 6) 

(Easter, 1978).  

 

CONCLUSION 

 

The biogenesis, regulation and functions of 

microRNA in Eukarya are still obscure, however, 

some light has been shed on the molecular basis of 

caste differentiation in eusocial bees modulated by 2 

miRN transfer pathways; endogenous and 

exogenous. 
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