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SUMMARY 

Background. Climate change models have projected an increase in the distribution of certain crop pests of economic 

importance by forecasting more favorable future conditions for these organisms. In citrus farming, Huanglongbing is 

one of the most devastating diseases worldwide, since it has caused the death of millions of trees. Objetive. The 

objective of this study was to estimate the current and future distribution of Candidatus Liberibacter asiaticus in 

Mexico, under the climate change scenarios SSP2 4.5 and SSP5 8.5, for the years 2050 and 2070. Methodology. 

Distribution models were generated with MaxEnt and R, using uncorrelated bioclimatic variables from eight General 

Circulation Models (GCM) derived from CMIP6 and disease presence data. Results. The results indicate that the 

current suitability is 44.6 %. The future distribution depended on how model predictions were pooled. An optimistic 

approach that considered the intersection of all models showed a small reduction of 4.1% while, considering the union 

of all the GCM models, the increase will vary from 12.3 to 20.1 % of the Mexican territory depending on the particular 

scenario and time projection. Implications. The zones of potential occurrence of Candidatus Liberibacter asiaticus 

include most of the citrus-growing areas in Mexico. Conclusion. In some regions, future scenarios show a reduction 

in the potential occurrence of the species in citrus plantations. However, the risk remains because its surroundings 

include suitable areas that can be sources of dissemination of the disease.  

Keywords: bioclimatic variables; citrus; Huanglongbing; potential distribution; species distribution modeling. 

 

RESUMEN 

Antecedentes. Los modelos de cambio climático han proyectado incrementos en la distribución de algunas plagas de 

cultivos de importancia económica, al pronosticar condiciones futuras más favorables para estos organismos. En la 

citricultura, el Huanglongbing es una de las enfermedades más devastadoras mundialmente, por provocar la muerte de 

millones de árboles. Objetivo. El objetivo del presente trabajo fue estimar la distribución actual y futura de Candidatus 

Liberibacter asiaticus en México, bajo los escenarios de cambio climático SSP2 4.5 y SSP5 8.5 para los años 2050 y 

2070. Metodología. Se generaron modelos de distribución con MaxEnt y R, utilizando variables bioclimáticas no 

correlacionadas de ocho Modelos de Circulación General (MCG) derivados del CMIP6 y datos de presencia de la 

enfermedad. Resultados. Los resultados indican que la idoneidad actual fue del 44.6 %. La distribución futura 

dependió de cómo se agruparon las predicciones de los modelos. Un enfoque optimista, considerando la intersección 

de todos los modelos mostró una pequeña reducción de 4.1 %, mientras que considerando la unión de todos los MCG, 

habrá un incremento que variará de 12.3 % a 20.1 % del territorio mexicano dependiendo del escenario y proyección 

de tiempo. Implicaciones. Las zonas de ocurrencia potencial de Candidatus Liberibacter asiaticus incluyen la mayoría 

de las áreas de cultivo de cítricos de México. Conclusión. En algunas regiones, los escenarios futuros mostraron una 
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reducción del potencial de ocurrencia para las plantaciones de cítricos; sin embargo, el riesgo permanece porque en su 

entorno existen áreas idóneas que pueden ser focos de diseminación de la enfermedad. 

Palabras clave: variables bioclimáticas; cítricos, Huanglongbing; distribución potencial; modelado de distribución de 

especies. 

 

INTRODUCTION 

 

By increasing the zones that present favorable 

conditions under certain future climatic scenarios, it is 

predicted that some crop diseases will increase their 

coverage (Ghini et al., 2011; Contreras-Servín, 2014). 

As a result, the potential risk of different 

phytopathogens will rise and there will be a surge in 

production costs, use of agrochemicals, and 

environmental contamination as a result (Ghini et al., 

2011; Hernández-Mansilla et al., 2017). This has 

generated a need to research the consequences of 

climate change on the dynamics of agricultural crop 

diseases of economic importance (Hernández-

Mansilla et al., 2017).  

 

In citrus farming, Citrus Greening or Huanglongbing 

(HLB) is one of the most devastating diseases 

worldwide, causing the death of tens of millions of 

trees and thus the loss of billions of dollars. This 

disease is generated by the bacteria Candidatus 

Liberibacter africanus, C. Liberibacter americanus, 

and C. Liberibacter asiaticus, for which development 

is differentially affected by temperature (SENASICA, 

2019; Ajene et al., 2020; Martínez-Martínez et al., 

2021). The former two species are sensitive to high 

temperatures, while the latter is tolerant to them 

(Munyaneza et al., 2011; Camacho-Tapia et al., 2016; 

Granados-Ramírez and Hernández-Hernández, 2018). 

These differences in sensitivity and tolerance to high 

temperatures contribute to explaining the geographic 

distribution of Liberibacter (Camacho-Tapia et al., 

2016). Likewise, the distribution of HLB is affected by 

the presence or absence of its vectors, which are in turn 

influenced by environmental changes (Ghini et al., 

2011; Ajene et al., 2020).   

 

The first report of the presence of C. Liberibacter 

asiaticus in Mexico was in 2009 in the state of Yucatán 

(Contreras-Servín, 2014; Granados-Ramírez and 

Hernández-Hernández, 2018; SENASICA, 2019). 

Since then, HLB has been considered a disease that 

threatens the national citrus industry due to the 

negative impacts it has on the production of these fruits 

(López-Collado, 2010). For example, infected young 

plants fail to produce, and adult plants become 

unproductive after about two to five years of infection 

(Iftikhar et al., 2016). The symptoms presented by 

infected trees include asymmetrical spots, mottled 

yellowing on the leaves, chlorosis, fruit drop, loss of 

leaves, and reduction in the size and quality of fruits 

(Bové, 2006). A study carried out on citrus orchards in 

Tizimín, Yucatán, found that HLB reduced fruit 

weight by 17.3 % and juice volume by 18.6 % (Flores-

Sánchez et al., 2015). Despite the fact that various 

investigations related to its control have been 

conducted, no successful method to cure the disease 

has been documented. In the course of a few years, the 

infected trees usually die (Bové, 2006; Contreras-

Servín, 2014; Granados-Ramírez and Hernández-

Hernández, 2018).  

 

Considering the damage caused by HLB to citrus 

farming, it is important to conduct studies to assess the 

potential risk of the disease in Mexico (López-Collado, 

2010). One approach to risk analysis is through 

Species Distribution Modeling (SDM), which enables 

the identification of potentially suitable areas for the 

presence of a pest (Pliscoff and Fuentes-Castillo, 2011; 

Mateo et al., 2012; Timaná and Cuentas, 2015). SDM 

is used to determine how the distribution of the pest 

may change under future climate scenarios (Ghini et 

al., 2011). As a consequence, this approach is 

considered an important tool with which to predict the 

effects of climate change on the potential distribution 

of one or several pest species in the geographic space 

(Villa-Carmona and Cortes-Ortiz, 2014). The results 

generated by SDM facilitate the surveillance, planning, 

and management of agricultural areas by determining 

potentially suitable areas for pest occurrence 

(Martínez-Martínez et al., 2021). These models are 

based on statistical and cartographic techniques used 

to delimit suitable areas (Pliscoff and Fuentes-Castillo, 

2011; Mateo et al., 2011; Mateo et al., 2012) and use 

data pertaining to species presence and environmental 

variables as inputs (Villa-Carmona and Cortes-Ortiz, 

2014; Becerra-López et al., 2016).  

 

Studies on climatic suitability for HLB using SDM 

were implemented by Narouei-Khandan et al. (2015), 

who found that large areas of Africa, Latin America, 

and northern Australia present climates suitable for the 

development of Candidatus Liberibacter asiaticus. In 

South America, the effect of climate change on the 

potential distribution of HLB has been evaluated in 

different periods. It was reported that the risk areas for 

the establishment of HLB will represent 23 % of the 

subcontinent by 2050 and 20 % by 2070 (Heit et al., 

2016). Research on the distribution of the pathogen 

Candidatus Liberibacter asiaticus in Africa at present 

and by the year 2050 under the Representative 

Concentration Pathways 4.5 and 8.5 indicates that 

extreme changes in climate act to influence the 

establishment and distribution of HLB, and reveals 

differences between the current suitability and that of 

future predictions (Ajene et al., 2020). In Mexico, a 

potential risk analysis of HLB was carried out using 

bioclimatic variables, in which it was concluded that 
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the areas with the highest risk are the Pacific coast and 

the Yucatan peninsula (López-Collado, 2010). 

Moreover, Martínez-Martínez et al. (2021) estimated 

the potential areas for the establishment of HLB in the 

state of Tabasco, Mexico; these authors mentioned that 

the municipalities of Huimanguillo and Balancán are 

the areas with the greatest potential distribution of the 

disease and that variables related to temperature have 

a greater incidence in the distribution. From these 

studies, we can infer that the current suitability of C. 

Liberibacter asiaticus in Mexico has been examined; 

however, its future suitability remains to be addressed. 

The objective of this research was therefore to estimate 

and contrast the current and future distribution of C. 

Liberibacter asiaticus in Mexico, under two climate 

change scenarios for the years 2050 and 2070 using 

eight general circulation models. 

 

MATERIALS AND METHODS 

 

Study area and presence data  

 

The study was carried out in Mexico, with a total land 

area of 1,964,375 km2 (INEGI, 2020). Occurrence 

records were obtained from centroids of 413 

municipalities reported with the presence of infested 

plants and psyllids (SINAVEF, 2017). The use of 

centroids in SDM is an alternative that can be 

employed when there are no georeferenced records of 

presence, but they are reported at the administrative 

level (Kumar et al., 2014; Quiner and Nakazawa, 

2017). 

 

To avoid bias and duplication of information in the 

results when there is more than one presence record in 

the same pixel of the predictor layers, a spatial thinning 

was conducted based on geographic distance, which 

should be equal to or greater than the layer’s resolution 

(Aiello-Lammens et al., 2015). A distance of 5 km was 

used because the bioclimatic layers have a resolution 

of 2.5 minutes, approximately equivalent to 4.6 km. 

The data set was split into 70 % for calibration and 30 

% for evaluation of the SDM (Phillips et al., 2006; 

Jacinto-Padilla et al., 2017).  

 

Current predictor variables 

 

Bioclimatic variables were downloaded at a spatial 

resolution of 2.5 minutes in raster format from the 

WorldClim page, version 2.1 of the Coupled Climate 

Models Intercomparison Project (CMIP6) [Table 1]. 

Subsequently, in the R-4.2.2 software, the 19 layers 

were clipped to the borders of Mexico and converted 

to an ASCII format.  

 

To avoid the inclusion of redundant information in the 

models, it is recommended to only select uncorrelated 

variables (Wilson, 2011; Peterson et al. 2011). 

Therefore, variables were selected through principal 

coordinate analysis (PCoA) and the construction of a 

similarity network based on the Hellinger H index 

(Wilson, 2011). These analyses used the values of the 

bioclimatic variables, standardized between 0 and 1, 

associated with the records of occurrences. The 

similarity network grouped variables by applying the 

infomap algorithm (Rosvall et al., 2009). From each 

group of correlated variables, only one was selected 

considering its ease of interpretation, a lack of 

discontinuities in the data (Booth, 2022), and the fact 

that it was the most important variable for the model 

calculated with the jackknife method implemented in 

MaxEnt 3.4.4. 

 

 

Table 1. Description of the 19 bioclimatic variables. 
Code Description 

bio01 Annual mean temperature (°C) 

bio02 Mean diurnal range  

(mean of monthly (max temp - min temp)) 

bio03 Isothermality (bio02/bio07) (×100) 

bio04 Temperature seasonality (standard deviation ×100) 

bio05 Max temperature of the warmest month (°C) 

bio06 Min temperature of the coldest month (°C) 

bio07 Annual temperature range (bio05-bio06) 

bio08 Mean temperature of the wettest quarter (°C) 

bio09 Mean temperature of the driest quarter (°C) 

bio10 Mean temperature of the warmest quarter (°C) 

bio11 Mean temperature of the coldest quarter (°C) 

bio12 Annual precipitation (mm) 

bio13 Precipitation of the wettest month (mm) 

bio14 Precipitation of the driest month (mm) 

bio15 Precipitation seasonality (coefficient of variation, %) 

bio16 Precipitation of the wettest quarter (mm) 

bio17 Precipitation of the driest quarter (mm) 

bio18 Precipitation of the warmest quarter (mm) 

bio19 Precipitation of the coldest quarter (mm) 

 

 
Selection of climatic models for the future scenarios 

 

Bioclimatic variables for the future scenarios were 

downloaded from Worldclim version 2.1 of the 

CMIP6, for the Shared Socioeconomic Pathways 

(SSP) 2 4.5 and SSP5 8.5, and the years 2050 and 2070. 

The SSP2 4.5 indicates an intermediate emissions 

trajectory while the SSP5 8.5 represents the scenario 

with the highest CO2 emissions (Riahi et al., 2017). For 

each scenario, variables were downloaded for eight 

General Circulation Models (GCM). The models were 

selected from a total of 23 GCM, based on the 

construction of clusters of the bioclimatic variables, 

and using the Hellinger dissimilarity index H (Wilson, 

2011). We selected GCM that were distant from each 

other and that belonged to the same cluster in bio01 

(mean annual temperature) and bio12 (annual 

precipitation), both variables are considered important 

for modeling organisms (Sanderson et al., 2015).  
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Generation, evaluation, selection, and transfer of 

the models  

 

The MaxEnt model was used within the kuenm 

package to generate, evaluate, select, and transfer the 

best models (Cobos et al., 2019). Using the presence 

data and uncorrelated variables, candidate models 

were generated exploring all the responses that arose 

by combining the linear (l), quadratic (q), product (p), 

threshold (t), and hinge (h). We also tested the 

regularization multipliers ranging from 0.1 to 10. 

 

For evaluation and selection of the best model, the first 

filter was to select the statistically significant models 

that met the partial Receiver Operating Characteristic 

(ROC) < 5 %. The omission criterion of less than 5 % 

was then applied to the remaining models. Finally, 

among the significant and low-omission candidate 

models, the model with AICc < 2, which is the delta 

value of the Akaike information criterion corrected for 

small sample sizes, was selected (Cobos et al., 2019). 

In addition, the model had to have an Area Under the 

Curve (AUC) value > 0.7, since those with values of 

AUC from 0.7 to 0.9 are considered good, and higher 

than 0.9 are very good (Baldwin, 2009). The selected 

model was transferred to the years 2050 and 2070 

under SSP2 4.5 and SSP5 8.5 and bootstrap with 10 

replicates applied with a cloglog output format. 

 

Estimation of HLB suitability for current and 

future scenarios 

 

Present suitability coverage was computed by 

binarizing the suitability layers through the application 

of a cut-off threshold of 0.2 (Jacinto-Padilla et al., 

2017), approximately equivalent to 0.065 of the 

omission value generated in MaxEnt. For the future 

scenarios, and to estimate variability in the predictions, 

the areas of gain, permanence (no change), and loss 

were subsequently estimated in relation to the current 

coverage, and two approaches were applied to pool the 

results. In the first approach, we used the intersection 

of the models and, in the second approach, we used the 

union of the models for SSP2 4.5 and SSP5 8.5 for the 

years 2050 and 2070. The representation of each area 

was plotted on maps prepared in the ArcGIS 10.5 

program. To gain a better comprehension of the 

behavior of present and future bioclimatic variables for 

permanence and loss areas, standardized density 

graphs were also generated and a t-test was applied to 

each variable associated with random points (n = 

3000). 

 

Citrus productive zones and HLB suitability areas 

 

We compared HLB suitability areas with the harvested 

regions of economically important citrus fruits in 

Mexico by calculating the citrus-producing regions 

and then overlapping these with the suitability areas, as 

described by Rodríguez-Aguilar et al. (2023). 

 

RESULTS AND DISCUSSION 

 

Selection of uncorrelated predictor variables 

 

The predictor bioclimatic variables were selected from 

the six groups found in the similarity network and 

indicated by the PCoA (Figure 1). These variables 

were average annual temperature (bio01), diurnal 

temperature oscillation (bio02), seasonality of 

temperature (bio04), annual precipitation (bio12), 

precipitation of the driest period (bio14), and 

seasonality of precipitation (bio15). The variable bio01 

indicates an annual trend and approximates the total 

energy inputs for a given location; bio02 measures 

temperature variability, the product of the difference 

between the maximum and minimum temperature; 

bio04 refers to the temperature variation over one year 

according to the standard deviation of the monthly 

temperature average; bio12 is the sum of the total 

precipitation of all the months and indicates the 

quantity of rainwater that falls in a year; bio14 refers 

to an extreme or limiting environmental factor that 

identifies the total precipitation that occurs during the 

driest period, i.e., the period with the lowest total 

precipitation; and finally, bio15 describes the variation 

in total monthly rainfall values throughout the year 

(O’Donnell and Ignizio, 2012).   

 

GCM selected for the future projections 

 

The models that were distant from each other and that 

belong to the same cluster in bio01 and bio12 were: 

CNRM-ESM2-1, CanESM5-CanOE, CNRM-CM6-1-

HR, MPI-ESM1-2-LR, EC-Earth3-Veg-LR, IPSL-

CM6A-LR, CNRM-CM6-1, and MIROC6 (Figure 2). 

These models were chosen for the future projections 

since it has been suggested to select a minimum of five 

models that are distant from each other, and the use of 

several models allows us to broaden the inference and 

evaluate the variability in the estimates (Sanderson et 

al., 2015). 
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Figure 1. Principal coordinate analysis between the bioclimatic variables. Distance between points indicates the level 

of relative similarity in the latent variables X1, X2. Bioclimatic variables with the same colors correspond to the same 

group using the infomap algorithm from network analysis.  

 

 
Figure 2. Hierarchical clustering between the General Circulation Models considering the bioclimatic variables bio01 

(top) and bio12 (bottom) for the Mexican territory. The underlined models are those that were selected for the study. 

The red and blue colors refer to the models that match in groups one and two, respectively. 
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Distribution model and importance of predictor 

variables 

 

A total of 589 candidate models were created, arising 

from the combinations among the 19 regularization 

multipliers and the 31 modeling response types. The 

best model that met the omission rate and the AICc 

criterion had a product + threshold (pt) response with 

a regularization factor of 1. The statistical significance 

of the model was < 5 %, calculated through the partial 

ROC; the omission rate was 0.041; the AICc was 

8,768.7, and the delta AICc was 0. Finally, the AUC 

value was 0.88, considered as representing a good 

model (Baldwin, 2009).     

 

According to the jackknife test, the environmental 

variable with the greatest gain, when used in isolation, 

is annual precipitation (bio12). The variable that most 

decreases the gain of the model when omitted is the 

average annual temperature (bio01), which indicates 

that it has the greatest amount of information that is not 

present in the other variables (Figure 3). These results 

are similar to those of a study conducted in Africa by 

Ajene et al. (2020), which concluded that the 

precipitation of the rainiest month (bio13) is the 

variable with the greatest gain when used in isolation, 

presenting a strong similarity and correlation with 

bio12 in this study (1-H= 0.93, r = 0.9). Moreover, 

according to those authors, bio01 was the variable that 

most decreased the gain when it was excluded from the 

model. Moreover, Narouei-Khandan et al. (2015) 

reported that the current climatic suitability of C. 

Liberibacter asiaticus is mainly related to precipitation 

and temperature. Our results are therefore consistent 

with those of previous studies since precipitation and 

temperature are known determining factors in the 

establishment or development of plant diseases (Ajene 

et al., 2020).  

 

On the other hand, the MaxEnt response curves 

indicated how the bioclimatic variables affect the 

model response (Figure 4). Values of average annual 

temperature (bio01, Figure 4a) from 24 to 26 °C are 

those that contribute the most to the model before 

gradually declining. Within this range is the value of 

25.7 °C reported as the optimal condition for plant 

colonization (Raiol-Junior et al., 2021). The optimal 

temperature ranges from 20 to 27 °C and has been 

reported as the most suitable for Diaphorina citri 

populations to spread HLB disease (Hussain et al., 

2022). Moreover, temperatures below 16 °C did not 

contribute to the model, since they occur infrequently. 

This pattern is similar to the vector of the pathogen 

since low temperatures have been reported to limit the 

distribution of Diaphorina citri (Wang et al., 2019, 

Hussain et al., 2022; Rodríguez-Aguilar et al., 2023). 

According to Nava et al. (2007), with the temperature 

threshold for D. citri close to 12 °C. On the other hand, 

the values from 6 to 14 °C in diurnal temperature 

oscillation (bio02, Figure 4b) contributed the most to 

the model. In Mexico, the lowest oscillation values are 

found in tropical climates, while the maximum 

oscillation values are located in the northern regions of 

the country, where dry climates also prevail (García, 

2004). Similarly, values of the temperature seasonality 

below 300 SD (bio04, Figure 4c) contribute more to 

the model. Regarding annual precipitation (bio12, 

Figure 4d), it was found that values greater than 500 

mm contributed more to the model and stabilized at 

around 2000 mm. According to Narouei-Khandan et 

al. (2015), the probability of HLB presence increases 

with higher precipitation, although with some 

variability. These results indicate that the bacterium 

has a lower preference for dry climates or areas with 

low rainfall (Contreras-Servín, 2014; Narouei-

Khandan et al., 2015; Ajene et al., 2020). Moreover, 

the precipitation between 20 and 80 mm of bio14 

(Figure 4e) had the most influence on the model. These 

precipitation values in the driest period are more 

frequent in the group of tropical climates (García, 

1998). Finally, precipitation seasonality contribution 

presented a “U” shape, with higher influence observed 

at the extreme values (bio15, Figure 4f).  

 

 
Figure 3. Contribution to the MaxEnt model performance of the six variables used to project the HLB distribution. 
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Figure 4. Contribution curves of the variables to the MaxEnt model. (a) average annual temperature (bio01), (b) diurnal 

temperature oscillation (bio02), (c) seasonality of temperature (bio04), (d) annual precipitation (bio12), (e) 

precipitation of the driest period (bio14), and (f) seasonality of precipitation (bio15). The red curves show the average 

response of the 10 MaxEnt runs, while the blue area represents the average ± one standard deviation. 

  

 

Areas of current suitability of HLB 

 

The estimated area currently suitable for HLB in 

Mexico is 875,263.02 km2, equivalent to 44.6 % of the 

national territory. The potential risk of HLB is found 

mainly in the Pacific, Gulf of Mexico, and Yucatan 

Peninsula states (Figure 5a). These regions have also 

been reported as potentially suitable areas for the 

establishment of D. citri, the vector of the pathogen 

(López-Collado et al., 2013; Rodríguez-Aguilar et al., 

2023). Moreover, the municipalities with the largest 

number of hectares dedicated to citrus production are 

distributed there (SIAP, 2020). Therefore, since the 

environmental conditions suitable for both the vector 

and the disease coexist in the production areas, the risk 

of dispersal of the disease among the citrus plantations 

is high.  

 

The citrus-producing states that have a potential risk of 

HLB occurrence are Veracruz (VER), Michoacan 

(MIC), Tamaulipas (TAM), San Luis Potosi (SLP), 

Nuevo Leon (NLE), Puebla (PUE), Oaxaca (OAX), 

Colima (COL), Yucatan (YUC), Tabasco (TAB), 

Guerrero (GRO), Sonora (SON), Jalisco (JAL), 

Hidalgo (HID), Campeche (CAM), Chiapas (CHP), 

Quintana Roo (ROO), Sinaloa (SIN), Nayarit (NAY), 

Baja California Sur (BCS), Durango (DUR), Morelos 

(MOR), Zacatecas (ZAC), Queretaro (QUE), Estado 

de Mexico (MEX), Guanajuato (GUA) and 

Aguascalientes (AGU). These 27 states comprise 

nearly 554,000 ha of citrus production with a risk of 
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dissemination of the pathogen. Of this area, 327,756 ha 

are orange; 185,117 ha are lemon; 21,655 ha are 

mandarin orange, and 19,834 ha are grapefruit (SIAP, 

2020). The citrus producing state that does not present 

climatic suitability is Baja California (BCN), this state 

was also reported as the entity with the lowest 

suitability for the Diaphorina citri vector (Rodríguez-

Aguilar et al., 2023).  

 

According to the Köppen classification, as modified by 

García (1998), 80.4 % of the suitable areas reported in 

this study coincide or are found in the group of rainy 

tropical climates (A), while 19.6 % are located in 

temperate climates (C) and dry (B) (Figure 5a, 5b). 

According to Contreras-Servín (2014), it has been 

observed that the tropical climate is the most strongly 

related to the presence of HLB. The climates of group 

A are distributed along the coastal regions of the 

Pacific Ocean (from parallel 29° north toward the 

south) and the Gulf of Mexico (from parallel 27° 

toward the south); as well as in the Yucatan Peninsula 

and Chiapas (García, 2004). The data presented in 

Figures 5a and 5b show consistency between the 

results of this study and those published in the 

literature, since the sampling points located in tropical 

climates have tested positive for the HLB (Contreras-

Servín, 2014).  

 

Future projections 

 

Depending on each region and period, the effect of 

climate change on diseases can be neutral, positive, or 

negative (Hernández-Mansilla et al., 2017). This study 

presents zones with gains, permanence, and losses in 

relation to the current distribution, depending on how 

the model matching is considered. For the years 2050 

and 2070, under scenarios SSP2 4.5 and SSP5 8.5, the 

areas of gain predominate in the central and northern 

part of the country, while the areas with projected 

losses are located in the Yucatan Peninsula, and near 

the coasts of the Pacific Ocean and the Gulf of Mexico 

(Figures 6 and 7).  

 

Analysis of the change in the distributions of the 

variables between the present and the future with the 

MIROC6 model for the area of permanence showed 

that bio01 and bio04 exhibited the greatest differences 

to the future values (t= 430.76 and t=149.36, p < 

0.001). However, these differences did not affect the 

distribution, since the areas continued to be maintained 

in the future (Figure 8a). On the other hand, analyzing 

the loss areas in Figure 7c, it was found that the 

behavior of these variables was approximately similar 

to that of the area of permanence (Figure 8b) since 

bio01 and bio04 continued to present differences (t= 

352.03 and t= -34.203, p < 0.001). However, in this 

loss zone, bio02 presented an increase in value relative 

to the present (t=179.51, p < 0.001). Consequently, it 

is inferred that bio02 is probably the variable that 

determines the loss of suitability areas. As observed in 

the graphs of Figure 8, bio01 and bio04 presented 

changes in the area of permanence, but did not affect 

the distribution. Further studies are therefore required 

to generate knowledge on how the diurnal temperature 

oscillation (bio02) affects the distribution and 

development of HLB, considering that bio02 provides 

information on the importance of temperature 

fluctuation for different species (O’Donnell and 

Ignizio, 2012).  

 

 

 
Figure 5. (a) Current potential distribution of HLB in Mexico, in which the suitability areas correspond to MaxEnt values 

greater than 0.2; (b) Group of climates in Mexico according to the Köppen classification, as modified by García (1998). 
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Figure 6. Projection of future HLB suitability areas in Mexico. The color scale refers to the number of models that 

match permanence, loss, or gain in SSP2 4.5 (a, c, and e) and SSP5 8.5 (b, d, and f) for the year 2050. For example, in 

map 6a, the number 8 refers to the fact that all eight GCM indicated a gain in those regions. The gray background of 

the figures represents the municipalities that currently present citrus production (SIAP, 2020).   
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Figure 7. Projection of future HLB suitability areas in Mexico. The color scale refers to the number of models that 

match permanence, loss, or gain in SSP2 4.5 (a, c, and e) and SSP5 8.5 (b, d, and f) for the year 2070. The gray 

background of the figures represents the municipalities that currently present citrus production (SIAP, 2020). The 

orange and yellow boxes in (c, e) delimit regions from which samples were taken to analyze change in the values of 

the bioclimatic variables for zones of loss and permanence.  
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Figure 8. Empirical density distribution of the present and future bioclimatic variables with the MIROC6 model in the 

areas of permanence (a) and loss (b) derived from random sampling of the areas in the boxes of Figures 7c and e.  

 

 

On the other hand, in both years (2050 and 2070), it is 

apparent that the areas of permanence will be greater 

than those that will be lost relative to the current 

suitability. It is worth mentioning that the areas of loss 

are mostly located in tropical climates (Figure 5b) and 

found within the citrus-producing states (SIAP, 2020). 

The main citrus-producing states predicted to present a 

reduction of suitability areas are VER, MIC, TAM, 

SLP, NLE, OAX, COL, YUC, TAB, GRO, SIN, CHP, 

ROO, and NAY. These 14 states represent 89.2 % of 

the harvested area of citrus fruits (SIAP, 2020). 

However, the risk remains high because these regions 

will be surrounded by suitability areas that can present 

sources of dissemination of the disease. In addition, 

Rodríguez-Aguilar et al. (2023) reported that these 

areas, while not suitable for HLB, will be suitable 

zones for the establishment of D. citri, the vector of the 

bacteria that causes HLB, and therefore the risk 

persists. 

 

The areas of gain are found mostly in the 

municipalities that are not currently producers of citrus 

(Figures 6 and 7). This result is similar to projections 

made for D. citri in the same scenarios and years; i.e., 

the areas of gain for the vector are mostly outside the 

limits of the municipalities dedicated to citriculture 

(Rodríguez-Aguilar et al., 2023). If the growing areas 

of citrus do not change in 2050 and 2070, the potential 

risk of HLB in the new areas will therefore not directly 

affect agricultural activity. However, if citrus 

production expands to these zones, the risk of HLB 

will increase. Moreover, the potential occurrence of 

the disease in these areas cannot be entirely ruled out 

because there may be citrus plants in backyard gardens 

that could act as sources of dissemination to the 

commercial orchards, considering that control 

measures to manage the disease and its vector are 

rarely applied in these backyards (Manjunath et al., 

2008; Ajene et al., 2020). According to Hernández-

Landa et al. (2018), there are rutaceas in some urban 

areas that host D. citri, from where the vector can 

disperse to citrus plantations. 

 

The future suitability areas are the sum of the 

permanence and gain areas (blue and red gradients in 

Figures 6 and 7). Compared with the currently suitable 

area (875,263.02 km2) and considering only the areas 

in which the eight GCM concur, it was found that there 

will be a reduction of -2.5 % under the SSP2 4.5 

scenario, with -3.3 % under SSP5 8.5-50, -2.5 % under 

SSP2 4.5-70 and -4.1 % under SSP5 8.5-70 in the 

Mexican territory. When relaxing the coincidence to 

four GCM models, the trend remained similar; i.e., the 

future areas will be smaller than the current area since 

the first scenario presents a reduction of -2 %, the 

second of -2.8 %, the third of -2 %, and the fourth of -

2.9 % (Table 2). Consequently, by considering only the 

areas where the four and eight GCM agree, the suitable 

areas under the different projections are reduced. 

 

The previous results were derived from the matching 

of a certain number of models across the future 

scenarios. However, in another context of analysis, 

when the entire agreement gradient between the 

models is considered; i.e., the total sum of the areas 

from 1 to 8 represented in Figures 6 and 7, the future 

projections are greater than the current one. Therefore, 

the potential increase relative to the current 

distribution under scenario SSP2 4.5-50 will be 12.3 

%, under SSP5 8.5-50 15.7 %, under SSP2 4.5-70 15.6 

%, and under SSP5 8.5-70 of 20.1 % of the Mexican 

territory. In this context, suitability differs in relation 

to climate change scenarios and years; i.e., for the same 

year, from SSP2 4.5 to SSP5 8.5, the areas increase and 

for the same value of SSP from 2050 to 2070, the areas 

also increase (Table 3). This coincides with that reported
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Table 2. Future suitability for HLB derived from the coincidence of eight and four GCM. 

GCM number Scenario Permanence (km2) Loss (km2) Gain (km2) * Future suitability (km2) 

8 SSP2 4.5-50 754,506.7 138,982.4 71,745.3 826,252.1 

8 SSP5 8.5-50 708,587.1 184,902.0 102,036.4 810,623.5 

8 SSP2 4.5-70 727,521.7 165,967.4 98,730.3 826,252.1 

8 SSP5 8.5-70 636,283.6 257,205.5 158,840.1 795,123.8 

4 SSP2 4.5-50 754,506.7 138,982.4 82,329.0 836,835.7 

4 SSP5 8.5-50 708,587.1 184,902.0 111,611.0 820,198.2 

4 SSP2 4.5-70 727,521.7 165,967.4 108,884.6 836,406.3 

4 SSP5 8.5-70 636,283.6 257,205.5 181,295.4 817,579.1 

*Future suitability is the sum of permanence and gain. 

 

 

Table 3. Future suitability for HLB derived from the union of the gradient matching between the GCM. 

Scenario Permanence (km2) Loss (km2) Gain (km2) * Total future suitability (km2) 

SSP2 4.5-50 860,364.4 217,339.8 257,398.7 1,117,763.1 

SSP5 8.5-50 850,446.3 271,524.5 333,287.3 1,183,733.6 

SSP2 4.5-70 850,338.9 264,268.4 332,106.6 1,182,445.5 

SSP5 8.5-70 817,707.9 405,547.9 452,133.0 1,269,840.9 

* Total future suitability is the sum of permanence and gain.  

 

 

by Ajene et al. (2020), who concluded that there are 

more areas suitable for HLB on the African continent 

under the extreme scenario compared to the moderate 

scenario of CMIP5. Hence, the increase in suitable area 

will be greater since an increase is expected in the 

concentration of atmospheric greenhouse gases. 

 

In the first context, in which the agreement of all 

models is considered, the approach is the most 

conservative, since there is a slight reduction in the 

distribution, and this can be considered the best-case 

scenario. However, considering any of the GCM 

matching gradients (a liberal approach), the results 

show a substantial increase. These two approaches 

indicate a variability in the predictions which cannot 

be derived from a single model analysis, as is 

sometimes reported. It is therefore suggested that 

climate change studies should include several models 

since the use of a single model could produce results 

that do not match with others. 

 

In the future, to achieve improved control of HLB, it is 

suggested that phytosanitary actions focused on the 

elimination or reduction of the spread of the disease 

should consider all areas of agreement among models, 

and not simply where the eight models match. 

However, where economic resources allocated to 

implement phytosanitary actions are limited, it is 

recommended to pay more attention to the areas in 

which the eight models agree. 

 

In summary, the prediction of potential areas of 

suitability for HLB provides information of great 

utility for the monitoring, planning, and 

implementation of preventive measures (Narouei-

Khandan et al., 2015; Ajene et al., 2020; Martínez-

Martínez et al., 2021). In the areas of potential risk of 

HLB, it is therefore pertinent to carry out the 

phytosanitary actions recommended by the 

SENASICA; i.e., epidemiological surveillance in 

commercial orchards and urban areas, and chemical 

and biological control of the vector insect in both 

citrus-producing and urban areas (García-Ávila et al., 

2021), since these measures are effective in controlling 

the spread of HLB (García-Ávila et al., 2021).   

 

CONCLUSIONS 

 

We analyzed the effect of climate on the current and 

future distribution of HLB. The use of several GCM 

indicated variability in future projections. The net 

change ranged from a best-case scenario, in which 

there is a slight reduction in the future distribution 

using the intersection of the models, to a high-risk 

scenario, with a substantial increase in coverage when 

considering all GCM together. Thus, the variations of 

future suitability areas vary along a gradient depending 

on the nature of the GCM matching.  

 

Under the optimistic approach, considering the 

matching of all the models, we found a marginal 

reduction in HLB distribution across all scenarios. 

However, when considering the matching of any of the 

models, we found the current suitability was 44.6 %, 

with a substantive increase under all the scenarios. In 

the first future scenario (SSP2 4.5-50), we found an 

increase of 12.3 %, in the second scenario (SSP5 8.5-

50) 15.7 %, in the third scenario (SSP2 4.5-70) 15.6 %, 

and in the fourth scenario (SSP5 8.5-70) 20.1 % of the 

Mexican territory. These regions of potential HLB risk 

comprise the majority of the citrus-growing zones; 

however, in some regions, there was a reduction in 
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suitability, and thus the risk for plantations is reduced. 

Notwithstanding, the risk remains since the suitable 

and unsuitable areas are geographically close and the 

risk of dissemination therefore persists.  
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