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SUMMARY

Background. The SVI (Standardized Vegetation Index) provides a relative comparison of the condition of
the vegetation in different classifications for monitoring droughts. Objective. In this research, the SVI was
used through the Google Earth Engine (GEE) at the national level and in three study points for a coastal,
Amazonian, and Andean region for October 31, 2020, and two decades. Methodology. For the construction
of the SVI, the data from the Moderate Resolution Imaging Spectroradiometer (MODIS) Version 6 were
used; of the Terra sensor (MOD13Q1) with a temporal resolution of 16 days, a spatial resolution of 250
meters, and as a level 3 product. Results. The SVI was represented in five classifications: with green color
> 0 (No Drought), yellow color -0.10 to -0.94 (Slight drought), light orange color -0.95 to -1.44 (Moderate
drought), dark orange color -1.45 to -1.94 (Severe drought), and red color < -1.95 (Extreme drought).
Implications. The change in historical SVI values was evidenced due to causes such as EI Nifio costero
(coastal) and deforestation of Tropical Forests; for the Sechura Desert in Piura and La Pampa in Madre de
Dios, respectively. Subsequently, in the Andes of Peru, in Ollachea, Puno, it was determined that the SVI
value, more extreme negative, represented an extreme drought never registered for this area. Conclusion.
The SVI and GEE provided tools for drought management with high spatial and temporal resolution.
Keywords: SVI; drought; vegetation condition; Google Earth Engine.

RESUMEN

Antecedentes. El SVI (indice de Vegetacion Estandarizado) proporciona una comparacion relativa del
estado de la vegetacién en diferentes clasificaciones para el seguimiento de las sequias. Objetivo. En esta
investigacion se utiliz6 el SVI a través del Google Earth Engine (GEE) a nivel nacional y en tres puntos de
estudio para una regién costera, amazonica y andina para el 31 de octubre de 2020 y dos décadas.
Metodologia. Para la construccion del SVI se utilizaron los datos del espectrorradiometro de imagenes de
resolucién moderada (MODIS) version 6; del sensor Terra (MOD13Q1) con una resolucion temporal de 16
dias, una resolucion espacial de 250 metros y como producto de nivel 3. Resultados. EI IVS se representd
en cinco clasificaciones: con color verde > 0 (Sin sequia), color amarillo -0,10 a -0,94 (Sequia leve), color
naranja claro -0,95 a -1,44 (Sequia moderada), color naranja oscuro -1,45 a -1,94 (Sequia severa), y color
rojo < -1,95 (Sequia extrema). Implicaciones. Se evidenci6 el cambio en los valores histéricos del SVI
debido a causas como El Nifio costero y la deforestacion de los Bosques Tropicales; para el Desierto de
Sechura en Piura y La Pampa en Madre de Dios, respectivamente. Posteriormente, en los Andes del Per,
en Ollachea, Puno, se determind que el valor del SVI, mas extremo negativo, representd una sequia extrema
nunca registrada para esta zona. Conclusion. EI SVI y GEE proporcionaron herramientas para la gestion
de la sequia con alta resolucion espacial y temporal.

Palabras clave: SVI; sequia; estado de la vegetacion; Google Earth Engine.
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INTRODUCTION

NASA in communication on October 26, 2020,
said that there is a severe drought in South
America, the first signs of the magnitude of the
drought appeared in satellite gravimetry
observations of southeastern Brazil since mid-
2018 and had spread to parts of Paraguay,
Bolivia, and northern Argentina by 2020 (NASA,
2020), considered the second most intense
drought in South America since 2002; this alert
is based on the extent, duration and volume of
water lost during the drought as measured by the
GRACE and GRACE-FO satellites (Rodell,
2020). A second announcement alerted the
scientific community on November 25, 2020,
when the Peruvian National Meteorological and
Hydrological Service (SENAMHI) reported that
the deficiency of rainfall at the national level will
remain of the same magnitude until the following
weeks, especially in the central and southern
highlands of this country, due to the low
humidity in the area (SENAMHI, 2020a).
Similarly, rainfall deficiencies at the national
level are associated with the entry of dry air from
the Pacific, with greater incidence in the southern
highlands of Peru (SENAMHI, 2020b;
SENAMHI, 2020c), this dry air brought the
withdrawal of humidity from the Andes to the
east, favoring clear skies and intense radiation
during the day and lower temperatures during the
night in the central and southern highlands
(Fernandez, 2020). The humidity forecast for the
southern region for November 27 and 28 in 2020
favored the occurrence of localized rainfall in the
eastern region and less intensity in the western
region, with the possibility of lesser and isolated
rains until December of this year (SENAMHI,
2020a). Rainfall  deficiencies  persisted,
especially in the western regions of the Southern
Andes. The agricultural sector is affected by
increased water stress in Andean dryland crops,
as well as by the delay in planting for November
in the central and southern highlands of Peru
(Fernandez, 2020). The impacts caused by
SARS-CoV-2 on the agricultural sector,
affecting the agri-food chain, added to this
problem (Garcia et al., 2020).

The Presidency of the Council of Ministers of
Peru on December 1, 2020, issued Supreme
Decree No. 149-2020-PCM declaring the State of
Emergency for 60 calendar days in 38 provinces
and 181 districts of the regions of Tumbes, Piura,
Lambayeque, La Libertad, Cajamarca, and
Ancash, due to imminent danger of water deficit
in the northern part of Peru (SENAMHI, 2020a),
this meant the transfer of functions to the
regional governments in the implementation of
the actions after technical studies, without
specifying budget amounts (PCM, 2020).
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Otherwise, understanding the relationship
between vegetation vigor and moisture
availability is complex and has not been
adequately studied with satellite sensor data (Ji
and Peters, 2003). Drought is a prolonged
absence of rainfall, which generates water
scarcity over a sufficiently long period so that the
lack of precipitation generates a serious
hydrological imbalance. Three types of droughts
have been determined (Zargar et al., 2011): a.
Agricultural drought is the deficit of humidity in
the upper meter of the soil, that is, in the root
zone, which affects the crops (Skakun et al.,
2016). b. Meteorological drought, which is due
to prolonged precipitation deficit (Spinoni et al.,
2019), and c. Hydrological drought, which is
related to below-normal groundwater, lake, and
streamflow levels (Shamshirband et al., 2020).
Drought studies should consider the duration,
magnitude, intensity, severity, geographic extent,
and frequency of droughts (Zargar et al., 2011):
a. Duration, depending on the region, the
duration of drought can vary from one week to a
few years. Due to the dynamic nature of drought,
a region may experience episodes of drought and
rainfall simultaneously when considering various
time scales (Kibret et al., 2020). b. Magnitude,
the cumulative water deficit; e.g., precipitation,
soil moisture, or runoff below a certain threshold
during a period of drought (Zargar et al., 2011).
c. Intensity, the relationship between the
magnitude of the drought and its duration (Kibret
et al., 2020). d. Severity, two uses are provided
for drought severity; the magnitude of the
precipitation deficit, i.e., the magnitude and
degree of impacts resulting from the deficit
(Xiangtao et al., 2020). e. Geographic extent, the
area coverage of the drought that is variable
during the event (Ghazaryan et al., 2020); this
area can cover several kilometers (Skakun et al.,
2016) and f. Frequency or return period, defined
as the average time between drought events
having a severity equal to or greater than a
threshold (Zargar et al., 2011).

Drought monitoring relies on data from
geostationary and polar-orbiting satellites, as
well as information in situ (Chuvieco, 2008).
Besides, satellite  information can  be
complemented  with  studies related to
groundwater levels to replenish lakes and
reservoirs (Kibret et al., 2020). For example,
more than 74 drought indices are known (Zargar
et al., 2011), most of them derived from SPI
(Standardized Precipitation Indices) and NDVI
(Normalized Difference Vegetation Index)
(Wainwright et al., 2020). There are also index
depending on the purpose of the study; for
example, detection and monitoring of droughts in
real-time (Ghazaryan et al., 2020), declaration of
the beginning or the end of a drought period
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(Tarnavsky and Bonifacio, 2020), a study of
drought levels and drought response measures
(Zargar et al., 2011), analysis of quantitative
impacts of droughts on variables at geographic
and temporal scales (Tarnavsky and Bonifacio,
2020), finally the declaration of drought
conditions among researchers, technicians,
organizations and the general public (Adedeji et
al., 2020; Tsakiris and Vangelis, 2004; Zargar et
al., 2011). These indices currently assist in a
variety of operations, such as drought warning,
monitoring, and contingency planning.

The reports of Peru's National Center for the
Estimation, Prevention and Reduction of
Disaster Risk (CENEPRED) based on scientific
information from the National Hydrology and
Meteorology Service (SENAMHI) and the
Multisectoral Committee in charge of the
National Study of El Nifio costero (ENFEN)
regarding droughts or hostile events, are prepared
on a regional, provincial or basin scale; however,
this information is provided long after the event
and therefore hinders the response of decision
makers in the process of estimating, preventing
and reducing disaster risk (CENEPRED, 2020).

Moderate Resolution Imaging Spectroradiometer
(MODIS) Version 6; Terra sensor (MOD13Q1)
data are generated every 16 days at a spatial
resolution of 250 meters as a level 3 product
(Ezzine et al., 2014; Didan, 2020), and are
available free of charge at Google Earth Engine
(GEE) (Da Silva et al., 2020). The SVI
(Standardized Vegetation Index) is based on the
calculation of Z-scores, a deviation from the
mean NDVI in standardized deviation units at the
level of each pixel over a time series (Peters et
al., 2002). The SVI allows the time series to be
extended with data from the National Oceanic
and Atmospheric Administration Advanced Very
High-Resolution Radiometer (NOAA-AVHRR)
as long as a full inter-calibration between the two
sensor systems is provided (Swain et al., 2011).
The SVI provides a relative comparison of
vegetation conditions, whereas the assessed
deviation from the mean vegetation condition
cannot be translated into an absolute deviation of
plant height, for example. Nor can the SVI be
interpreted as an absolute quantification of
agricultural damage (Ezzine et al., 2014; Ji and
Peters, 2003; Swain et al., 2011).

Understanding the temporal and spatial behavior
of precipitation is of high interest, especially in
climate risk studies, where the availability of
high resolution and good quality information is
essential (Carbajal et al., 2010). However,
conventional rain gauge measurements are
relatively scarce and poorly distributed,
especially in developing countries (Asurza and
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Lavado, 2018), in this sense., the launch of GEE,
a cloud computing platform for storing and
processing geographic datasets from local to
planetary geographic scale (Gorelick et al., 2017;
Kibret et al., 2020), helps in long-term drought
monitoring because of the tools it provides
(Wang et al., 2012), and for being an important
component in early warning systems. Therefore,
the objective of this research was to analyze
droughts using the Standardized Vegetation
Index (SVI) and the GEE for two decades (2000
- 2020) in Peru and to expose their potential for
planning and response to drought impacts at local
and national scales with a time scale of 16 days.

METHODOLOGY
Standardized Vegetation Index (SVI)

The SVI is used for drought monitoring and early
warning of droughts. This index describes the
probability of variation of the normal NDVI over
several years of data, in a weekly time interval
(Peters et al., 2002). SVI is a z-score deviation
from the mean in units of standard deviation,
calculated from the NDVI (Normalized
Difference  Vegetation Index) and EVI
(Enhanced Vegetation Index) values for each
pixel location of a composite period for each year
during a given reference period. The SVI formula
is shown below (UN-SPIDER, 2020):

Ve —
ijk oy
Where: Zij is the z-value for pixel i during week
j for year k, VIjj is the weekly VI (Vegetation
Index) value for pixel i during week j for year k,
so both NDVI and EVI (Son et al., 2014) can be
used as VI, pij is the mean for pixel i during week
j for n years, and gj; is the standardized deviation
of pixel i during week j for n years. This formula
was established to obtain data every week;
however, due to the temporal resolution of the
satellite used in this study, measurements are
being taken every 16 days.

For the NDVI and EVI calculations (Son et al.,
2014):

NDVI = (Phir - Pred)/(Pnir + Pred)

EVI = (2.5*Pnir - Pred)/(Pnir + 6*Preq - 7.5*Ppiue +
1)

Where: Preq: (620-670 nm), Pyir (841-876 nm),
and Ppie (459-479 nm) are MODIS bands 1, 2,
and 3
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The SVI calculation is based on the EVI, which
in turn is obtained from the corrected NDVI, has
improved sensitivity in dense vegetation
conditions, and is less affected by the influence
of aerosols (Wang et al., 2012). The random
variable of a standardized normal distribution
corresponds to a Z-score. Therefore; each
random variable X can be transformed into a Z-
score by the following equation (UN-SPIDER,
2020):

Z=(X-wlo

Where X is a normal random variable, p is the
mean and o is the standard deviation. Therefore,
a Z-score equal to 0 represents an element equal
to the mean, a Z-score less than O represents an
element less than the mean, and a Z-score greater
than O represents an element greater than the
mean. The Z-score indicates how many standard
deviations an item is from the mean, so the
standard deviation, in general, indicates how
dispersed the data set is (Peters et al., 2002). A
low standard deviation implies that the data are
tightly clustered around the mean, while a high
standard deviation implies that the data are
spread over a wider range of values. If the
number of elements in the data set is large,
approximately 68% of the data are within 1
standard deviation from the mean, 95% within 2
standard deviations, and 99.7% within 3 standard
deviations from the mean, when it is a normal
distribution. The SVI was represented in five
categories (Table 1) (UN-SPIDER, 2020): SVI
with green color > 0 (No Drought), yellow color
-0.10 to -0.94 (Mild Drought), light orange color
-0.95 to -1.44 (Moderate Drought), dark orange
color -1.45 to -1.94 (Severe Drought) and red
color < -1.95 (Extreme Drought). The SVI
dynamics can be influenced by rainfall, stress,
phenology, flooding, pests and diseases, nutrient
deficiencies, forest fires, grazing and human
activities (Ji Peters, 2003). However, the factors
mentioned above must be associated with the
types of droughts as well as the duration,
magnitude, intensity, severity, geographic extent,
and frequency to understand the droughts (Zargar
et al., 2011). Finally, we used the coefficient of
variation to determine the statistical measure of
the dispersion of the data points around the mean
of the calculated SVI and box plots to show the
dispersion of the SVI data in the study areas.
These box plots are a standardized method of
graphically representing a series of SVI
numerical data through their quartiles.

SVI Nacional
The Standardized Vegetation Index (SVI) was

used for drought analysis at the national level
using the method developed by UFSM in Brazil
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in cooperation with UN-SPIDER within the
SEWS-D project (UN-SPIDER, 2020); MODIS
images were used: ee.ImageCollection
("MODIS/006/MOD13Q1") from GEE (Didan et
al., 2015), from October 31, 2020.

Table 1. Drought classes according to the
value of the Standardized Vegetation Index
(SVI) for Peru

Class Value Color
Extreme Drought <-1.95 e
Severe Drought -1.45a-1.94
Moderate Drought -0.95a-1.44
Mild Drought -0.10a-0.94
No Drought >0

Historical SVI

The historical values and trends of SVI recorded
in two decades (2000-2020), were obtained with
a spatial resolution of 250 m and a temporal
resolution of 16 days, applying as examples of
cases of one pixel per Region: Coastal (Sechura
Desert, Piura), Andean (Ollachea, Puno) and
Amazonian (La Pampa, Madre de Dios) zones.

Terra-Modis vegetation indices

The MOD13Q1 V6 product available from GEE
provides a Vegetation Index (V1) value per pixel
of 250 m, where there are two vegetation layers:
the first is the NDVI and the second vegetation
layer is the EVI which minimizes canopy
background variations and maintains sensitivity
in dense vegetation conditions (Didan et al.,
2015). EVI also uses the blue band to remove
residual air pollution caused by smoke and thin
sub-pixel clouds (Ronchetti et al., 2020).
MODIS products such as NDVI and EVI are
calculated from atmospherically corrected
bidirectional surface reflectance that has been
masked for water, clouds, heavy aerosols, and
cloud shadows (UN-SPIDER, 2020).

Study area

The Republic of Peru is a country located in
South America and has a total area of 1 285 215
km2. t borders the Pacific Ocean to the west,
Ecuador and Colombia to the north, Brazil to the
east, Bolivia to the southeast, and Chile to the
south. For this research, we used the shapefiles of
Peru at the Adm0 and Adm1 levels of the GADM
Portal version 2.8 (GADM, 2018). The Andes
Mountain ~ Range  determines  different
geomorphologic units of a continental and
marine environment for Peru (Gonzélez-
Moradas Viveen, 2020). From west to east, in the
continental area, the units correspond to 1.
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Coastal Cordillera; 2. Pre-Andean Plain; 3.
Western Cordillera; 4. Inter-Andean
Depressions; 5. Eastern Cordillera; 6. Titicaca
Basin; 7. Sub-Andean Region; and 8. Amazonian
Plain and in the marine field, the units include 1.
Continental Shelf; 2. Continental Slope; 3.
Marine Trench; 4. Nazca Ridge; and 5. South
Pacific Abyssal Sea Floor INGEMMET, 1995).

Concerning the climate, Peru has eight natural
regions (Pulgar, 2014): Chala or coast, yunga,
quechua, suni, puna, janca or mountain range,
high jungle, and low jungle. Therefore, Peru has
a diversity of climates and microclimates from
the arid and warm coastal, through the inter-
Andean valleys of temperate, frigid, and polar
type to the warm and rainy type of the jungle
(SENAMHI, 2020b). Three factors determine
Peru's climate: the country's location in the
intertropical zone, the altitudinal changes
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introduced by the Andes Mountains, and the flow
along the country's coasts (INGEMMET, 1995).

Sechura Desert, Piura - Coast Region

A random point of geographic coordinates was
selected -5.315960, -81.034303 using the ArcGis
ver. 10.7 tool called Arc Toolbox: Data
Management Tools > Feature Class > Create
Random Points (Figures 1A, 2A y 3A). It is
located in the Sechura Desert, in the Piura
Region, with an average altitude of 11 masl, an
average annual maximum temperature of 30 °C,
an average annual minimum temperature of 23
°C and an average annual rainfall of 16 mm
(SENAMHI, 2020b). This point presents an
ecosystem of the coastal desert type, i.e., arid to
hyper-arid climate with areas mostly devoid of
vegetation consisting of sandy soils or rocky
outcrops in flat, undulating, and dissected areas
subject to wind erosion (MINAM, 2018).
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Figure 1. Standardized Vegetation Index (SVI) in Peru.
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La Pampa, Madre de Dios - Jungle Region

In the Madre de Dios Region, a random point was
established with the following geographic
coordinates -12.853405, -69.972633 (Figures
1B, 2B, and 3B), this point belongs to the place
called La Pampa. It has an average altitude of 203
masl, an average maximum temperature of 31 °C,
an average minimum temperature of 20 °C and
shows average annual precipitation of 2221 mm
(Figures 1B, 2B and 3B) (SENAMHI, 2020b).
This point is within an area dedicated to illegal
mining and belongs to a buffer zone of the
Tambopata National Reserve. The ecosystem is
an alluvial landscape in the Amazonian plain,
which is periodically flooded by normal floods of
5 to 8 meters in height. The forest with sparse or
open undergrowth can have 3 or 4 strata with a
canopy or dome of trees that reach 20 to 25
meters high and emergent individuals up to 30
meters high (MINAM, 2018).

Ollachea, Puno - Andes Region

In the Puno Region, a random point was selected
with the geographic coordinates -13.792852, -
70.453065 (Figures 1C, 2C, and 3C), which
belongs to the Ollachea District. It has an average
altitude of 2659 masl, an average maximum
temperature of 22 °C, an average minimum
temperature of 7 °C, and average annual
precipitation of 1360 mm (Figures 1C, 2C, and
3C) (SENAMHI, 2020b). This point presents an
ecosystem of the Pajonal type of humid puna
(MINAM, 2018).
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RESULTS AND DISCUSSIONS

Regional Standardized Vegetation Index
(SvI)

It was determined that, as of October 31, 2020,
SVI values in all regions of Peru presented
ranges from extreme drought values (< -1.95; red
color) to non-drought values (> 0; green color)
(Table 1, Figure 1).

SVI dynamics can be influenced by precipitation,
stress, phenology, flooding, pests and diseases,
nutrient deficiency, forest fires, grazing, and
human activities (Ji Peters, 2003). The
coefficients of variation of the SVI range from
124.08% in Arequipa to 1691.75% in Puno
(Table 2, Figure 1); a situation that merits that the
analysis of the drought indexes should be
performed independently for each region, as well
as the meteorological conditions, especially if the
seasons of the year are marked, such as autumn
and winter (Table 2, Figure 1) (Ezzine et al.,
2014), because the most common statistical
methods applied to NDVI and precipitation time
series, such as simple linear correlation or
regression analyses, produce inaccurate results if
seasonality is not taken into account (Ji Peters,
2003).

The values for extreme droughts (minimum SVI,
<-1.95) exceed up to 2.16 times the classification
limit value (UN-SPIDER, 2020), as in the case of
the Ayacucho Region (-4.23), or 1.57 times as in
the case of the Tumbes Region (-3.08) (Table 2;
Figure 1); this showed that these places deserve
special attention due to their low water
availability. Recalling that, in addition to this

Sl
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Figure 2. Historical values for the Standardized Vegetation Index (SV1) for three pixels every 16 days from
February 18, 2000 to October 31, 2020. Where: A. Sechura Desert, Piura B. La Pampa, Madre de Dios, and

C. Ollachea, Puno.
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Figure 3. Trends of historical values for the Standardized Vegetation Index (SVI) from February 18, 2000
to October 31, 2020. Where: A. Sechura Desert, Piura B. La Pampa, Madre de Dios, and C. Ollachea, Puno.

problem, there are the impacts caused by SARS- In Peru, SENAMHI uses interpolated
CoV-2 on the Peruvian agricultural sector, in climatological and hydrological data with a
terms of quantity and the need to distribute food resolution of 5 km to study rainfall and droughts
for food security (Garcia et al., 2020). (Risco Sence et al., 2017), but drought analysis

based on Terra Modis data identifies patterns of
drought-prone areas (Uttaruk Laosuwan, 2019)
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at a resolution of 250 m (Didan, 2020), which
provides more timely data for technical studies
on drought management, as requested by the
central government in its decree on drought
management N° 149-2020-PCM (PCM, 2020).
Adjusting the SVI data obtained from satellites
with SENAMHI observations may be of
potential use for drought studies, depending on
the availability of data from the national network
of meteorological stations in Peru.

Sechura Desert, Piura Region

The study point with geographical coordinates -
5.315960, -81.034303 (Figure 1A), in the
Sechura Desert, Piura Region, presented a
minimum SVI of -3.34 corresponding to extreme
drought (Table 1); with a coefficient of variation
of 360.67 % in the two decades (Table 2). This
pointis in the Sechura Desert, a pixel with mostly
negative values due to the natural conditions of
its ecosystem. Figures 2A and 3A, show that in
April 2017 there was an increase of SVI up to 3.5
(No drought), the atypical value within the two
decades and represented by the appearance of
vegetation conditions according to the SVI
interpretation. This is consistent with the rains
that occurred on those dates when it was declared
an area impacted by El Nifio costero (coastal)
(Salazar et al., 2019). These precipitations
generated the greening of some parts of the
Sechura Desert, according to NASA Worldview
satellite views. Finally, the most intense rains in
Piura occurred on March 26, with a duration of
15 hours of rain, so that on March 27, the Piura
River overflowed its banks with a flow of 3,016
md/s, flooding Piura, Castilla, and agricultural
areas (Salazar et al., 2019; Villa Aurelien, 2020).

La Pampa, Madre de Dios Region

Droughts should be evaluated not only by the
presence or absence of rainfall but also by
surrounding factors that allow identifying, for
example, regeneration patterns after fires
(Chuvieco et al., 2020), adding studies of
geographic variables such as topography, soil
characteristics, or climate or relevance of burn
severity. For example, in La Pampa, Madre de
Dios Region, for the study point with geographic
coordinates -12.853405, -69.972633 (Figure 1B),
historical values were identified for the two
decades of SVI with extreme droughts
(maximum SVI: -3.62) (Figures 2B and 3B),
corroborating the loss of tropical forests to bare
soils, where illegal mining activities have been
deforesting since before 1999 (Figures 2B and
3B) (Asner Tupayachi, 2017), The negative
values of this SVI corroborate the lack of
vegetation conditions for this zone, so it is
suggested that this index complements the
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management of deforestation monitoring.
Therefore; negative values in the SVI may be due
to deforestation and the presence of bare soil.

Ollachea, Puno Region

At the point under study, with geographical
coordinates, -13.792852, -70.453065 (Figure
1C), Ollachea district, Puno Region, presented a
minimum SVI for the two decades of -3.97
(extreme drought) (Table 1) with a coefficient of
variation 1691.75 % (Table 2). The SVI presents
extreme negative outliers for 2020 (Figures 2C
and 3C); the most extreme value -3.97; was
recorded for August 12, 2020, followed by other
extreme values observed in August and
September, -3.10 and -3.66 respectively, all these
values correspond to Extreme Drought (Table 1).
According to a SENAMHI report, the Puno
Region had a 95% rainfall deficit for November,
and since October 24, 2020, rainfall was
insignificant in most of the stations of the Puno
highlands (SENAMHI, 2020d).

Drought management should be done at a high
spatial scale and high geographic extent,
identifying water sources, water balances and
examining downstream river flows (Gutiérrez et
al., 2005; Phillips et al., 2009), droughts are more
recurrent due to the lack of focus on the
protection of water sources (Garcia and Otto,
2015). Countries such as Brazil used the ESG to
support restoration policy measures within
environmental sciences, territorial planning, and
subsidy for the enforcement of environmental
law (C. Silva Junior et al., 2020). In this sense, it
has been identified that the origins of the
Amazon River area in the Peruvian Andes
(Anderson et al., 2018), and drought
management in emergencies should be declared
at the source, not only downstream, as has
happened with rivers in the Pacific, Atlantic or
Titicaca basins (Lavado-Casimiro and Espinoza,
2014).

The actions taken by the Peruvian Government in
the face of drought emergencies are oriented
solely to the purchase of products, for example,
water supplies for livestock, foliar fertilizers,
supplementary feed, among others in the
Cajamarca Region (COEN, 2020),
comprehensive drought mitigation strategies are
urgently needed.

Finally, the SVI was obtained from a deviation of
the z-score (pixel) from the mean in standard
deviation units, calculated from NDVI and EVI
values (Peters et al., 2002) in the Google Earth
Engine (GEE), at the national level and historical
trends in Peru for two decades. The SVI
presented advantages concerning meteorological
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Table 2. Values for the Standardized Vegetation Index (SV1) for October 31, 2020 in the Regions of

Peru
Region N SVlminimum SVlmaximum  SVlaverage SDsvi CVsvi %
Amazonas 78610 -3.62 3.50 -0.39 1.10 281.49
Ancash 107349 -3.81 4.28 -0.07 0.83 1139.23
Apurimac 64760 -3.62 3.82 -0.18 0.88 489.96
Arequipa 198522 -4.07 4.37 0.94 1.16 124.08
Ayacucho 116550 -4.23 4.36 0.10 1.12 1107.22
Cajamarca 100991 -3.61 3.14 -0.44 0.90 205.35
Cusco 195687 -3.92 3.94 0.24 0.82 345.78
Huancavelica 60244 -3.34 3.77 -0.21 0.85 402.04
Huanuco 94126 -3.18 3.70 -0.20 0.89 440.11
Ica 55308 -4.18 4.47 0.82 1.11 135.18
Junin 124599 -3.23 3.33 0.07 0.95 1291.16
La Libertad 85503 -3.47 4.45 -0.08 0.92 1104.44
Lambayeque 46092 -3.43 4.36 -0.09 0.85 969.85
Limay Callao 102750 -3.78 4.32 0.14 0.93 655.13
Loreto 955497 -3.62 3.69 0.14 0.94 661.04
Madre de Dios 170387 -3.37 2.85 -0.12 0.98 802.63
Moquegua 41178 -4.11 431 1.19 1.16 96.82
Pasco 70765 -3.22 3.18 0.19 0.93 488.83
Piura 119186 -3.34 4.12 -0.22 0.78 360.67
Puno 184763 -3.97 4.04 0.05 0.86 1691.75
San Martin 104387 -3.71 3.43 -0.41 0.92 226.61
Tacnha 46115 -4.01 4.34 1.09 1.09 99.39
Tumbes 15791 -3.08 2.69 -0.69 0.73 105.82
Ucayali 350644 -3.74 3.44 0.35 0.75 215.42

N=Number of pixels per Region; SV Iminimum=Lowest SVI value by region; SVl naximum= Highest SVI value
by region; SVlaerage=Average SVI value by region; SDsvi= Standard deviation for the SVI by region and

CVsv) %= Coefficient of variation of SVI by region.

drought indices (Ji and Peters, 2003). It was
possible to work with a high spatial resolution at
the national level (250 m) and to cover larger
areas (Gorelick et al., 2017). A temporal
resolution of 16 days allows better management
to face droughts in Peru; achieving values for the
severity of vegetation stress resulting from a
water deficit (Wang et al.,, 2012) or other
phenomena that cause the loss of water content
in plants.

CONCLUSIONS

The Standardized Vegetation Index (SVI) was
determined for a specific date throughout Peru,
as well as for two decades in three study points
using the GEE. The change of the SV values due
to causes such as El Nifio Phenomenon for the
Sechura Desert, Piura, and deforestation in
Tropical Forests in the La Pampa Zone, Madre de
Dios, was verified. Subsequently, in the Peruvian
Andes, in Ollachea, Puno, it was determined that
the most extreme negative SVI value represented
an extreme drought never recorded for this area.
Finally, the GEE provided free of charge a

historical series of satellite images from 2000 to
date, at the local and national level with a spatial
scale of 250 m and a temporal scale of 16 days
for drought studies for Peru.
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