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SUMMARY 

Background: In recently formed karst environments, as in the north of the state of Yucatan, Mexico, many chemical 

and physical properties of soils have a high spatial heterogeneity. However, this heterogeneity of the soil is not well-

understood, which affects the agricultural use of the land. Objective: To identify the soil properties that best allow 

zoning, in order to select them for precision agriculture. Methodology: A plot was divided into 54 quadrants of 25 m2 

(5 x 5 m). In each quadrant, the properties of the soil described or analyzed were the stoniness, rockiness, depth, silt, 

sand, clay, particle density, bulk density, organic carbon, and field capacity. A georeferenced database of soil properties 

was built. Geostatistical analyzes were performed using ordinary kriging (parametric) and indicator kriging 

(probabilistic) interpolations. The precision of the interpolations was estimated. The soil property maps were 

constructed in Arc GIS. Results: The organic carbon, bulk density, rockiness, particle density, stoniness, silt, and sand 

were the soil properties with the best adjustment values between the theoretical and experimental models. In addition, 

those same soil properties had good, high, and very high correlations between data measured and data estimated with 

the interpolation. On the other hand, the depth, clay, and field capacity were the properties of soils with adjustment 

values lower than r2 = 0.8, as well as with cross-validation values of less than r = 0.5. Implications: The probabilistic 

maps of soil depth allowed us to identify the areas with Nudilithic, Lithic, and other Leptosols. Conclusion: The 

percentage of organic matter and depth represent the two soil properties that could be best applied to conduct parcel 

zoning for the sake of achieving better precision agriculture. 
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RESUMEN 

Antecedentes: En ambientes kársticos recientes, como en el norte del estado de Yucatán, México, muchas propiedades 

químicas y físicas de los suelos tienen una alta heterogeneidad espacial; sin embargo, esta heterogeneidad del suelo no 

se comprende bien, lo cual afecta el uso agrícola de los terrenos. Objetivo: Identificar las propiedades del suelo que 

mejor permitan la zonificación con la finalidad de seleccionarlas para hacer agricultura de precisión. Metodología: 

Una parcela se dividió en 54 cuadrantes de 25 m2 (5x5 m). En cada cuadrante, las propiedades del suelo descritas o 

analizadas fueron: pedregosidad, rocosidad, profundidad, limo, arena, arcilla, densidad real, densidad aparente, 

carbono orgánico y capacidad de campo. Se construyó una base de datos georreferenciada de propiedades del suelo. 

Los análisis geoestadísticos se realizaron utilizando interpolaciones de kriging ordinario (paramétrico) y kriging 

indicador (probabilístico). Se estimó la precisión de las interpolaciones. Los mapas de las propiedades del suelo se 

realizaron en Arc Gis. Resultados: El carbono orgánico, densidad aparente, rocosidad, densidad real, pedregosidad, 

limo y arena fueron las propiedades del suelo con los mejores valores de ajuste entre los modelos teórico y 

experimental, además esas mismas propiedades del suelo tuvieron correlaciones buenas, altas, y muy altas, entre ambos 

datos medidos y estimados con la interpolación. Por otro lado, la profundidad, arcilla y capacidad de campo fueron las 

propiedades de los suelos con valores de ajuste menor que r2= 0.8; así como con valores de la validación cruzada menos 

de r= 0.5. Implicaciones: Los mapas probabilísticos de profundidad del suelo permitieron identificar las áreas con 

Nudilithic, Lithic y otros Leptosols. Conclusiones: El porcentaje de materia orgánica y la profundidad son las dos 

propiedades del suelo que podrían funcionar mejor para hacer una zonificación de parcelas con el fin de lograr una 

mejor agricultura de precisión. 
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INTRODUCTION 

 

In the last two decades, geostatistics has become a 

discipline widely used in environmental sciences, 

particularly in studies of spatial soil heterogeneity. 

Geostatistics assumes that the spatial distribution of 

the studied variable has a defined structure (Webster 

and Oliver, 1990). Geostatistics provides a set of 

statistical tools for incorporating the spatial 

coordinates of quantitative soil observations in data 

processing, allowing for the description and modeling 

of spatial patterns and the possibility of estimating the 

value of regionalized variables for unsampled sites or 

analyzed with an assessment of the uncertainty 

attached to these predictions (Goovaerts 1997, 1999). 

This is particularly important because laboratory 

analyses of some soil properties are expensive and time 

consuming (Nourzadeh et al., 2013; Delgado et al., 

2019).  

 

Currently, there is great concern for environments 

linked to the use of agrochemicals, which have been 

referred to with several names, including "precision 

agriculture" and "site-specific agriculture". In both, the 

goal is to use efficient agrochemicals, because, if used 

excessively, two things happen: a) Damage to the 

environment occurs, and b) farmers lose money by 

overuse the agrochemical (Flores, 2011; Sidorova et 

al., 2012; Nourzadeh et al., 2013). It has been 

recognized that the properties of the soil and crops vary 

within fields (Beckett and Webster, 1971).  

 

Understanding the spatial distribution and accurately 

mapping the soil properties are very important and 

useful for comprehensive soil management and 

environmental assessment, in order to achieve 

fertilization and nutritional management and 

environmental pollution control (Yemefack et al., 

2005). To achieve the aims of this type of agriculture, 

it is necessary to gain knowledge about the soil 

properties in a spatial context. 

 

In karst environments, as in the state of Yucatan, 

Mexico, the soils have a high spatial heterogeneity 

(SH) in terms of different soil properties, such as 

organic carbon, stoniness, rockiness, the bulk density, 

the depth, nutrients, and others (Weisbach et al., 2002; 

Bautista et al., 2003; Shang and Tiessen, 2003; 

Bautista et al., 2005; Flores, 2011; Bautista et al., 

2011). Additionally, the diversity of soil Maya names 

and their classification reflects the soil heterogeneity 

(Bautista et al., 2003; Bautista and Zinck, 2010). SH 

should be taken into account when selecting plots for 

conducting agricultural experiments and/or using 

sophisticated statistical experimental designs and a 

large number of samples. 

The aim of this study was to conduct an analysis of the 

spatial heterogeneity of soil in a recently formed 

karstic area to identify soil properties that enable better 

zoning, in order to select them for precision 

agriculture. 

 

MATERIALS AND METHODS 

 

Study site  

 

The study area lies in a slightly undulating sub-

horizontal karstic plain that covers the north of the 

Yucatán peninsula (Bautista et al. 2005). Dissolution 

depressions (i.e., sinkholes such as dolines and uvalas) 

alternate with rock-outcrop mounds, with 1–2 m of 

relative elevation (Bautista et al. 2015). Leptosols 

dominate the soilscape, with small inclusions of 

Cambisols (Bautista et al. 2011). The regional climate 

is hot sub-humid tropical with summer rains, and the 

vegetation is a seasonal dry forest (Delgado et al. 

2017a).  

 

The study was conducted in a 1350 m2 parcel 

belonging to the Campus de Ciencias Biológicas y 

Agropecuarias from Universidad Autónoma de 

Yucatán, located in the municipality of Mérida 

Yucatán, México (20º51’57.36’’LN; 

89º37’23.04’’LW). The plot was divided into 54 

quadrants of 25 m2 (5 x 5 m) each (Figure 1), used for 

agronomic experimentation (Bautista et al., 2005). 

 

The soil properties were described, including the 

stoniness (USDA, 2012; Bautista et al. 2016) and 

rockiness (USDA, 2012; Bautista et al. 2016), and the 

soil depth was measured. Samples were analyzed in the 

laboratory for silt, sand, clay (Okalebo et al. 1993), the 

particle density (Gandoy, 1992), the bulk density 

(Gandoy, 1992), organic carbon (Nelson y Sommers, 

1982), and the field capacity (Gandoy, 1992). 

 

Spatial analyses 

 

A georeferenced database of soil properties was 

constructed. A geostatistical analysis using ordinary 

kriging and indicator kriging (only for the soil depth, 

because there are threshold values in the soil 

classification) interpolation was performed in terms of 

the distance with the Gamma Design Software 

(Robertson, 2008), following this sequence: 

 

a) An exploratory data analysis with the aim of 

detecting atypical values or value errors, identifying 

the type of distribution values (fulfillment of the 

Gaussian data distribution), and detecting errors in the 

location of samples (Robertson, 2008). 
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b) Construction of experimental semivariograms and 

fit to a theoretical model of the spatial distribution 

(autocorrelation) of soil properties using 

( ) ( ) 
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,

 

where )(h
 
is the experimental semivariance value 

for all pairs at a lag distance h, ( )xi
Z  is the parameter 

value of the point i, ( )hZ xi
+  is the soil property 

value of other points separated from xi  
by a discrete 

distance h, xi  
is the georeferenced position where 

the ( )xi
Z  values were measured, and n represents the 

number of pairs of observations separated by a distance 

h (Delgado et al., 2010). 

 

 

 
Figure 1. Plot under study, showing the distribution of 

sampling quadrants. 

 

 

The structural parameters of the semivariogram 

describing the model were as follows: (a) The nugget 

variance (C0), which is the y-intercept of the 

semivariogram model representing the variation in soil 

parameters not spatially dependent over the range 

examined, and reflecting both the spatial variation in 

soil parameters at shorter distances than the minimum 

sample spacing and the unexplained soil parameter 

variance; (b) the sill (C0 + C), which indicates the 

asymptote of the curve where the structural variance 

reaches its maximum values because it remains 

constant; and (c) the range, which indicates the 

distance value (meters) at which the maximum soil 

parameter variance is reached, thus defining the area of 

influence of the autocorrelation.  

 

The theoretical model which best adjusts to the 

experimental semivariogram is that with the lowest 

value of the residual sum of square (RSS), and the 

largest determination coefficient ( r
2

) (Webster and 

Oliver,1990). 

 

The estimation of the data was conducted using 

ordinary kriging and indicator kriging interpolation. 

 

Ordinary kriging is the technique that provides the best 

unbiased linear estimator, as well as an estimation error 

known as the kriging variance, which depends on the 

correlation structure chosen, based on the theoretical 

model and the locations of the original data. The 

interpolation attributes a weight to each observed value 

while considering the geometric characteristics of the 

data. By minimizing the estimation variance, the 

optimal use of the available information is guaranteed 

(Webster and Oliver,1990). Soil parameter estimates 

were obtained by punctual kriging using the following 

equation: 
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where  i  
is the optimal weight selected to minimize 

the estimation variance, ( )xi
Z  is the observed value 

of the soil parameter, and ( )xZ
0

 is the optimal and 

unbiased estimate of the soil parameter. 

 

Before the data were used, log transformation was 

conducted for the bulk density, rockiness, depth, and 

clay data. The particle density, organic carbon, 

stoniness, silt, sand, and field capacity data were 

processed without transformation.  

 

The accuracy of the estimates was achieved using cross 

validation, the correlation coefficient (r), the mean 

error (ME), the root mean square error (RMSE), and 

the normalized root mean squared error (NRMSE) 

between measured and estimated soil parameter values 

(Delgado et al. 2010). 

 

In cross-validation, r values must be positive because 

the correlation is directly proportional. The ME is used 

for determining the degree of bias in the estimates and 

it is calculated as 
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where n is the number of samples, ( )xi
Ẑ  is the 

estimated value, and ( )xi
Z

 
is the measured value of 

the soil parameter. 
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The root RMSE is a frequently used measure of the 

differences between values estimated by a model and 

the values measured; it is a good measure of precision 

and serves to aggregate the individual differences or 

residuals into a single measure of predictive power. 

The RMSE provides a measure of the error size that is 

sensitive to outliers in the estimates and is calculated 

by 

( ) ( )

n

xZxZ
n

i
iiRMSE 



 −
== 1

ˆ
2

,

 

where n is the number of samples, ( )xi
Ẑ  is the 

estimated value of the soil parameter, and ( )xi
Z

 
is 

the measured value of the soil parameter. 

 

The NRMSE is the RMSE divided by the range of 

observed values: 

or:
( ) ( )xx mìnmàx

RMSE
NRMSE

−
=

.

 

Lower values indicate less residual variance. 

 

This statistic provides a comprehensive approach for 

the evaluation of kriging interpolations, in order to 

select the best soil parameter for mapping the spatial 

variability of soil heterogeneity in a parcel of Yucatan. 

 

Indicator kriging (IK) is a non-parametric 

geostatistical method. It makes no assumption of 

normality, and a binary transformation (0-1 indicators) 

of data is used to make the predictor less sensitive to 

outliers. IK builds the cumulative distribution function 

at each point, based on the behavior and correlation 

structure of indicator-transformed data points in the 

neighborhood. IK can be used to estimate the 

proportion of values that exceed critical concentrations 

of HM by incorporating the uncertainty of the value of 

variables at unobserved locations. After the cumulative 

distribution function is built, it must be post processed 

to produce a probability map (Goovaerts 1997, 1999; 

Antunes and Albuquerque 2013). 

 

IK was only used for the soil depth, considering that 

there are thresholds of 5 cm for Nudilithic Leptosols, 

10 cm for Lithic Leptosols, and 25 cm for other 

Leptosols (IUSS, 2015). 

 

RESULTS 

 

Descriptive statistics of soil parameters 

 

The skewness values of the soil parameters closer to 0 

(<0.25) were obtained for clay, the bulk density, the 

field capacity, stoniness, and the particle density; that 

is, the properties were symmetric. Conversely, the 

values higher to 1 were obtained for depth, rockiness, 

and sand, and these properties were clearly non-

symmetric. The soil parameter with a kurtosis value 

close to 3 was obtained for rockiness; the highest 

values, and thus farthest away from 3, were the depth 

and stoniness. Parameters with the greatest number of 

different values for the mean and median were 

obtained for rockiness, silt, and sand (Table 1).

 

Table 1. Descriptive statistics of soil parameters. 

Parameter Difference 

Mean- median 

Skewness Kurtosis Minimum 

value 

Maximum 

value 

s 

Organic Carbon (%) 1.5 0.60 -0.49  3.88 21.83 4.7 

Bulk Density (mg mL-1)  0 -0.04* -1.01  0.46 0.94 0.12 

Rockiness (%) 6.57 2.05* 3.60  5 70 14.5 

Particle Density (mg mL-1) 0.08 -0.25 -1.09  1.08 2.57 0.40 

Stoniness (%) 0.1 0.16 -1.45 10 80 23.9 

Silt (%) 3.28 -0.50 -1.01 0 45 12.6 

Sand (%) 2.87 1.37 1.58 15 79 14.1 

Depth (cm) 

 

1.81 2.14* 6.51 1 54.75 9 

Clay (%) 0.59 -0.03* -0.47 10 67 14.6 

Field Capacity (%) 0.39 0.14 -0.62 26.50 47.40 4.88 

* = Log transformation data.  

The parameters with a similar mean and median were the bulk density, particle density, and stoniness.  
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Table 2. Characteristics of semivariogram models. 

Parameter Model 

 

Nugget 

(%) 

Sill Range 

(m) 

Structural 

Variance (%) 

Model 

r2 

Organic Carbon (%) Spherical  10 0.22 14.6 90 1 

Bulk Density (mg mL-1)  Spherical  15 4.8E-0003 15.9 85 1 

Rockiness (%) Spherical  10 0.59 20.9 90 0.99 

Particle Density (mg mL-1) Spherical  14 0.165 23.5 86 0.96 

Stoniness (%) Exponential  0 607.9 21.6 100 0.95 

Silt (%) Exponential  14 166 24.1 86 0.91 

Sand (%) Spherical  2 145.4 15.3 98 0.86 

Depth (cm) Spherical  8 0.5 10.5 92 0.8 

Clay (%) Exponential  0 0.18 12.1 100 0.8 

Field Capacity (%) Exponential 0 21.75 9.1 100 0.7 

 

 

Structural Analysis for soil parameters  

 

The experimental semivariograms fit spherical or 

exponential models. The soil parameters had r2 values 

ranging from 0.7 to 1, the structural variance had 

values ranging from 85.4% to 99.99%, the nugget 

variance had values ranging from 0.01% to14.6%, and 

the range had values ranging from 10.25 to 24.1 m 

(Table 2).  

 

The models with the highest values of r2 

semivariogram models were organic carbon, the bulk 

density, rockiness, the particle density, stoniness, and 

silt (Table 2 and Figures 2, 3). All of the experimental 

semivariograms, except for field capacity, were 

adjusted to the theoretical model. 

 

The r values of cross-validation of the interpolations 

ranged from 0.09 to 0.77. Considering the association 

(r) between estimated and observed values, the 

parameters with a high precision were sand and the 

particle density (r ≥ 0.75), whereas those with a good 

accuracy were organic carbon, the bulk density, and 

stoniness (r ≥ 0.65). The parameters with little 

association were the field capacity and clay (r ≤ 0.5).  

 

The medium error (ME) values of the interpolations 

ranged from 0.00 to 2.19. In relation to the ME, the 

parameters without bias were the bulk density and 

particle density; on the other hand, the parameters with 

a very high bias were clay and stoniness. The root 

mean squared error (RMSE) of the interpolations 

ranged from 0.09 to 14.86. The parameters with the 

lowest RMSE were the bulk density, particle density, 

and stoniness, and the parameters with the major size 

errors were clay and rockiness. The normalized root 

mean squared error (NRMSE) values of the 

interpolations ranged from 0.00 to 0.26. The parameter 

without residual variance was stoniness and those with 

major residual variance were clay and silt. Therefore, 

the parameters with the most precise estimates, 

considering at least three of the statistical indices, were 

the particle density, bulk density, and stoniness, 

whereas, the least accurate parameter was clay (Table 

3).

 

Table 3. Statistics of cross-validation between measured and estimated values for different quality water 

parameters. 

Parameter r  ME RSME NRMSE 

Sand (%) 0.77 -0.29 9.03 0.14 

Particle density (mg mL-1) 0.75 0.00 0.26 0.18 

Organic Carbon (%) 0.68 0.05 3.46 0.19 

Bulk density (mg mL-1)  0.67 0.00 0.09 0.19 

Stoniness (%) 0.66 -1.85 0.27 0.00 

Rockiness (%) 0.6 -0.32 11.77 0.18 

Silt (%) 0.6 -0.31 10.44 0.23 

Depth (cm) 0.5 -0.89 9.96 0.19 

Field capacity (%) 0.37 -0.11 2.96 0.14 

Clay (%) 0.09 2.19 14.86 0.26 

CV = Cross validation; ME = medium error; RSME = root mean squared error; NRSME = normalized root mean 

squared error. 
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Figure 2. Graphic representation of the soil property models and their experimental and model semivariograms. 
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Figure 3. Graphic representation of the soil property models with their respective experimental and model 

semivariograms. 
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Figure 4. Probability depth soil diagrams for three different cut offs (5, 10, and 25 centimeters) showing their 

probabilities in each diagram. 
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Maps with ordinary Kriging 

 

The graphic representation obtained with the 

interpolation shows that higher percentages of 

stoniness (>68%), carbon organic (>17) (Figure 2), 

sand (>67%), and the field capacity (>43%) (Figure 3) 

can be found in the southeast. Additionally, higher 

percentages of organic carbon and rockiness (>51%) 

can be found in the central part. 

 

The parameters particle density and bulk density 

(Figure 2) have higher values in the west of the parcel 

and there are similarities with sites with a major depth 

(>40 cm). At such sites, there are lower percentages for 

rockiness, stoniness, organic carbon, the field capacity, 

and sand. 

 

The silt map shows that higher percentage values are 

distributed in the west, principally in the southwest; 

these coincide with the major percentages of the 

particle density, bulk density, and depth. In the east, 

the sites with lower percentages of silt have a major 

percentage of clays. Moreover, where we saw a higher 

percentage of rockiness, we found lower percentages 

for the depth, particle density, bulk density, clay, and 

silt (Figures 2, 3).  

 

Probabilistic depth map 

 

The probability of finding soils with a depth of 0 to 5 

cm or Nudilithic Leptosols in the parcel is higher in the 

central-south area of the parcel and in the west, while 

the probability of finding soils with a depth of 0 to 10 

cm (Nudilithic Leptosols and more Lithic Leptosols) is 

higher in the central, north, south, extreme west, 

northeast, and southeast areas. The probability of 

finding soils with a depth of 0 to 25 cm (Nudilithic 

Leptosols, Lithic Leptosols, and other Leptosols) is 

high in the majority of the parcel, except in the north-

east, central-west, and northwest (Figure 4) (IUSS, 

2015). This means that depths greater than 25 cm are 

found at these sites. 

 

DISCUSSION 

 

This work followed the recommendations for the 

preparation of digital soil maps (Minasny and 

McBratney, 2016), and consisted of three components: 

a) A georeferenced database with the properties of the 

soils; b) data processing, which required geostatistical 

techniques, software, and hardware; and c) the output 

in the form of soil maps using geographic information 

systems. 

 

The digital soil maps at the plot level produced in this 

work allow a vision of the soil as a continuum 

(Heuvelink and Webster, 2001) compared to the maps 

traditionally made by experts, using Mayan wisdom 

and technical knowledge (Bautista et al., 2005), in 

which the soils seem like puzzle blocks. 

 

The effect of stoniness on soils is controversial. In a 

positive way, stoniness can reduce the erosive effect of 

rain and help to prolong humidity (Querejeta et al., 

2007). However, stony conditions make it difficult to 

plant crops and reduce the fertility in shallow soils 

(Magier and Rabina, 1984). 

 

The depth digital soil map reveals that in the plot under 

study, within the sub-horizontal karst plain, the soils 

exhibit wide spatial variability, with Nudilithic 

Leptosols, Lithic Leptosol, other Leptosols, and 

Cambisols (IUSS, 2015), which has not previously 

been reported in a spatial way. 

 

 

 

Table 4. Proposed land agricultural classes in karstic areas. 

Parameters Maya name 

(Bautista et al. 2010)  

WRB 

(IUSSS, 2015) 

Agricultural Class 

Depth 0-5 cm Chaltún Nudilithic Leptosol V 

Depth 5-10 cm Hay lu’um Lithic Leptosol IV 

Stoniness ≥ 60% Chochol lu’um 

Chich lu’um 

Skeletic Leptosol 

Hyperskeletic Leptosol 

III 

Depth 10-25 cm Ma taan Chak lu’um Other Leptosols 

Cambisols 

II 

Depth 25-43 cm Chak lu’um  

Taantaan lu’um 

Cambisols I 

The high spatial heterogeneity of soil properties was consistent with the high diversity of Maya milpa crops in the karst 

lands of the Yucatán Peninsula (Terán and Rasmussen, 1994). 
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The percentage of carbon is often taken as an indicator 

of the soil fertility. However, in the case of karst areas, 

the percentage of carbon tends to be higher in soils 

with lower amounts of fine earth, that is, a shallower 

depth, greater rockiness, and greater stoniness 

(Bautista et al., 2016). What happens is that, in karst 

areas, the amount of organic carbon must be taken into 

account and not the concentration (percentage). In this 

way, the amount of organic carbon (kg/m2) can be used 

as an indicator of fertility (Delgado et al., 2017b). 

 

For agricultural technicians who do not know both, 

Maya Soil Classification (Bautista and Zinck, 2010; 

Estrada-Medina et al., 2013) or the International 

Classification of Soils (IUSSS, 2015) are 

recommended for using the five classes of agricultural 

suitability of land for recently formed karstic areas 

(Table 4). 

 

CONCLUSIONS 

 

The use of geostatistical techniques allowed us to 

document the high spatial heterogeneity of soil 

properties in a sub-horizontal karst plain. The highest 

precision maps developed with ordinary kriging 

interpolation were those for sand, the particle density, 

organic carbon, the bulk density, and stoniness. The 

use of the kriging indicator allowed us to identify the 

surface of the Nudilitic Leptosols, Lithic Leptosols, 

and other Leptosols. Both soil maps for the depth and 

stoniness allowed us to identify five classes of different 

agricultural qualities for the sub-horizontal karst plain 

of the Yucatan peninsula. 
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